Engaging the public in support of Area-wide Integrated Pest Management

Pamela Pennington, Ph.D.
Universidad del Valle de Guatemala
pamelap@uv.edu.gt

Sandra De Urioste-Stone, Ph.D.

Area-Wide Management of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques
Vienna, Austria
May 26 2017
Content

1. Central American Chagas disease control initiative and sustainability challenges
2. Implementation of Area-wide Integrated Vector Management to control Chagas disease
3. Lessons learned in Area-wide IVM
Chagas is a deadly disease that affects vulnerable populations in Latin America

- 9 million infected with *Trypanosoma cruzi*
- Silent chronic disease
- Transmitted by triatomines infesting houses under extreme poverty conditions
Chagas disease is mainly transmitted by vectors

- Vector-borne: >80%
- Blood: 16%
- Congenital: 2%
- Other routes: <1%
- (i.e. oral, organ transplant, laboratory accident)
The Central American initiative focused on interruption of vectorial transmission

- October 1997
- Interrupt transmission by *Rhodnius prolixus* and *Triatoma dimidiata*
Chagas disease vector control was prioritized by JICA in Guatemala
(Annual meeting CA initiative, 1999)

- 4 million at risk
- Prevalence: 9.8/100 inhabitants
- Annual incidence: 28-30 thousand cases
- >1,500 new cases/year

Tabaru et al. 1999
Chagas disease vector control programs are based on insecticides and house improvement

- Indoor residual pyrethroid formulations
- Surveillance
- Community participation:
 1. Surveillance
 2. House improvement
 3. Health education
Vector control sustainability is a challenge to the interruption goal

1. Insecticide cost ($10/house)
2. Insecticide resistance
3. Sylvatic or peridomestic vectors
4. Slow house improvement process
5. Loss of political will
T. dimidiata control is a challenge in Guatemala

Focalized persistent *T. dimidiata* infestation after insecticide-based control

Content

1. Chagas disease Central American control initiative and sustainability challenges
2. Implementation of Area-wide Integrated Vector Management
3. Lessons learned in Area-wide IVM
Our objectives:

1. Improve Chagas disease prevention through an improved understanding of ecological, biological and social determinants of persistent vector infestation

2. Develop and evaluate a community-based and intersectoral intervention for peridomestic animal management to reduce vectors in human habitats
A multidisciplinary project
pre-proposal

1. MoH epidemiological data
2. Central area MoH administrative support
3. Local area MoH support
4. Multidisciplinary proposal
Our strategy is multidisciplinary.
Our strategy is iterative

PRECEDE: SITUATIONAL ANALYSIS

Phase 1: Social Assessment
Phase 2: Epidemiological Assessment
Phase 3: Behavioral and Environmental Assessment
Phase 4: Educational and Ecological assessment
Phase 5: Administrative Policy Assessment
Phase 6: Implementation
Phase 7: Process evaluation
Phase 8: Impact evaluation
Phase 8: Outcome evaluation

• Health Services
• Health Education
• Health Promotion
• Policy, Regulation

Predisposing factors
Enabling factors
Reinforcing factors

Behavior and lifestyle
Environment:
Vector and reservoir distribution
Quality of life: reduce Chagas disease transmission

PRECEED: INTERVENTION
Phase 5: Administrative Policy Assessment
Phase 4: Educational and Ecological assessment
Phase 3: Behavioral and Environmental Assessment
Phase 2: Epidemiological Assessment
Phase 1: Social Assessment

PRECEDE: SITUATIONAL ANALYSIS

Quality of life: reduce Chagas disease transmission
Phase 1: Social assessment

• Establish rapport with communities

• Presentations to authorities, communities, municipal leaders

• Socioeconomic case study
Phase 1: Social Assessment

Phase 2: Epidemiological Assessment

Phase 3: Behavioral and Environmental Assessment

Phase 4: Educational and Ecological assessment

Phase 5: Administrative Policy Assessment

PRECEDE: SITUATIONAL ANALYSIS

Quality of life: reduce Chagas disease transmission

Vector and reservoir distribution
Phase 2: Situational Analysis
Diagnostic of eco-bio-social context and risk factors

