Research Reactor: A Powerhouse of Nuclear Technology in Korea

2011. 11.
Dr. Jaejoo Ha
Korea at a Glance

- Difficult Environment (Small Land, High Population, Rare Natural Resource, Divided Country)
 - Land Size 99,000 km² (108th)
 - Population 48,875K (15th)
 - Energy Consumption 9th, Oil Consumption 7th, Oil Import 4th

- Leadership and Effort to Overcome
 - E.g., Employment of Nuclear Technology

- Fastest Developed Country in the World (Good Quality of Human Resource, High Level of Technology, Diversified Industry)
 - Trade 1,000B$ (7th)
 - GNP > 20,000$ (67$ in 1950’s)
Korean Economy and Nuclear

Contributed by Cheap Electricity Tariff of Nuclear Energy

Per Capita Income (US$)

10,000

5,000

Liberation from Japanese Colonial Rule

Korean War (1950~53)

Big Push

Six 5-Year-Economic-Development Plans

Liberation (1945)

TRIGA II Start 67(1953) 89 100(1964) 1,000(1977)

KORI#1 Operation

Financial Crisis

Source: Bank of Korea

First KSNP HANARO operation 11,432

OECD Member

PWR Fuel

CANDU Fuel

KORI#

Fuel

TRIGA II Start

18.372

OECD (1996)

F. Crisis (1997)

20,500(08)

16,291

14,193

7,355

1990

1945

1953

1961

1970

1980

1990

1995

1998

2004

2006

14,193

2006

2000

2007

Per Capita Income (US$)

10,000

5,000

10,000

5,000

TRIGA II Start 67(1953) 89 100(1964) 1,000(1977)

KORI#1 Operation

Financial Crisis

Source: Bank of Korea

First KSNP HANARO operation 11,432

OECD Member

PWR Fuel

CANDU Fuel

KORI#

Fuel

TRIGA II Start

18.372

OECD (1996)

F. Crisis (1997)

20,500(08)

16,291

14,193

7,355

1990

1945

1953

1961

1970

1980

1990

1995

1998

2004

2006

Per Capita Income (US$)

10,000

5,000

The First Nuclear Electricity

Kori - the site of the 1st Korean NPP: before (top) and now (bottom).

1st unit of nuclear power plant started to build in 1971

- Turn Key basis
- 587 MWe
- Commercial operation in 1978
- Life extension after 30 years operation (2007.12)
In operation
21 units
(18,718 MW)

Under construction
7 units
(8,600 MW)

Under planning
6 units
(8,600 MW)

6 more by 2030

Radioactive Waste Disposal Facility
(Under construction)

Yong-gwang
6 units

Kori
8 units

Ulchin
8 units

Wolseong
6 units

NPP in Korea

In Operation

Under Construction
National Energy Basic Plan

Established in 2008.08

Power Plant Capacity Share (%)

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNG</td>
<td>26%</td>
<td>18%</td>
</tr>
<tr>
<td>Coal</td>
<td>30%</td>
<td>31%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>26%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Electricity Generation Share (%)

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNG</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>Coal</td>
<td>38%</td>
<td>29%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>36%</td>
<td>59%</td>
</tr>
</tbody>
</table>

※ Ref: National Energy Committee (2008)
30 years of repetitive construction fostered competitive domestic suppliers in the entire nuclear cycle.
KAERI as Technology Warehouse
- Merge and Spin-out -

- Separate Establishment: Utility(KEPCO), Heavy Industries and Construction Co.
- Spin out: KOPEC(KEPCO E&C), KNF(KEPCO NF), KINS, KIRAMS, KINAC, KRMC

