did not influence subsequent mating competitiveness. In population dynamics and sterile-male-release experiments, the peak number of 1st generation weevils were observed during the 5th week. Emergence of the 1st generation weevils was also indicated by the sharp weekly increase in the average rate of oviposition-punctured squares. The 2nd generation began during week seven and peaked during week eight. The rate of increase between generations was dependent upon the population density of the original population. Thus, the rate of decrease from the overwintered to the F1 generation was greater than that from the F1 to the F2 generation. The rate of increase per generation was only slightly inhibited by releases of sterile males. Shedding of squares following egg deposition was found to be due largely to the hatching of the egg and not just to the damage incurred in the act of oviposition. Terminal data indicated that the weekly releases of sterile males failed to achieve control. Failure of the tests was most likely due to the low ratio of sterile to normal males present. However, some indication of population build-up was observed, indicating possible future success with this method of control. (From DA)

Note: The text contains a symbol that is not clear. It might be a mathematical symbol or a special character that needs further clarification.

1501 Horben, E. MARKÄR GEGEN MARKÄRFER: EIN VERSSCH ZUR TILGUNG EINES EINGRÜNDUNGS-
HEIDES DES FELDMARKÄFS (Mebolophtha volgare Tab.) MIT RÖNTGENBESTRAHLUNG MÄNNCHEN,
(Cockchafer against cockchafer! An attempt to eradicate a larval population of Melolontha
volgare by the release of X-irradiated males.) Waiblingen, 8 (1967) 105-119. (In
German, with English summary)

A field trial is described to eradicate white grubs by means of irradiated males. During two flight periods, in 1959 and 1962, respectively, irradiated males were released over a 20-ha area. Gradation in that area as well as in three control areas, C, continued to be checked since 1953. In 1959, for the 1st treatment, 1,1 of sterilized males were released over A, representing 32% of the male population. White grub infestation sampled in gravelly sand subsequently dropped to 1/10 of that in the other areas. Reproduction rates remained 1/10 in A only. Further reduction of the population in A to 1/10 of that in C was observed when the number of surviving cockchafer was estimated in spring 1962. The greatest mortality between 1959 and 1962 occurred in A. In 1962, for the 2nd treatment, a total of 17,22,23 was released over A, representing 76-100% of the male population of A. Subsequent sampling showed complete eradication in A. Some reduction was also observed in B and C, resulting from drought in the whole region. For the 2nd flight period in 1962 no treatment was necessary since only a few cockchaferer occurred in A, whereas their number had increased in C 1-3. Subsequent sampling of the white grub population confirmed complete eradication in A, and increases in C 1-9. The results indicate that the sterile-male technique may be successfully applied to insects in an area which is not strictly isolated geographically, where the females of the past mate several times, the artificial breeding in large quantities is not feasible because of long developmental stages and the most voracious and destructive stages of the insect live hidden in the soil.

1581 Horben, E. USE OF ALTERNATIVE BIOLOGICAL CONTROL SCHEMES. p. 107-183 of "Proceedings

Among the topics discussed in this review are biogeneric control measures such as the use of flooding
radiation. (His own work on Melolontha volgare is quoted by the author, where small-scale field
experiments with irradiated white grubs on gravelly sand resulted in eradication.) The use of chemo-

terrements, anti-herbicides, and acetylating agents is discussed. The use of selective agents is described. They are divided into attractants (sex attractants, attractants and attractants associated
with host plants), repellents, antifeeding compounds, and hormones (ecdysteroids, juvenile hormones,
and competition and coordination between hormone activities).

1589 Jermy, T., Nagy, B. LABORATORY EXPERIMENTS TO CONTROL THE COCKCHAFER (Melolontha
volgare L.) BY THE STERILE MALE TECHNIQUE. Acta phytoph. hung. 5, 2 (1967) 231-247. (In English)

Cockchafer adults dug out from the soil just before emergence were irradiated with x- and y-rays,
respectively. The sterilizing dose was found to be > 1,5 i.e., 3 i.e giving 90-100% sterility. x-rays
and y-rays showed the same sterilizing effect at the dose rates used in the experiments (9,68 i.e/min

427
for x-rays, 3.68/h and 2.82 k/8/h at 38 and 100 cm, respectively, for y-rays). Feeding before irradiation seems not to affect sterilization. Irradiated (3.68) males were fully competitive with normal males in cage experiments. High locomotor activity of males was observed during irradiation even at 20°C. (Colling, T. A. P., showed the same reaction.) Longevity of cockchafer males was not shortened by irradiation. (From auth.)