Rats are infected and associated with persistent *T. dimidiata* infestation
Phase 5: Administrative Policy Assessment

Phase 4: Educational and Ecological assessment

Phase 3: Behavioral and Environmental Assessment

Phase 2: Epidemiological Assessment

Phase 1: Social Assessment

PRECEDE: SITUATIONAL ANALYSIS

Behavior and lifestyle

Environment:

Quality of life: reduce Chagas disease transmission

Vector and reservoir distribution
Participatory meetings

1. Food storage practices, natural resources

2. Land ownership, animal management, production systems
 - Chagas disease

3. Chagas history in the area, identifying key players and roles, local challenges, expectations
We implemented a Participatory Action Research approach

• Communities actively participate in proposing solutions
• Iterative process of reflection and action

Bustamante et al PLOS One, 2014
PRECEDE: SITUATIONAL ANALYSIS

Phase 5: Administrative Policy Assessment

Phase 4: Educational and Ecological assessment

Phase 3: Behavioral and Environmental Assessment

Phase 2: Epidemiological Assessment

Phase 1: Social Assessment

Predisposing factors

Enabling factors

Reinforcing factors

Behavior and lifestyle

Quality of life: reduce Chagas disease transmission

Vector and reservoir distribution

PRECEDE: SITUATIONAL ANALYSIS
Phase 4: Situational analysis
Ethnography

Anthropologists lived for one month in selected communities
- Housing construction practices
- Household economic activities
- Agricultural and animal management practices
PRECEDE: SITUATIONAL ANALYSIS

Phase 5: Administrative Policy Assessment
- Health Services
- Health Education
- Health Promotion
- Policy, Regulation

Phase 4: Educational and Ecological assessment
- Predisposing factors
- Enabling factors
- Reinforcing factors

Phase 3: Behavioral and Environmental Assessment
- Behavior and lifestyle
- Environment:

Phase 2: Epidemiological Assessment

Phase 1: Social Assessment
- Quality of life: reduce Chagas disease transmission
- Vector and reservoir distribution
Phase 5: Situational analysis
Stakeholder map and policy analysis
Our hypothesis:

- Rodent nests maintain a constant source of infestation and transmission in the house
- If rodent nests are reduced, transmission should also be reduced
We chose a cluster randomized cohort study design.

Distribution of communities selected for the study intervention 2012-2013

- Red: Intervention
- Blue: Control
- Orange: Infestation levels <15%
Our Intervention: Healthy environments for Chagas disease control

Indoor residual insecticide + Education Participation + Environmental Management = Chagas prevention
Phase 1: Social Assessment

Phase 2: Epidemiological Assessment

Phase 3: Behavioral and Environmental Assessment

Phase 4: Educational and Ecological Assessment

Phase 5: Administrative Policy Assessment

Phase 6: Implementation

Phase 7: Process Evaluation

Phase 8: Impact Evaluation

Phase 8: Outcome Evaluation

PRECEDE: SITUATIONAL ANALYSIS

Quality of life: reduce Chagas disease transmission

Vector and reservoir distribution

Phase 1: Social Assessment

Phase 2: Epidemiological Assessment

Phase 3: Behavioral and Environmental Assessment

Phase 4: Educational and Ecological Assessment

Phase 5: Administrative Policy Assessment

Phase 6: Implementation

Phase 7: Process Evaluation

Phase 8: Impact Evaluation

Phase 8: Outcome Evaluation

PRECEDE: SITUATIONAL ANALYSIS
We chose a community-based participatory strategy

- 9 Participatory activities
- Education, reflection and discussion of risk factors and the disease
- SWOT analysis
We chose a community-based participatory strategy

• Combined bottom-to-top and top-to-bottom strategies
• Vector personnel supervised community volunteers to spray insecticide
We chose a community-based participatory strategy