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960s</td>
<td>Atomic Energy Research Institute (AERI)</td>
</tr>
<tr>
<td>1960s</td>
<td>Radiological Research Institute (RRI)</td>
</tr>
<tr>
<td>1960s</td>
<td>Radiation Research Inst. in Agriculture (RBIA)</td>
</tr>
<tr>
<td>1966</td>
<td>Fusion Establishment of Industrial Infrastructure</td>
</tr>
<tr>
<td>1970s</td>
<td>Atomic Energy Research Institute (AERI)</td>
</tr>
<tr>
<td>1970s</td>
<td>Radiological Research Institute (RRI)</td>
</tr>
<tr>
<td>1973</td>
<td>Korea Atomic Energy Research Institute (KAERI)</td>
</tr>
<tr>
<td>1975</td>
<td>KNE (KOPEC later on)</td>
</tr>
<tr>
<td>1975</td>
<td>Establishment of Industrial Infrastructure</td>
</tr>
<tr>
<td>1976</td>
<td>Korea Nuclear Fuel Development Institute (KNFDI)</td>
</tr>
<tr>
<td>1979</td>
<td>Safety Center</td>
</tr>
<tr>
<td>1981</td>
<td>KAERI (Korea Advanced Energy Research Institute)</td>
</tr>
<tr>
<td>1982</td>
<td>KNFC</td>
</tr>
<tr>
<td>1982</td>
<td>Technology Transfer from Foreign Suppliers</td>
</tr>
<tr>
<td>1985</td>
<td>Self-Reliance</td>
</tr>
<tr>
<td>1990</td>
<td>Korea Atomic Energy Research Institute (KAERI)</td>
</tr>
<tr>
<td>1990</td>
<td>NSSS Design Team</td>
</tr>
<tr>
<td>1996</td>
<td>TCNC</td>
</tr>
<tr>
<td>1997</td>
<td>KIRAMS</td>
</tr>
<tr>
<td>1997</td>
<td>Advancement</td>
</tr>
<tr>
<td>2000s</td>
<td>Establishment of Industrial Infrastructure</td>
</tr>
<tr>
<td>2004</td>
<td>Dec 2004</td>
</tr>
<tr>
<td>2007</td>
<td>Mar 2007</td>
</tr>
<tr>
<td>2007</td>
<td>NNCA (KINAC later on)</td>
</tr>
<tr>
<td>2007</td>
<td>KIRAMS</td>
</tr>
</tbody>
</table>

• Separate Establishment: Utility(KEPCO), Heavy Industries and Construction Co.
• Spin out: KOPEC(KEPCO E&C), KNF(KEPCO NF), KINS, KIRAMS, KINAC, KRMC
Technology Self-Reliance Strategy

Government
- Leadership and Policy
- Legal Structure
- International Framework

Academies
- Critical Mass of Human Resource

Technology Incubator and Warehouse
- Lab., Experiment Facility, RR,...

Real Projects
- R&D, Realization

Spin-off Organizations
- Experts
- Technology

Experience Accumulation Feedback
Research Reactors in Korea
KRR-1 & KRR-2

KRR-1
- TRIGA-II in KAERI started operation in 1962
- Constructed by GA with the participation of local construction companies & researchers
- 100 kW
- Upgraded to 250 kW in 1969 by KAERI
- Basic nuclear engineering study, training
- To be the national museum

KRR-2
- TRIGA-III in KAERI started operation in 1972
- Constructed by GA with the participation of local construction companies & researchers
- 2 MW
- Nuclear engineering study, training, RI production, neutron scattering research, NAA
- Decommissioned in 2005
Dawning of nuclear age

The 1st Research Reactor in Korea, TRIGA Mark II (100KW)

The 1st president of Korea in the ground breaking ceremony (1959.7.14)
KRR-I (TRIGA Mk-II)

Chronology
- 1958.12: Contract with GA, USA
- 1962.3.19: 1st Criticality
- 1969.6.24: Power Upgrade: 100kW to 250kW
- 1995.1: Permanent Shutdown

Characteristics
- Open-Pool & Natural convection (250kW)
- Coolant/Reflector: H₂O / Graphite
- Fuel: Rod type UZrH with 20% U-235 in Al-clad
- Control rod: B₄C (3 EA)
- Max. Thermal Neutron Flux: 1x10¹³ n/cm²/sec

<table>
<thead>
<tr>
<th>RI Production</th>
<th>3,741 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA</td>
<td>7,889 cases</td>
</tr>
<tr>
<td>Other Exp.</td>
<td>3,484 cases</td>
</tr>
<tr>
<td>Education & Training</td>
<td>3,417 person 9,250 hours</td>
</tr>
</tbody>
</table>
KRR-II (TRIGA Mk-III)

Chronology
- 1968: Contract with GA, USA
- 1971: Completion of reactor building
- 1972.3.10: 1st Criticality
- 1995.12: Permanent shut-down