See also

1124 Sterilization of the male alfalfa weevil (Hypena postica: Curculionidae) by x-radiation.
(Sheahan, E. J., et al., 1966)

1220 Reproductive potential of the sweetpotato weevil after exposure to low-dose radiation.
(Walker, J. B., 1969)

1340 Study on the sterilization and radiosensitivity of Chrysomela deoccur. Say by means of radioisotopes.
(Cavallon, R., et al., 1966/1967)

1550 Radiation-induced sterilization. (Lachance, E. E., et al., 1957)

2.4.2.1.2. Diptera

Pupae of A. pharoensis Theobald were subjected to Co-60 γ-radiation from 500 to 7000 R with 300 R increments, to study the biological effects of γ-rays on fitness components. The results indicate clearly that lifetime egg production increased significantly at lower doses (1000 R) with no significant effects at doses between 1600 and 2400 R, after which a highly significant decline was observed. Percentage of hatchability was greatly affected at all doses, falling below 10% at 8000 R, above which it remained constant. Percentages of population and emergence, sex ratio, and longevity of adults were not affected by irradiation. Irradiated adults live longer than controls, though not significantly so. (Auth.)

1584 Abdel-Malek, A. A., Tantawy, A. O., Wahid, A. M. STUDIES ON THE ERADICATION OF Anopheles pharoensis Theobald BY THE STERILE-MALE TECHNIQUE USING COBALT-60. III. DETERMINATION OF THE STERILE DOSE AND ITS BIOLOGICAL EFFECTS ON DIFFERENT CHARACTERS RELATED TO "FITNESS" COMPONENTS.

Pupae of A. pharoensis Theobald were subjected to various doses of γ-rays from Co-60, i.e., 1000-24000 R with 1000 R increments to study their effects on lifetime egg production, egg hatchability, and longevity of adult mosquitoes and to find the exact dose of γ-rays which may cause complete male sterility. The sterilizing dose (10000 R) was used to investigate its adverse effects on pupae of different ages and the dose fractionation on the emerged adults. The results indicate clearly the adverse effects of high doses of γ-radiation on all characters studied except longevity of adult mosquitoes. A dose of 12,000 R caused complete sterility in both sexes. The results suggest that it was better to give the whole amount of the sterilization dosage at once rather than in fractions when pupae aged 16-20 h were used. (Auth.)

1380 Abdel-Malek, A. A., Tantawy, A. O., Wahid, A. M. STUDIES ON THE ERADICATION OF Anopheles pharoensis Theobald BY THE STERILE-MALE TECHNIQUE USING COBALT-60. VI. SPERM ACTIVITY IN MALES IRREGAZIATED WITH THE STERILIZING DOSE.

Matings between untreated females A. pharoensis Theobald and either normal or irradiated males (13,000 R) were carried out in breeding cages to investigate the sperm activity in irradiated males. Normal or irradiated males, after complete matings with females, were replaced by irradiated or normal males and egg production and hatchability were recorded daily for the first 10 d. Replacing normal males by irradiated males caused a decrease in egg hatchability compared with the controls, but insemination by normal males did not notify insemination by irradiated males. Sterilization of males with 10,000 R γ-rays did not damage the sperm, as the sperm of irradiated males competed successfully with that from normal males, whether it was present in the spermatheca before or after copulation with normal m
opulation with normal males. Delaying the mating of males for 5 d after irradiation did not restore viability of the sperm.

The anticipated length of sterile male release programs such as those in progress in the southwestern United States and northern Mexico require constant evaluation of the effects of prolonged colonization and changes in mating, irradiation, and release techniques on the mating behavior of released male flies. Tests were conducted to evaluate some of the changes in mating behavior that occur among colonized flies in laboratory-adapted flies with increased time in culture. The effects of differences in strain and size on the mating frequency of males screw-worm flies, Cochliomyia hominivorax (Coquerel), were studied in observed mating tests with a recently colonized (Mexican) and a laboratory-adapted (Florida) strain of flies. Large numbers of the Florida strain of flies were reared by mating the flies in 2 different artificial media. Flies comparable in size to wild flies were reared in artificial wounds on roach. Ancillary studies required sterilization of the males by exposure to \(\gamma \)-irradiation. Differences in mating frequency among male flies that were attributable to strain disappeared after the Mexican strain had been colonized for 20 generations. However, differences in mating frequency between large and small Florida males persisted, regardless of the strain of the female flies, when the females were as large as flies in natural populations.

