The WHO Vector Control Advisory Group (VCAG)

A JOINT ACTIVITY OF NTD AND GMP

Dr Raman Velayudhan, Coordinator, Vector Ecology and Management, Department of Control of Neglected Tropical Diseases
Vector Control Advisory Group (GMP and NTD)

Established in 2012, six meetings held

The objectives of VCAG are:
1. To conduct an initial review of concept and determine data required to validate the product class, claim or variation and (b).
2. To advise on the process to generate the required data
3. To assess the evidence for new vector control tools / approaches
4. To develop or refine the Target Product Profiles;
5. To establish public health value and support formulation of a WHO policy & use recommendation
Summary of VCAG pathways for new intervention concepts in vector control

Evaluation / Guidance

<table>
<thead>
<tr>
<th>Intervention Concept</th>
<th>Step 1: Concept</th>
<th>Step 2: Proof of concept – Entomological Efficacy</th>
<th>Step 3: Proof of concept – Public health Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk Assessment (ad hoc experts)</td>
<td>Specifications (JMPS or ad hoc experts)</td>
<td>Development of outcome criteria, testing requirements, risk assessment models, quality control criteria and any associated guidance documents</td>
</tr>
</tbody>
</table>

Policy development process

A. **VCAG assesses the data submitted**, determines the stage of paradigm development (1, 2, 3 above), and **provides guidance** to innovators appropriate to paradigm stage.

 — **VCAG** facilitates risk assessments and development of specifications, and guidelines for data generation

B. **VCAG** reviews final dossier of evidence (Step 3) and makes recommendations to WHO on **efficacy** and **public health application** of the new intervention concept.

C. **WHO**, advised by **MPAC/STAG**, sets policy on **public health use** for vector control, in the context of IVM.

D. **WHO**, advised by **EAGs**, develops **operational guidance on deployment** of new tools for disease control.
Summary of achievements

14

New or variant classes of tools (some with multiple products) included in VCAG program (2013-2016)

Review and guidance for tools in VCAG program

- 6th VCAG Meeting April 2017
- Risk Assessments for 2 products
- New tools for Zika

Guidelines

- LLINs for pyrethroid resistance;
- Vector traps for surveillance and control (in progress);
- Vector control trial design manual (in progress)
- Policy pathways for new vector control tools
Overview of New Products (by product class)

<table>
<thead>
<tr>
<th>New Product - Variation</th>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITN against IR Vector (extend ITN)</td>
<td>Pyr + mix/comb LLIN</td>
<td>PermaNet 3, Interceptor G2</td>
</tr>
<tr>
<td>Treated walls against IR vector (extend IRS)</td>
<td>IRS/wall linings for IR pop</td>
<td>No claim reviewed</td>
</tr>
<tr>
<td>Peri-focal residual spraying (extend IRS)</td>
<td>Outdoor RS</td>
<td>PFS formulation, Bayer</td>
</tr>
<tr>
<td>Insecticide-treated curtain (extend ITN)</td>
<td>Fully screened house</td>
<td>FSH pyrethroid netting</td>
</tr>
</tbody>
</table>

New Product Class – (chemical)

<table>
<thead>
<tr>
<th>New Product</th>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attract and kill baits</td>
<td>Attractive Toxic Sugar Bait</td>
<td>Bait station</td>
</tr>
<tr>
<td>Spatial repellents</td>
<td>Passive emanator</td>
<td>metofluthrin or transfluthrin</td>
</tr>
<tr>
<td>ITM for specific risk groups</td>
<td>ITM</td>
<td>Blanket, Clothes</td>
</tr>
<tr>
<td>Vector traps</td>
<td>Adulticidal Oviposition traps</td>
<td>ALOT, IN2TRAP, AGO, TNK</td>
</tr>
<tr>
<td>Lethal house lures</td>
<td>Eave tubes</td>
<td>Eave tubes</td>
</tr>
<tr>
<td>Systemic insecticide</td>
<td>Rodent bait</td>
<td>Imidacloprid based bait</td>
</tr>
</tbody>
</table>

New Product Class – (biological)