Characteristics
- Open-Pool & Natural Convection (2 MW)
- Movable Core
- Coolant/Reflector: $\text{H}_2\text{O} / \text{H}_2\text{O}$
- Fuel: Rod type UZrH with 70% U-235 in SUS-clad
- Control rod: B_4C
- Irradiation facility: Beam Ports (8), Exposure room, Thermal Column, Rotary Specimen Rack
- Max. Thermal neutron-Flux: 7×10^{13} n/cm2sec

<table>
<thead>
<tr>
<th>RI Production</th>
<th>7,690 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA</td>
<td>12,070 cases</td>
</tr>
<tr>
<td>Neutron Beam</td>
<td>436 cases</td>
</tr>
<tr>
<td>Other Exp.</td>
<td>1,057 cases</td>
</tr>
</tbody>
</table>
Education Reactor at Kyung-Hee Univ.

AGN-201K (Zero Power Reactor with Homogeneous LEU Fuel Core)

Very safe university reactor for education & training

History

1967-1974: Operated at Colorado State University

1976: CSU donated to Kyung-Hee University (US DOE arrangement)

1982: Opened at KHU Reactor Lab. (0.1 watt)

2004-2007: Refurbishment by using the domestic technology

(Power uprate by 100 times, new I&C system, licensed under new rules)

2008: Reopened at KHU Reactor Research & Education Center
Part II. Introduction to HANARO

HANARO Complex in KAERI

High-flux Advanced Neutron Application Reactor

AE : Auxiliary Equipment Building for CNS
AU : Auxiliary Utility Building for CNS
CNL : Cold Neutron Laboratory
CT : Cooling Tower

IMEF : Irradiated Material Examination Facility
PH : Pump House for Secondary Cooling System
RX : Reactor Building
RIPF : Radio-Isotope Production Facility
Chronology

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Jan</td>
<td>Start of HANARO Project</td>
</tr>
<tr>
<td>1989</td>
<td>Jan</td>
<td>Start of HANARO Construction</td>
</tr>
<tr>
<td>1993</td>
<td>Aug</td>
<td>Installation of HANARO Reactor Structure</td>
</tr>
<tr>
<td>1995</td>
<td>Feb</td>
<td>Fuel Loading and Achievement of Initial Criticality</td>
</tr>
<tr>
<td>1996</td>
<td>Jan</td>
<td>15 MW Power Operation</td>
</tr>
<tr>
<td>1999</td>
<td>Dec</td>
<td>22 MW Power Operation</td>
</tr>
<tr>
<td>2004</td>
<td>Nov</td>
<td>30 MW (Design Power) Power Operation started</td>
</tr>
<tr>
<td>2005</td>
<td>Mar</td>
<td>First Loading of HANARO Fuel made by KAERI</td>
</tr>
<tr>
<td>2006</td>
<td>Apr</td>
<td>Start of Cold Neutron Laboratory Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Completed in May 2008)</td>
</tr>
<tr>
<td>2006</td>
<td>Jul</td>
<td>Start of Fuel Test Loop Installation (Completed in Feb. 2008)</td>
</tr>
<tr>
<td>2008</td>
<td>May</td>
<td>Start of Cold Neutron Source System Installation</td>
</tr>
<tr>
<td>2009</td>
<td>Sep 3</td>
<td>First Generation of Cold Neutron</td>
</tr>
<tr>
<td>2009</td>
<td>Sep 28</td>
<td>Completion of FTL Commissioning Test</td>
</tr>
<tr>
<td>2010</td>
<td>Mar 30</td>
<td>Contract of JRTR Project</td>
</tr>
</tbody>
</table>
Mission of HANARO

Platform for Nuclear Basic Research

User Community
- Industry
- University
- Institute
- International Cooperation

National Demand
- Basic R&D
- Competitiveness in Technology

- Fuel Test Loop
- Material Irradiation
- Neutron Activation Analysis
- NTD

- Public Welfare
- Industrial Application

- Cold Neutron Beam Radiography

- Reactor Operation
 - Experimental Facility Operation

- Neutron Beam Research
- Neutron Irradiation Research
- Operation & Development
- RI Production & Utilization