• We taught participants to use mechanical rodent traps and effectively reduced rodent infestations

• Participants tested different trap designs to ensure adoption

We chose a community-based participatory strategy

Intersectoral environmental management to reduce rodent infestations

We chose a community-based participatory strategy

Our intervention achieved sustainable vector control levels

Significant difference, GLMM p<0.05

“I feel happy because... we respect life by taking care of our health and preventing a deadly disease”

(R1, comunidad 3, sept. 2012)
Our strategy is iterative

PRECEDE: SITUATIONAL ANALYSIS

Phase 5: Administrative Policy Assessment
Phase 4: Educational and Ecological assessment
Phase 3: Behavioral and Environmental Assessment
Phase 2: Epidemiological Assessment
Phase 1: Social Assessment

• Health Services
• Health Education
• Health Promotion
• Policy, Regulation

Phase 6: Implementation
Phase 7: Process evaluation
Phase 8: Impact evaluation
Phase 8: Outcome evaluation

Predisposing factors
Enabling factors
Reinforcing factors

Behavior and lifestyle
Environment:

Quality of life: reduce Chagas disease transmission
Vector and reservoir distribution

Our strategy is iterative
What is the importance of congenital Chagas disease?

• 1% seropositive children in 2015
• 10% seropositive women of child-bearing age in 2015

• We have started a program with midwives to refer pregnant women and their newborns for neonatal screening

Pennington et al submitted
Content

1. Chagas disease Central American control initiative and sustainability challenges
2. Implementation of Area-wide Integrated Vector Management
3. Lessons learned in Area-wide IVM
Complex socioeconomic problems need multidisciplinary approaches

- Use an iterative process
- Combine bottom-up and top-to-bottom strategies
- There is no single magic bullet
- Use all the tools in the toolbox!

(Green and Kreuter 2005, as cited by the University of Kansas 2012)
Understand the needs

- A participatory process is more than education, it leads to empowerment
- Participants propose solutions
- Participants are your collaborators and your champions
- Listen carefully!
Understand the community

• Map stakeholders
• But, be aware that the recruitment process will affect the end product
• Ex. house-to-house processes will produce gender bias
• Involve leaders as participants, not only supporters!
Conclusions

1. Persistent *T. dimidiata* infestation associated with peridomestic rats threatens Chagas disease transmission interruption in Guatemala

2. Our Integrated Vector Management Program is more sustainable than vertical insecticide-based control

3. Iterative, participatory, multidisciplinary processes can sustain relevant disease control
Future IVM studies: Sterile Insect Technique for malaria elimination

• 1970s, USDA/CDC released chemosterilized males of *Anopheles albimanus* in El Salvador

Lowe et al 1980
Potential SIT application in malaria elimination

- Guatemala 4,000 malaria cases in 2014
- Focalized to sites with sugar cane water reservoirs and coastal tourist areas
- **SIT: “An alternative that must be carefully evaluated”** - MoH Vector Control Program Officer
Collaborators

UVG
- Sandra De Urioste-Stone (Natural resource management)
- Celia Cordón (Biology)
- José Guillermo Juárez (Biology)
- Hugo Perdomo (Microbiology)
- Hugo Enríquez (Mastozoology)
- Nancy Sandoval (M.D.)
- Elizabeth Pellecer (International development)
- Jorge Sincal (Technician)
- Edgar Pereira (Social scientist)
- Teresa Aguilar (Development specialist)
- Andrés Álvarez (Anthropology)

Ministry of Health
- Dra. Elsa Berganza (Epidemiologist)
- Ranffery Trampe (Vector control)

CDC
- Joe Bryan (Congenital Chagas and Zika)
- Ellen Dotson (Chagas and Malaria)

Communities
- COCODES and communities of Comapa and Zapotitlán
Indoor residual insecticide + Education Participation + Environmental Management = Chagas prevention

Pamela Pennington, Ph.D.
Universidad del Valle de Guatemala
pamelap@uvu.edu.gt