During the spring of 1964 and the summer of 1964/65 twenty and one half million sterile pupae of the Queensland fruit fly, D. tryoni, were distributed through two towns in western New South Wales. It was estimated that adults emerged from 63.8% of the pupae. About half of the adults would have been males. The results were measured by collecting, at fortnightly intervals, samples of fruit from all the trees bearing fruit ripe enough to be infected with maggots of the fruit fly. In one of the treated towns, where the overwhelming population had already been reduced to an unusually low level by pre-treatment with insecticide during the previous summer, the wild population was eradicated soon after the experiment began and no sign of a fertile fruit fly was found in this area for the remainder of the experiment. In the other town where the initial wild population was greater and where the risk of re-infestation from neighboring farms was also greater, the wild population was reduced almost to the point of extinction by late January and kept low for the duration of the experiment except for several minor re-infestations in the periphery of the treated area. In two comparable towns that were left untreated as controls the routine samples of ripe fruit contained the usual high proportion of fruits infected with maggots of D. tryoni throughout the summer. The pupae were reared at the University of Sydney, Department of Zoology, and sterilized at Lucas Heights. The mean weekly production of sterile pupae during eight months was 250,000, varying between 150,000 and 750,000.

Development of the radiosterilized male technique for elimination of the screw-worm fly and other parasitic insects is reviewed. Eradication of the screw-worm from Caracas by this method is considered from the point of view of mass production, sterilization, release, and field evaluation of the project. For irradiation, a 430 Ci \(^{60} \)Co unit was used for a 2000 square mile test with an initial dose rate varying from 198 to 810 R/min. To completely sterilize the screw-worms, 8900 R was delivered to pupae at 4.5-6.7 d of age. During a two-year campaign in Florida, 3.7 billion screw-worm pupae were produced. Twenty light aircraft were used to release flies over a max. area of 25,000 mi², and peak employment totaled 200. Irradiation studies showed that a sterilizing dose of radiation could be administered to screw-worms without seriously affecting longevity or male competitiveness. Economic aspects of the programme are discussed. (NASA 91: 1907, 6740)
Tests are being carried out under field conditions in three selected areas in order to evaluate the efficacy of fly control by the release of large numbers of flies bred at the Biological Control Institute, Rehovoth, and irradiated at the pupal stage, on the last day before emergence. The dose of 850 rads is used. Currently about 7 million pupae are irradiated and released per week. A total of 80 million pupae have been treated since the project was begun in April, 1986.

In fruit-growing areas in New Zealand the codling moth population has been estimated at 4 months/tree/year, a number multiplied by the use of conventional insecticides. Treatments of the main apple-growing areas (Havelock Bay, Nelson, and Central Otago) are naturally isolated from neighbouring areas by geographical barriers. Better rearing methods and detailed ecological studies are needed, but it would seem that the method has definite possibilities for New Zealand.

Co-irradiation of horn fly pupae resulted in high mortalities at the treatment levels but newly emerged flies were sterilised by and survived 5000-6000 rad. Sterilised males were released onto a isolated bee yard alone and in integrated insecticide-sterile-fly studies. The integrated tests provided the necessary promoting horn fly control. (Abstract)

The results of a preliminary study on Dacus constrictor in the Karachi area are reported. A standardised rearing technique has been developed and laboratory cultures maintained. Pupae were irradiated by y-rays just prior to emergence. A dose of 7000-9000 R from a 137C0-56 Co source ensured sterilisation. The role of nitrogen in the irradiation chamber is discussed.

The tests were done for sterilising males of D. constrictor irradiated at the late pupal stage was found to be 1.96 kg, without involving any adverse effects on pupal survival, adult emergence, longevity or sexual aggressiveness. There was no decrease in oviposition when irradiated males were coated with virgin females but the eggs did not hatch. - Females which emerged from treated pupae showed noticeably delayed oviposition period, and in some cases eggs failed to be produced. Adult longevity appeared to be normal. The sterile-male technique appears to hold great promise for Dacus careerus.