HANARO SAFETY

http://www.kaeri.re.kr
Part II. Introduction to HANARO

HANARO, Past and Present

Feb. 1995

Oct. 2009
Reactor Structure and Characteristics

Features

- **Type**: Open-tank-in-pool
- **Power**: 30 MW_th
- **Coolant**: Light water
- **Reflector**: Heavy water
- **Fuel materials**: U_3Si, 19.75% enriched
- **Absorber**: Hafnium
- **Reactor building**: Confinement
- **Max thermal flux**: $5 \times 10^{14} \text{ n/cm}^2\text{s}$
- **Typical flux at port nose**: $2 \times 10^{14} \text{ n/cm}^2\text{s}$
- **7 horizontal ports & 36 vertical holes**
- **Vertical hole for cold neutron source**
- **Operation cycle**: 24 days@5 weeks
Part II. Introduction to HANARO

Beam Ports and Irradiation Holes

Installed
- IR1: Fuel Test Loop
- CT, IR2: Capsule Irradiation & RI Production
- OR: Capsule Irradiation & RI Production
- IP: RI Production
- HTS: Hydraulic Transfer System for RI Production
- PTS: Pneumatic Transfer System for Neutron activation Analysis
- NTD: Neutron Transmutation
 - Doping of Silicon
- CNS: Cold Source Installation

Horizontal Tubes

Installed
- ST2: High Resolution Powder Diffractometer,
 - Four Circle Diffractometer
- NR: Neutron Radiography Facility
- CN: Cold Neutron Guide
- IR: Ex-core Neutron-irradiation Facility for BNCT & DNR
- ST1: PGAA and RSI
- ST3: High Intensity Powder Diffractometer

Under-development
- ST3: Bio-diffractometer
- ST4: Triple Axis Spectrometer
Part II. Introduction to HANARO Reactor Operation Record

Operation Record of HANARO

- Operation days
- Power generation

CNS & FTL Installation

- Operation days per year
- Power generation (MWD)

Year:
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010

Power generation (MWD):
- 1996: 2687.5
- 1997: 2035.9
- 1998: 3062.3
- 1999: 3035.7
- 2000: 3699.2
- 2001: 3770.8
- 2002: 4852.5
- 2003: 6119.2
- 2004: 4522.7
- 2005: 113.4
- 2006: 4248.2
- 2007: 107.3
- 2008: 4160.0
- 2009: 3932.6
- 2010: 5264.0

Operation days:
- 1996: 168.4
- 1997: 130.9
- 1998: 157.8
- 1999: 158.8
- 2000: 168.4
- 2001: 169.8
- 2002: 209.1
- 2003: 217.4
- 2004: 183.7
- 2005: 110.4
- 2006: 139.9
- 2007: 144.9
- 2008: 107.3
- 2009: 135.8
- 2010: 213.8
Annual No. of Users and Institute in HANARO

No. of Users
No. of Institutes

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of Users</th>
<th>No. of Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>1997</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>1998</td>
<td>282</td>
<td>20</td>
</tr>
<tr>
<td>1999</td>
<td>308</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>399</td>
<td>20</td>
</tr>
<tr>
<td>2001</td>
<td>475</td>
<td>20</td>
</tr>
<tr>
<td>2002</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>2003</td>
<td>581</td>
<td>71</td>
</tr>
<tr>
<td>2004</td>
<td>598</td>
<td>48</td>
</tr>
<tr>
<td>2005</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>2006</td>
<td>320</td>
<td>60</td>
</tr>
<tr>
<td>2007</td>
<td>309</td>
<td>59</td>
</tr>
<tr>
<td>2008</td>
<td>278</td>
<td>57</td>
</tr>
</tbody>
</table>
Material/Fuel Irradiation Using Capsule

Reactor Materials Tests
- Reactor Vessel Materials
- Reactor Pressure Tube Material: Zr-2.5Nb
- Structural Materials

Fuel Materials Tests
- HANARO Fuel
- U-Mo Fuel
- Advanced PWR Fuel
- DUPIC Fuel
- U-Zr Alloy

Fundamental Researches
- SPND
- Semiconductor, Magnetic Materials
- Neutron Dosimetry
- Zr-1Nb-1Sn-X Alloy, Zircaloy-4
Instrumented Capsule for Material Irradiation Test

