Metabolomics in nutrition research: biomarkers predicting mortality in children with severe acute malnutrition

Michael Freemark

Department of Pediatrics, Duke University Medical Center, the Duke Molecular Physiology Institute, and the Duke Global Health Institute
Objectives

• Comprehensive profile of metabolic status at presentation (tandem MS, centralized microassays)

• Characterize changes in >100 FA, AA metabolites, hormones, growth factors, cytokines during nutritional recovery

Hypothesis: hormonal and metabolic factors at baseline predict mortality during treatment.
Patients	n	%
Age | 16.3 ± 8.9 (range 6 mo – 5 yr) |
Males | 43/75 | 57
HIV+ | 18/75 | 24
Malaria | 7/74 | 10
Edema | 42/75 | 57
Wt z | -4.8 ± 1.5 |
Length z | -3.2 ± 1.5 |
Wt/Ht z | -4.2 ± 1.4 |
Mortality | 9/74 | 12.2

Bartz S, Mody A et al. J Clin Endo Metab in press
BLOOD SAMPLES

F 75
F 100
RUTF

Micronutrients

Bartz S, Mody A et al. J Clin Endo Metab in press
Leptin, adiponectin, and ghrelin in malnutrition

Consequences

- ↓ energy expenditure
- ↑ food intake
- ↓ insulin sensitivity (glucose sparing)
- ↑ food intake
- ↑ GH
Metabolic response to malnutrition

Lipolysis
Depletion of fat reserves

Glycerol
NEFA

FAO
HGP
Fatty liver
IGF-1

Reduced bone growth
↓ IGF-1
↑ cortisol

FAO
↓ Glucose uptake / oxidation
↓ Protein synthesis
↓ Proteolysis (esp. if edema)
Hypoaminoacidemia
↓ Amino acid utilization
Metabolic response to malnutrition
Metabolic recovery from malnutrition

Lipogenesis
Repletion of fat stores

↑ Bone growth

↑ Glycogen
↓ HGP
↓ ALT
↑ IGF-1

↑ Glucose uptake / oxidation
↑ Protein synthesis
↑ Albumin, AA
↑ Amino acid utilization
Metabolic recovery from malnutrition

- Lipogenesis
 - ↑ leptin
 - ↑ adiponectin

- Ghrelin
 - ↓ Ghrelin
 - ↓ GH

- Insulin
- Cortisol
- Adiponectin

- Glu uptake / oxidation
- Protein synthesis
- Albumin, AA
- Amino acid utilization

- Bone growth
- GH induction of IGF-1

- HGP
- ALT
- IGF-1
Baseline factors associated with mortality
(univariate analysis)

<table>
<thead>
<tr>
<th>Factor</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Weight z</td>
<td>< 0.02</td>
</tr>
<tr>
<td>MUAC</td>
<td>< 0.002</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>< 0.02</td>
</tr>
<tr>
<td>PYY</td>
<td>< 0.01</td>
</tr>
<tr>
<td>IL-2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TNFα</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Malaria, Edema, Ketones, NEFA</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td></td>
</tr>
</tbody>
</table>

Bartz S, Mody A et al. J Clin Endo Metab in press
Baseline factors associated with mortality
(univariate analysis)

<table>
<thead>
<tr>
<th>Factor</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Weight z</td>
<td>< 0.02</td>
</tr>
<tr>
<td>MUAC</td>
<td>< 0.002</td>
</tr>
<tr>
<td>Leptin</td>
<td>0.0002</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>< 0.02</td>
</tr>
<tr>
<td>PYY</td>
<td>< 0.01</td>
</tr>
<tr>
<td>IL-2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TNFα</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Malaria</td>
<td>NS</td>
</tr>
<tr>
<td>Edema</td>
<td></td>
</tr>
<tr>
<td>Ketones, NEFA</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td></td>
</tr>
</tbody>
</table>

Bartz S, Mody A et al. J Clin Endo Metab in press
Adapted from Bartz S, Mody A et al. J Clin Endo Metab in press
Multivariate logistic regression analysis.

OR refers to Odds Ratio for mortality.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>OR</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt/Ht z score</td>
<td>0.546</td>
<td>0.214</td>
<td>0.211-1.417</td>
</tr>
<tr>
<td>HIV status</td>
<td>116.84</td>
<td>0.022</td>
<td>2.005-6809.128</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptin</td>
<td>0.906</td>
<td>0.035</td>
<td>0.827-0.993</td>
</tr>
<tr>
<td>HMW Adiponectin</td>
<td>1.000</td>
<td>0.184</td>
<td>0.999-1.001</td>
</tr>
</tbody>
</table>

Bartz S, Mody A et al. J Clin Endo Metab in press
Cord blood hormones and growth factors in SGA infants

<table>
<thead>
<tr>
<th>Cord Blood</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>↓</td>
</tr>
<tr>
<td>IGF-1</td>
<td>↓</td>
</tr>
<tr>
<td>Leptin</td>
<td>↓</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>↓</td>
</tr>
<tr>
<td>Ghrelin</td>
<td>↑</td>
</tr>
<tr>
<td>Cortisol</td>
<td>↑</td>
</tr>
</tbody>
</table>

Conclusions

• FAO provides primary energy source for GNG and cardiopulmonary function in children with SAM

• ↓ muscle proteolysis, AA utilization severe malnutrition (unless infected)

• Changes in fatty acid and AA metabolism driven by changes in hormones and growth factors (ghrelin, GH, insulin, cortisol, IGF-1)

• Roles of GI hormones paradoxical and unclear

• Malnourished patients hypoadiponectinemic and insulin-resistant

• Catabolic state reversed in 2 wks of formula feeding

• Major biochemical factor predicting mortality low leptin (but not NEFA or ketones): sustain energy production, immune function
Potential Implications

- Metabolic and hormonal profiling - comprehensive analysis of adaptations to childhood malnutrition and treatment; other disorders

- Leptin marker of adipose reserve - utility as marker of pre-clinical malnutrition

- Leptin as clinical biomarker for mortality in edematous + non-edematous

- Role of leptin in defense vs infection (microbiome)

- Leptin as adjunct to nutritional therapy
Thanks

Mulago Nutrition Unit
 Elizabeth Kiboneka
 Tonny Kiyimba

Duke Pediatrics and the Duke Molecular Physiology Institute
 Sarah Bartz
 Aaloke Mody
 Christoph Hornik
 James Bain
 Michael Muehlbauer
 Robert Stevens
 Christopher Newgard
 John Bartlett and the Duke Global Health Institute

PepsiCo, Inc. Global R and D
 John St. Peter

Genentech Foundation