<table>
<thead>
<tr>
<th>New Product</th>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial control in adult vectors</td>
<td>Bacterial infection</td>
<td>wMel Wolbachia in Ae. aegypti</td>
</tr>
<tr>
<td>Pop. reduction through genetic manipulation</td>
<td>GMM, self limiting</td>
<td>OX513A Ae. aegypti (RIDL)</td>
</tr>
<tr>
<td>Pop. alteration of malaria vector mosquitoes</td>
<td>GMM, gene-drive</td>
<td>CRISP/Cas9 in An. gambiae</td>
</tr>
<tr>
<td>SIT & incompatible insect technique (IIT)</td>
<td>Radiation + bacterial infection</td>
<td>Sterilized Aedes spp. + Wolbachia</td>
</tr>
</tbody>
</table>
Overview of New Products (by use)

New Products for *Anopheles*; Malaria

<table>
<thead>
<tr>
<th>New Products for Anopheles; Malaria</th>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITN against IR Vector (extend ITN)</td>
<td>Pyr + mix/comb LLIN</td>
<td>PermaNet 3, Interceptor G2</td>
</tr>
<tr>
<td>Attract and kill baits</td>
<td>Attractive Toxic Sugar Bait</td>
<td>Bait station</td>
</tr>
<tr>
<td>Lethal house lures</td>
<td>Eave tubes</td>
<td>Eave tubes</td>
</tr>
<tr>
<td>Pop. alteration of malaria vector mosquitoes</td>
<td>GMM, gene-drive</td>
<td>CRISP/Cas9 anti-parasite</td>
</tr>
<tr>
<td></td>
<td>GMM, gene-drive</td>
<td>CRISP/Cas9 in An. gambiae</td>
</tr>
</tbody>
</table>

New Product Class for *Aedes*; Arboviral diseases

<table>
<thead>
<tr>
<th>New Product Class for Aedes; Arboviral diseases</th>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector traps</td>
<td>Adulticidal Oviposition traps</td>
<td>ALOT, IN2TRAP, AGO, TNK</td>
</tr>
<tr>
<td>Microbial control in adult vectors</td>
<td>Bacterial infection</td>
<td>wMel Wolbachia in Ae. aegypti</td>
</tr>
<tr>
<td>Pop. reduction through genetic manipulation</td>
<td>GMM, self limiting</td>
<td>OX513A Ae. aegypti (RIDL)</td>
</tr>
<tr>
<td>SIT & incompatible insect technique (IIT)</td>
<td>Radiation + bacterial infection</td>
<td>Sterilized Aedes spp. + Wolbachia</td>
</tr>
<tr>
<td>Peri-focal residual spraying (extend IRS)</td>
<td>Outdoor RS</td>
<td>PFS formulation, Bayer</td>
</tr>
</tbody>
</table>

[World Health Organization logo]
Overview of New Products

New Product Class – for *Anopheles* and *Aedes*

<table>
<thead>
<tr>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial repellents</td>
<td>Passive emanator</td>
</tr>
<tr>
<td>Treated walls against IR vector (extend IRS)</td>
<td>IRS/wall linings for IR pop</td>
</tr>
<tr>
<td>Insecticide-treated curtain (extend ITN)</td>
<td>Fully screened house</td>
</tr>
<tr>
<td>ITM for specific risk groups</td>
<td>ITM</td>
</tr>
<tr>
<td></td>
<td>Blanket, Clothes</td>
</tr>
</tbody>
</table>

New Product Class – for NTD (leishmaniasis and plague) transmitted by sandflies and fleas

<table>
<thead>
<tr>
<th>Generic Exemplar</th>
<th>Prototype product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic insecticide</td>
<td>Rodent bait</td>
</tr>
<tr>
<td></td>
<td>Imidacloprid based bait</td>
</tr>
</tbody>
</table>

Step 3 Approved

Step 3 underway
Conclusion: need for innovation in approach & tools

- More holistic approach and country leadership in vector-borne disease prevention and control efforts is critical
- Policies and activities should be multi-sectorial and should always be evidence-based
- Emphasis on locally adapted, "multi-vector" and community-based approaches – involvement of municipalities and local governments
- Adoption of novel tools is key (once thoroughly validated for operational use)
- Aim is to ensure all countries can achieve success, irrespective of their current disease burden/risk, capacities and resources
Draft global vector control response

For consideration by the World Health Assembly at its 70th session under provisional agenda item 14.26
... above all, the spread of Zika, the resurgence of dengue, and the emerging threat of Chikungunya are the price being paid for a massive policy failure that dropped the ball on mosquito control in the 1970s.