Germadi capricornis was isolated by adding MeCN to the larval food in concentrations of 10% to 10% g/g. Resulting 5-week-old adults were subjected to a film density of 1 x 107 g2 min/mg rad. in the Stockenrode reactor for 20 min. at 5.5 MW. Improvements in rearing methods (automatic egg collection, cages, larval media) were discussed into special device for dispersing adults from aeroplanes. - Some trial releases of the Modfly were made in three areas of Vienna in the (in fortunate unfavourable) summer of 1965, a low dose (1.8 rad) being given to 8- to-10-day pupae. No eggs were laid in proved spacious. and no larvae were detected in any of the summer fruit in places where standing populations persisted for up to three months. - Attempts are reported to set up self-sustaining colonies of these flies. - A nearly satisfactory laboratory larval medium has been developed for the olive fly, and interest now focuses on deriving an economic larval food.

The scientific programme is the eradication of Anop from a Co56-source (p. 14 Carminis caprae Wied. 1826)
CONTROL OF THE MEDITER-
RALISATION OF LABORATORY-
he Period January-December
Nuclear Research Center, 533p.

areas in order to evaluate the
ity of the Biological Control Institute,
ence. The dose of 3-8 lead
per week. A total of 50 million

STERILE MALE TECHNIQUE.

As been estimated at 4 months/ 2
tional insemination. Three
Co) are naturally isolated
ods and detailed ecological
ibilities for New Zealand.

FIELD STUDIES WITH Co.
221, Presented at "Portland

ation levels but newly emerged
es were released onto an isolated
the integrated area provided the

-rays.

area are reported. A standardized
pupa were irradiated with
Co-source emitted sterilization.

Saunders BY GAMMA-RAYS.

stage was found to be
or emergence, longevity or
lar males were crossed with
from treated pupae showed
be produced. Adult longevity
promise for Drosa annulata.

RADIOACTIVE AND PEST CONTROL

concentrations of 10^4 to 10^7 g/g.
10^-1 to 10^-3 g/cm^2 in the
methods (automatic egg collection,
ads from axepanes. -
a in the (unfortunately un-
egg were laid on
fruit in places where standing
up self-mating
um has been developed for the

1595 International Atomic Energy Agency, Vienna (Austria). THE MIDDLE EASTERN REGIONAL RADIO-
ISOTOPE CENTRE FOR THE ARAB COUNTRIES, CAIRO. p. 121-122 of "IAEA Laboratory Activities,
157p. ST/DOC/10/55.

The scientific programme is outlined. Among the projects already under study and given first priority
is the eradication of Aedes aegypti in Egypt. The sterile male technique using γ-irradiation from a
60Co-source (p. 146-147). Field studies are under way. Similar studies on the eradication of
Culex pipiens Wied. in the Arab region are part of a new project (p. 147-149).

1596 International Atomic Energy Agency, Vienna (Austria). INVESTIGATION OF CONTROL OF THE
MEDITERRANEAN FRUIT FLY BY LIBERATION OF ADULT MALES IRRADIATED WITH GAMMA-RAYS;
PART OF A CO-ORDINATED PROGRAMME OF INSECT CONTROL USING RADIATION.
Research Contract 199. p. 94-96 of "IAEA Research Contracts, Sixth Annual Report", Technical Reports

Research Institution: Organismo Internacional de Sanidad Agropecuaria (OISB), San Salvador, El Salvador.

Principal scientific investigator: E. Morales,

Period of contract: 1 Mar, 1963 - 28 Feb, 1965,

Methods of mass rearing, γ-sterilization, and field assessment of sterile fly release were basically similar
to those used in other laboratories. To avoid damage of wings during the overcrowded field
release, the pupae were mixed with tropical almond leaves. The cured leaves kept the pupae from
parching and provide extra parching sites where newly emerged adults can stay until their wings
are inflated and hardened.

1597 International Atomic Energy Agency, Vienna (Austria). FIELD EXPERIMENTS FOR CONTROL OR
ELIMINATION OF LOCAL POPULATIONS OF THE QUEENSLAND FRUIT-FLY, Dacus tryoni (Froggatt)
PART OF A CO-ORDINATED PROGRAMME OF INSECT CONTROL USING RADIATION.
Research Contract 524. p. 68-100 of "IAEA Research Contracts, Sixth Annual Report", Technical Reports

Research Institution: University of Adelaide, Department of Zoology, South Australia.