Design Characteristics

- Total Length: ~6m (60mm D x 870mm H)
- Available Space (Max.): 40mm D x 600mm L
- 5 Stages Independent Temp. Control
- Max. Temp. Control: Up to 500°C
- He Atmosphere: 1 atm ~ 3×10^{-3} torr (He)
- Instrumentation: 14 T/Cs, 5 Micro-Heaters, 4 Ms
- Available Specimen: Tensile, Charpy, R-CT, SP, Tube, hardness, PCVN, MBE, TEM, etc.
- Related Facilities: Temperature Control System, Supporting System, Cutter, Cask, etc.

Applications

- Material Tests
 - Reactor Pressure Vessel
 - Reactor Core Materials
 - CANDU Pressure Tube Materials
- Safety and Integrity-Related Tests
- Study on the extension of reactor lifetime
- Industry Application Material Tests
- Fundamental Research
Instrumented Capsule for Nuclear Fuel Test

Design Characteristics

- Total Length: 5,000 mm
- Diameter of Outer Tube: 56 mm
- Length of Outer Tube: 730 mm
- 3 Mini-Elements Fuel Rod
- Control of Irradiating Environment
- Use of Mixed Gas (He/Ne)

Applications

- Fuel Pellet Irradiation Test
 - Advanced PWR Fuel
- Fuel Design Data Production
 - Center/Surface Temperature of Fuel Pellet
 - Internal Pressure of Test Fuel Rod
 - Deformation of Fuel Pellet
- Fundamental Research
Creep/Fatigue Test Capsule

Design Characteristics

- Total Length : ~6,000 mm
- Diameter of Outer Tube : 60 mmD x 997 mmL
- Irradiation specimen : 1, 2 & 4
- Instrumentation : 8 TCs, 2 heaters, 1 LVDT
- Creep & fatigue tests temperature : Max. 600 ℃
- Irradiation condition : 1 atm ~ 30 torr (He)

Applications

- Examination of nuclear materials through study of creep and fatigue behaviors
- Study on the extension of reactor lifetime
- Study for Fundamental Research
Fuel Test Loop Facility

Commissioning test: ~ Sept. 2009

Applications
- Integral Fuel Irradiation Tests
- Fuel Qualification Tests
- High Burn-up Fuel Tests
- Water Chemistry and Corrosion Tests
- Non-fissile Tests of Pressure Tube Material

In-Pile Section
- Design Pressure: 17.5 MPa
- Design Temperature: 350 °C

Out-Pile System
Fuel Test Loop Facility

- Outer Pressure Vessel
- Inner Pressure Vessel
- Test Fuel Carrier Leg
- Flow Divider
- Insulation Gas Gap
- Test Fuel
- Downward Flow Path
- Upward Flow Path
- Outlet Nozzle
- Fuel Carrier Head
- Flow Divider
- Fuel Carrier Leg
- IPS Head
- Inner Pressure Vessel
- Outer Pressure Vessel
- Outlet Nozzle
- Fuel Carrier Head
- Flow Divider
- Fuel Carrier Leg
- Inner Pressure Vessel
Neutron Beam Science

Thermal Neutron

- Neutron Radiography Facility (NRF)
- Encore Neutron Irradiation Facility (ENF)
- Residual Stress Instrument (RS)
- Thermal Neutron Triple Axis Spectrometer (Thermal TAS)
- Bio-Diffractometer with Neutron Image Plate Camera (Bio-C)
- Bio-Diffractometer (Bio-D)
- High Intensity Powder Diffractometer (HPD)
- Four Circle Neutron Diffractometer (FCD)
- High Resolution Powder Diffractometer (HRPD)
- Vertical Neutron Reflectometer (REF-V)

Cold Neutron

- KIST-Ultra Small Angle Neutron Scattering (KIST-USANS)
- Bio-Reflectometer (Bio-REF)
- 1.8M Small Angle Neutron Scattering Instrument (1.8M SANS)
- Disk Chopper Time-of-Flight Spectrometer (DC-TOF)
- 40M Small Angle Neutron Scattering Instrument (40M SANS)
- CN-Prompt Gamma Activation Analysis (CN-PGAA)
- CN-Neutron Depth Profiling (CN-NDP)
- Guide Test Station (G-TS)