Margaret Chan
Director-General, World Health Organization

Opening Address at World Health Assembly 69th session

May 2016
Global burden of vector-borne diseases

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease</th>
<th>Estimated or reported annual cases</th>
<th>Estimated annual deaths</th>
<th>Estimated annual DALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquitoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malaria</td>
<td>212 000 000</td>
<td>429 000</td>
<td>55 111 000</td>
</tr>
<tr>
<td></td>
<td>Dengue</td>
<td>96 000 000</td>
<td>9 110</td>
<td>1 892 200</td>
</tr>
<tr>
<td></td>
<td>Lymphatic filariasis</td>
<td>38 464 000</td>
<td>NA</td>
<td>2 075 000</td>
</tr>
<tr>
<td></td>
<td>Chikungunya (Americas)</td>
<td>693 000 (suspected, 2015)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Zika virus disease (Americas)</td>
<td>500 000 (suspected, 2016)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Yellow fever (Africa)</td>
<td>130 000</td>
<td>500</td>
<td>31 000</td>
</tr>
<tr>
<td></td>
<td>Japanese encephalitis</td>
<td>42 500</td>
<td>9250</td>
<td>431 552</td>
</tr>
<tr>
<td></td>
<td>West Nile fever</td>
<td>2 588</td>
<td>111</td>
<td>NA</td>
</tr>
<tr>
<td>Blackflies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Onchocerciasis</td>
<td>15 531 500</td>
<td>NA</td>
<td>1 135 700</td>
</tr>
<tr>
<td>Sandflies</td>
<td>(Muco) cutaneous leishmaniasis</td>
<td>3 895 000</td>
<td>NA</td>
<td>41 500</td>
</tr>
<tr>
<td></td>
<td>Visceral leishmanias</td>
<td>60 800</td>
<td>62 500</td>
<td>1 377 400</td>
</tr>
<tr>
<td>Triatome bugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chagas disease</td>
<td>6 653 000</td>
<td>10 600</td>
<td>236 100</td>
</tr>
<tr>
<td>Ticks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Borreliosis (Lyme disease)</td>
<td>532 125</td>
<td>NA</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>Tick-borne encephalitis (North Eurasia)</td>
<td>10 000 – 12 000</td>
<td>NA</td>
<td>167.8 / 100 000</td>
</tr>
<tr>
<td>Tsetse flies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human African trypanosomiasis</td>
<td>10 700</td>
<td>6 900</td>
<td>202 400</td>
</tr>
<tr>
<td>Snails</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schistosomiasis</td>
<td>207 000 000</td>
<td>200 000</td>
<td>2 613 300</td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other: Rift Valley fever, O'nyong nyong virus, Mayaro virus, Crimean-Congo haemorrhagic fever, rickettsial diseases, plague (limited data)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combined global distribution of malaria, dengue, lymphatic filariasis, leishmaniasis, Japanese encephalitis, yellow fever and Chagas disease.

Today more than **80% of the world’s population is at risk** from at least one vector-borne disease, with more than half at risk from two or more.

Golding et al. BMC Med. 2015; 13:249
Major gains made against malaria through vector control

- Estimated 1.2 billion fewer malaria cases and 6.2 million fewer malaria deaths globally between 2001 and 2015 (cumulative) relative to 2000
- But current activities are insufficient to eliminate malaria from sub-Saharan Africa
- Need improved and additional tools and better strategies and implementation

70% of reductions in sub-Saharan Africa attributable to interventions.

Of this, 69% attributable to ITNs, 21% to ACTS and 10% to IRS

Cibulskis et al. Infect Dis Poverty. 2016; 5:61
Challenges

- **Systemic**: insufficient public health entomological capacity including human and infrastructural
- **Structural**: strong centralised programme lacking in many countries, synergies not leveraged, and resource utilization not optimized
- **Informational**: weak evidence-base and poor linkage of entomological, epidemiological and intervention data
- **Environmental**: unpredictable, uncontrollable and complex changes
- **Movement of human and goods**: increased international travel and trade, humanitarian crises
- **Political and financial**: limited funds committed and sustained beyond malaria
- **Ethical**: implementation including novel interventions
Opportunities