Principal scientific investigator: H. G. Anderson,

During the spring of 1962 and the summer of 1963/64, 20 million pupae were sterilized by γ-irradiation
and distributed through two towns in western New South Wales. It was estimated that adults
emerged from 6% of pupae about half the adults were males. Two comparable towns were left
unirradiated as controls. Results were measured by collecting, at fortnightly intervals, samples of
fruit from all these bearing fruit ripe enough to be infected with fly maggots. The primary objective of
the project was achieved since it could be shown that the sterile male technique could be used to
control pests by eliminating local populations of the Queensland fruit fly.

1598 Karna, K. P. DETERMINATION OF THE STERILIZATION DOSE OF THE MEDITERRANEAN FRUIT
FLY USING THE OISB Co-60 RADIANTR. p. 106-109 of "The Application of Nuclear Energy to Agriculture,

19 Mv was found to reduce male fertility to 0.04%.

A progress report on the cooperative project with OISB on Medfly control in Central America by
sterile male release.

1600 Addis Ababa Regional Radiotope Centre for the Arab Countries, Cairo (Egypt). ANNUAL REPORT,
Activities in the training of specialists in the application of radioisotopes in science, industry, agriculture, and medicine and in research using radioisotope techniques are reported. Progress on eradication of Anopheles pharoensis and Ceratitis capitata by radio-serratulation techniques is reported, amongst other studies. A list of 28 references to papers published on work performed at the cause is included.

Investigations in Israel on the influence of feeding on the attraction of C. capitata to trimedur showed that starved females are attracted preferentially to yeast hydrolysate, whereas starved males are attracted to trimedur. When no food was supplied, both newly emerged and sexually mature females were found to be attracted to trimedur. The rate of attraction of females to this male base increased in proportion to the extent of their starvation. Feeding on a mixture of yeast hydrolysate and sucrose (1:2) or sucrose alone abolished the attractiveness of trimedur to females. This phenomenon may be useful in monitoring irradiated-fly releases. (From auth. summary)

Sterile fly releases continued in the pilot test area of Puruaveras. During this quarter small sterile releases were initiated in Izique and Corinto, Republic of Nicaragua, and in Boaco, Republic of Panama. Studies involving the establishment of parasites continued in central Costa Rica. Several experiments involving improvements in mass rearing techniques and sterile fly releases were conducted. Severe fungus infection of the larval media was successfully controlled by certain treatments using tecogen and sodium benzoate.

Sterilized Mexican fruit flies have been used in place of insects used along the California-Arizona-Mexico border for the 4th year to prevent infestations from becoming established in the United States. More than 10 million flies are reared and sterilized at Monterrey, Mexico, and flown to the target area for release each year. (Abstr.)

Screw-worm control by the use of the sterile-male technique is discussed in detail. Chemical control is recommended with Co-Rat as a 5% dust, 0.25-0.25% spray, or 0.25% dip, rumen as a 0.5% spray, 5% smear, or 5% aerosol spray, Lindane as a 3% smear, or diphenylamine as a 3% smear. (CA 66: 1966, 1874G)

Sterile male codling moths, exposed in paper to 40 load of y-radiation and released in an abandoned 26-tree apple orchard for 3 yr, reduced the percentage of fruits injured by mature or almost mature 2nd-brood larvae from 4.94 to 0.56. Numbers of sterile males released, ratio of sterile to fertile males during peak emergence of 1st-brood moths, and numbers of overwintering larvae were: 1961 (6 PDT sprays applied) 0, 0.1, 400; 1962 - 17.3, 684; 1963 - 87.3, 227; 1964 - 90.0, 218.4; 1965 - 1, 6. (Auth.)

Larval pre-emergence of Carpotapa in 1969 was caged in the 1 irradiated males to one as orchard, release of 1'1'1'00 reduced the numbers of adults in 1964 to 0.2% of 1963.

Coles' technique is the only practical way for control in the control of this pest. (From abstr.)

1608 Riedel, M. ZUR BIOLOGIE UNTER BESONDERER BEUZG, biology, beating and molt of the insect in field culture in the beginning of June. The original parasite species in the sterile-male technique presented. (From abstr.)