TN-Prompt Gamma Activation Analysis (TN-PGAA)

Cold Neutron Triple Axis Spectrometer (Cold-TAS)
In-service

Under way

NR Port

Neutron Radiography Facility (NRF), 1997 Upgrade

ST4 Port

Triple Axis Spectrometer (TAS), 2010

Neutron Reflectometer (REF-V), 2006 moved 2010

ST3 Port

High Intensity Powder Diff. (HIPD), 2008

ST2 Port

High Resolution Powder Diff. (HRPD), 1998

Ex-Core Neutron Irradiation Facility (ENF), 2005

ST1 Port

Prompt Gamma Neutron Activation Analysis (PGAA), 2003

Test Station (TS) & Residual Stress Instrument (RSI), 2003

CN Port

Small Angle Neutron Scattering (SANS), 2001
Currently dismantled

Cold Neutron Guide, 2009

IR Port

Ex-Core Neutron Irradiation Facility (ENF), 2005

Bio-Diffractometer (Bio-D), 2010

Neutron Reflectometer (REF-H), 2008 moved 2010

Four Circle Diffractometer (FCD), 1999 Upgrade '05-'06

Neutron Reflectometer, (REF-V), 2006 moved 2010

High Resolution Powder Diff. (HRPD), 1998

Prompt Gamma Neutron Activation Analysis (PGAA), 2003

Test Station (TS) & Residual Stress Instrument (RSI), 2003

Small Angle Neutron Scattering (SANS), 2001
Currently dismantled

Cold Neutron Guide, 2009

Ex-Core Neutron Irradiation Facility (ENF), 2005

Bio-Diffractometer (Bio-D), 2010

Neutron Reflectometer, (REF-V), 2006 moved 2010

Four Circle Diffractometer (FCD), 1999 Upgrade '05-'06

Neutron Reflectometer (REF-V), 2006 moved 2010
Cold Neutron Facility

- Hydrogen system
- Vacuum system
- He Refrigerator
- Gas blanket system

- CNS equipment room

- Guide shield

- Thermal guide

- CNLB completed (08.11.27)

- Cooling system
- He compressor

- Main shutter guide

- In-pile plug guide

- Cold TAS

- 12m SANS

- DC-TOF

- 40m SANS

- HRSANS

- Bio-REF

- REF-V

completed

conducting

completed conducting
Development of CNRF for the Operating HANARO

Basic Design
- Full Scale Thermo-siphon Mock-up Test Using H_2
- Safe & Reliable Process System Design
- Optimum Source Design at existing Reactor Structure

Detail Design
- System Commissioning on Schedule & the 1st Cold Neutron Expected in Sep. 2009
- Beam Instrument Layout
- Successful Installation of Neutron Guide System at High Radiation Environment

Construction & Commissioning

http://www.kaeri.re.kr
Part II. Introduction to HANARO

Production of high quality Si Semiconductor

Services using NTD1 & NTD2 holes

- Irradiation of 5”, 6” and 8” Ingots
- High Uniformity & Accuracy
- Commercial Service from 2003
- 10% of World Market Share

Neutron Transmutation Doping

Fz-Silicon - Neutron Irradiation - Doped Silicon - Wafer

- ^{30}Si
- ^{31}P

IGCT - GTO - IGBT - Rectifier Diode

Neutron irradiation and transmutation doping process for producing high-quality Si semiconductor materials.
Irradiated Material Examination Facility

M1-M4 Hot Cells for Irradiated Fuel Tests

M5, M7 Hot Cells for Irradiated Structural Material Tests

M6 Hot Cells for DUPIC project

M8 Hot Cells for ACP project
HANARO Fuel Development

~1992
- Developed Atomization Process (U₃Si powder)
- Good in-pile/out-of-pile performance
- World leading Technology

~2000
- HANARO Fuel Localization Program Launched
- R&D of Fabrication Process
- Irradiation Test of Atomized Fuel

~Now
- Start HANARO Fuel Supply (2005)
- Fabrication Capacity (45 set/yr)
HANARO Fuel Fabrication Facility