• **Recognition**: importance exemplified in existing regional and global vector-borne disease control strategies

• **Expansion**: build on successes against malaria, onchocerciasis and lymphatic filariasis

• **Optimization**: re-align across multiple vectors, diseases, sectors and partners

• **Collaboration**: leverage existing networks for information and resource sharing

• **Adaptation**: create flexible systems to address specific conditions and challenges

• **Innovation**: new tools, technologies and approaches on the horizon

• **Technology**: advances in data collation, planning and implementation

• **Development**: alignment with Sustainable Development Goals
Development of the global vector control response

Led by:

WHO Global Malaria Programme
WHO Department of Control of Neglected Tropical Diseases
Special Programme for Research and Training in Tropical Diseases
Status: Fifth draft (v5.4) produced based on feedback from online consultation and Executive Board 140th session (held 28 January 2017)

Development timeline

- **Steering Committee**
 - Formed
 - 1st meeting
 - 2nd meeting

- **Document versions**
 - Zero draft
 - First draft
 - Second draft
 - Third draft
 - Fourth draft
 - Final (English)
 - Final (French)

- **Consultations**
 - MPAC, STAG, STAC, Regional

- **Submission and review**
 - Online consultation
 - EB140
 - WHA
Inputs for development

<table>
<thead>
<tr>
<th>Lead</th>
<th>GMP, NTD, TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering Committee</td>
<td>Prof. Thomas Scott and Dr Ana Carolina Santelli (co-chairs) and other leading experts</td>
</tr>
<tr>
<td>WHO regional focal points</td>
<td>AFRO, EMRO, EURO, PAHO, SEARO, WPRO</td>
</tr>
<tr>
<td>Online consultation</td>
<td>Responses from Member States, research/academia, private sector, donor agencies, other UN agencies, NGOs (n = 80)</td>
</tr>
</tbody>
</table>
| Presented for discussion at: | • Information session for Member State missions, Geneva
• **WHO Executive Board 140th session, Geneva**
• TDR Scientific and Technical Advisory Committee meeting, Geneva
• NTD Strategic and Technical Advisory Group meeting, Geneva
• GMP Malaria Policy and Advisory Committee meeting, Geneva
• Informal consultation on response, Johannesburg
• Asia-Pacific Malaria Elimination Network meeting, Bangkok
• African Network for Vector Resistance meeting, Brazzaville
• Regional consultation to accelerate progress towards ending HIV/TB/malaria in South-East Asian region, Dhaka
• Pan-African Mosquito Control Association meeting, Lagos
• European Mosquito Control Association meeting, Bečići
• International Congress of Entomology, Florida
• PAHO Vector Control Strategic Advisory Group, Washington DC
• WHO Vector Control Advisory Group meeting, Geneva
• WHO Malaria Vector Control Technical Expert Group meeting, Geneva
• DDT expert group meeting, Geneva
• Global Collaboration for Development of Public Health Pesticides meeting, Geneva
• Malaria elimination meeting, Geneva
• Roll Back Malaria Vector Control Working Group, Geneva |
Discussed as agenda item 9.2 on 28 January 2017:

- Interventions made by 22 countries (16 EB members, 6 non-EB members) and IFRC
- Support was positive with updates proposed for strengthening GVCR
- Resolution development for WHA70 proposed by Fiji and supported by five other EB members (Canada, China, Colombia, New Zealand, USA) and four EB non-members (Australia, Brazil, Panama, Switzerland)

OUTCOME:

- The CHAIRMAN took it that the Board wished to request the Secretariat, in consultation with Member States, to prepare a draft resolution for consideration at the Seventieth World Health Assembly. It was so agreed.
Global Vector Control Response
5th draft (version 5.4)

http://www.who.int/malaria/global-vector-control-response/
Rationale

Vector-borne diseases:
- account for around 17% of estimated global burden of communicable diseases
- disproportionately affect poorer populations
- impede economic development through direct and indirect costs (e.g. loss of productivity and tourism)
- are strongly influenced by social, demographic and environmental factors

Vector control:
- if implemented well can prevent many major vector-borne diseases
- has contributed to major reductions in the incidence of malaria, onchocerciasis and Chagas disease
- has not been used to full potential or maximal impact for other diseases
- can be strengthened by realigning programmes to optimize the delivery of interventions that are tailored to the local context
Vision, Aim and Goals

- **Vision**: A world free of human suffering from vector-borne diseases.
- **Aim**: Reduce the burden and threat of vector-borne diseases through effective locally adapted and sustainable vector control.

<table>
<thead>
<tr>
<th>Goals</th>
<th>Milestones</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce mortality due to vector-borne diseases globally relative to 2016</td>
<td>At least 30%</td>
<td>At least 50%</td>
</tr>
<tr>
<td>Reduce case incidence due to vector-borne diseases globally relative to 2016</td>
<td>At least 25%</td>
<td>At least 40%</td>
</tr>
<tr>
<td>Prevent epidemics of vector-borne diseases*</td>
<td>In all countries without transmission in 2016</td>
<td>In all countries</td>
</tr>
</tbody>
</table>

* Rapid detection of outbreaks and curtailment before spread beyond country.
Overview

Reduce the burden and threat of vector-borne diseases that affect humans

Effective locally adapted sustainable vector control

1. Strengthen inter- and intra-sectoral action and collaboration
2. Engage and mobilize communities
3. Enhance vector surveillance and monitoring and evaluation of interventions
4. Scale up and integrate tools and approaches

Enabling factors:
- Country leadership
- Advocacy, resource mobilization and partner coordination
- Regulatory, policy and normative support

Pillars of action

Foundation

A. Enhance vector control capacity and capability
B. Increase basic and applied research, and innovation
Priority activities for 2017–2022* (1-5 of 10)

1. National and regional vector control strategic plans developed/adapted to align with draft *global vector control response*
2. National vector control needs assessment conducted or updated and resource mobilization plan developed (including for outbreak response)
3. National entomology and cross-sectoral workforce appraised and enhanced to meet identified requirements for vector control, including for epidemic response
4. Relevant staff from health ministries or supporting institutions trained in public health entomology
5. National and regional institutional networks to support training and/or education in public health entomology and technical support established and functioning

To be revised and updated for the subsequent period of 2023–2030.
6. National agenda for basic and applied research on entomology and vector control established and/or progress reviewed

7. National inter-ministerial task force for multisectoral engagement in vector control established and functioning

8. National plan for effective community engagement and mobilization in vector control developed

9. National vector surveillance systems strengthened and integrated with health information systems to guide vector control

10. National targets for protection of at-risk population with appropriate vector control aligned across vector-borne diseases

* To be revised and updated for the subsequent period of 2023–2030.
Implementation costing - approach

- For full implementation of priority activities defined for 2017-2022
 - Includes: **staffing, surveillance and coordination**
 - Excludes: vector control commodities and their deployment, research and innovation implementation costs.

- Four-step approach:
 1. Country categorization by a) historic risk (2000 – 2015), b) current burden (2016) and c) number of major VBDs. Adjusted based on knowledge of other VBDs (eg. of local significance)
 2. Estimate of population as risk from at least one of the major VBDs (estimates generated by Oxford University)
 3. Estimate of resource requirements based on a) burden level, and/or b) population (eg. # subnational meetings or sentinel sites per 500,000 pop basis)
 4. Country-specific cost estimates for defined resources generated using WHO-CHOICE method
Implementation costing - outcome

- Annual estimate for full implementation:
 - US$330 million annually
 - US$0.05 per person per year
 - Represents a maximum and varies between countries depending on risk/burden, population size and income level

- Relatively modest investment compared to:
 - Total projected cost for vector control against malaria, Chagas and dengue > US$4 000 million by 2022
 - Individual interventions
 - Malaria: ITNs = US$ 1.27/person/year; indoor residual sprays = US$ 4.24 /person/year
 - Dengue: community-based activities = > US$1.00 /person/year

- Accurate estimates of resources/costs will be derived from national vector control needs assessments at country and subnational levels.
Concluding points

• Country leadership of vector-borne disease prevention and control efforts is critical
• Policies and activities should not be limited to the health sector and should always be evidence-based
• Action within countries and between countries should be harmonized and strengthened
• Emphasis on integrated, community-based approaches – involvement of municipalities and local governments
• Adoption of novel tools is strongly encouraged (when validated for operational use by WHO)
• Aim is to ensure all countries can achieve success, irrespective of their current disease burden/risk, capacities and resources
Thank you