Atomization process
Radioisotope Production Facility

Bank I (4 Cells)
- 60Co, 192Ir, 169Yb

Bank II (11 Cells)
- 166Ho, 32,33P, 99mTc, 51Cr, HDR
- 192Ir

Bank III (6 Cells)
- 131I, 125I

Bank IV (4 Cells)
- 99Mo/99mTc Generator

KAERI’s 188W/188Re Generator

I-131 Solution

I-131 Capsule

Preparation Room for Cold Kits

166Ho-CHICO
(166Ho-Chitosan Complex)

Ir-192 NDT Source
Radioisotope application in environmental industry
- \(^{46}\text{Sc}\) : Tracer for sludge digester

Process diagnosis by using radioisotope in petrochemical Industries
- \(^{140}\text{La}\) : Solid tracer
- \(^{41}\text{Ar}\) : Gas tracer
- \(^{60}\text{Co}\) : Sealed source

Efficiency test of sludge digester by using \(^{46}\text{Sc}\)

Performance test of RFCCU by using radiotracer in petrochemical plant
International Cooperation and New Research Reactor Development
Part II. Introduction to HANARO

International Cooperation

Operator Training
- 2000 Training of Taiwan RR project commissioning team
- 2004 Training of CARR(China) operators

Fuel Technology
- Export of U-Mo powders
- Export of U foil

Reactor System Technology
- 2009 Upgrade of GRR-1 (5 MW, Greece) primary cooling system
- 2009 Consultation on the upgrade of I&C for TRR-1 (2 MW, Thailand)
- 2010 Construction of JRTR (5 MW, Jordan)

Utilization Technology
- PSD(Neutron detector) for JRR-3M (20 MW, Japan)
- Tc-99m abstraction system using solvent
- I-131 distillation system, I-131 distribution system(capsule, solution)
- Ir-192 irradiator assembling equipment
KAERI Soccer Club with International Institutes

- Started to Celebrate 2002 Worldcup with Japan
- Japan (4 times), China (3 times), Vietnam (2 times), Thailand, Jordan, Malaysia (1 times), Next?
JRTR Project Overview

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Jordan Research and Training Reactor (JRTR) Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Jordan Atomic Energy Commission (JAEC)</td>
</tr>
<tr>
<td>Contractor</td>
<td>Consortium of KAERI and Daewoo E&C</td>
</tr>
<tr>
<td>Contract Type</td>
<td>Turnkey EPC Contract</td>
</tr>
<tr>
<td>Project Period</td>
<td>Aug. 1, 2010 to March 31, 2015 (56 months)</td>
</tr>
<tr>
<td>Site</td>
<td>Campus of Jordan U of Science and Technology</td>
</tr>
<tr>
<td></td>
<td>(Ramtha, Jordan)</td>
</tr>
<tr>
<td>Scope of Supply</td>
<td>• Design and Construction of JRTR</td>
</tr>
<tr>
<td></td>
<td>(Reactor, Reactor building, Service building</td>
</tr>
<tr>
<td></td>
<td>including RI production facility, Aux. buildings,</td>
</tr>
<tr>
<td></td>
<td>and Training Center)</td>
</tr>
<tr>
<td></td>
<td>• Education and Training of Jordanian Staffs</td>
</tr>
</tbody>
</table>
New Korean RR

Objective
- Fulfill the RI Demand
- Increase Silicon Doping capacity
- Acquire State-of-Art Technology of RR

Status
- Finished the feasibility study and Approved by Parliament
- Start the project from 2012.3.1 for 5 years

Key
- Develop Reactor Core using U-Mo plate type fuel (the first in the world)
- Construct New RI Production Facility including Fission-Molly process
- Establish U-Mo plate fuel manufacturing facility
- Fabricate U-Al atomized target for Fission-Molly
Conclusions
What you get
Sustainable Development

What you need

Policy
Technology Center
Human Resource
Infrastructure
Industries
Conclusions

1. Basis of Korean Nuclear R&D
 - Priority in Safety and Environment Protection

2. R&D for Effective Use of Nuclear Technology, Clean & Economic Fuel cycle and Nonproliferation.

3. Experiences in Research Reactor Technology
 - Design, Construction, Commissioning, Operation
 - Utilization, Modernization and Decommissioning

4. Use of Radioisotope and Radiation Technology for the Better Life of Korean

5. Ready to Share Experience with Friends