1609 Schencky, F., Haasch, A. FLICKE Ceratitis capitata W. and sterilization of the Male Technique. J. Bayer. Landwirtschaft 1986: 10, 30 d. • The application of mating conditions is considered to be a further step in the study of the sterile-male technique.

1610 Tamaway, A.G., Abdell-Ma phorhism and the Sterile Male Lethal in the IMMATU. An experiment was designed to assess the effect of the F1 generation on the success of the F2 generation. Results from 600 R to 6000 R clearly show that the percentage of successful males increased linearly with dose. On the other hand, the dominant lethals in the F2 generation were more effective than in the F1 generation. (Abstr.)

1611 Tamaway, A.G., Abdell-Ma phenology by the Sterile Male Lethal. This study was conducted to determine the frequency of the F1 generation in the IMMATU. The results obtained showed that the frequency of the F1 generation in the IMMATU is higher than in the F2 generation. (Abstr.)
Larval propoxy of Carrapatea prominella (L.), was reduced 8% when adult moths, exposed to 25 ppm in CO₂, were caged in the laboratory with untreated males at a ratio of 15 irradiated males and 15 irradiated females to one untreated male and one untreated female. In an abandoned 2-ha apple orchard, release of 271,000 irradiated (50 ppm) male and female moths in 1964, and 476,000 in 1965, reduced the numbers of eggs hatched by codling moth at harvest from approx. 60% in 1963 to 1.2% in 1964 and to 0.3% in 1965. (Authors.)

2087

Culex fatigans is the only known vector of Bancroft filariasis in Ceylon. At the request of the international Atomic Energy Agency and the Government of Ceylon, the feasibility of controlling this species using the sterile-male technique was evaluated. Data on various aspects of the study were presented. (From abstr.)

1908

Riedel, M. ZUR BIOLOGIE, ZUCHT UND STERILISATION DER KOMPLEXEN Phorbia brassicae Borg, UNTER BESONDERER BEWUSSTSEINSBEUGUNG IHRES VORKOMMENS IM KETTENRADELL. (Study of the biology, breeding and sterilization of the cabbage fly, Phorbia brassicae Borg, with special reference to its occurrence in radish cultures.) Bayer, Landw. R. 44, 4 (1967) 837-839. (In German)

Ph. brassicae proved highly sensitive to radiation. Doses of > 2 keV caused complete sterility in both sexes. The optimum male pupal stage for irradiation proved to be during the last 4 days before adult emergence. Prior irradiation caused visible somatic injury (reduced longevity, inability to fly, rise in pupal mortality). Sexual competitiveness is only adequate if the dose is < 3 keV. At 2-2.5 keV full competitiveness of the sterilized males is ensured. Experiments in the field have shown the need for similar size of the irradiated males if they are to be equally competitive.

1909

Scheuny, F., Pichl, A. ÜBER Massezucht UND Sterilisation DER mitteleuropäischen FLIEGE Carbula putoni (Bunth. EINBEITAG ZUR AUTOTOMIE-METHODE). (Study on mass breeding and sterilization of the Mediterranean fruit fly Carbula putoni (Bunth.). (A contribution to the autotomic technique.) Bayer, Landw. R. 44, 6 (1967) 749-756. (In German)

Sterilization by ionizing radiation was preferred to chemosterilisation. A 137Cs-source of 1100 Ci was available, giving relatively soft γ-radiation. A dose rate of 75 Ci/min was given. Doses of from 4000-15000 R were tested, in steps of 1000 R. The aim must be to find an optimal dose which will produce max. sterility and min. somatic injury. A dose of 10,000 R was used in field releases. Flight range determinations were carried out by means of releasing sterilized γ-labelled pupae which had been labelled as larvae. 3,905 pupae were labelled. The average range was 38 m, the max. 548 m within 10 h. - The application of the method to local control or eradication of the flyfly under prevailing conditions is considered feasible.

1910

An experiment was designed to study the percentage of induced dominant lethals in the immature stages of the F₁ generation of A. pharoensis Theobald, following irradiation of parental eggs or pupae. Doses from 500 R to 5000 R of γ-radiation with 500 R increments were used. The results indicate clearly that the percentage of induced lethal in eggs of A. pharoensis irradiated by γ-rays increased linearly with increasing doses. 100% lethality in the F₁ generation appeared at 5000 R γ-rays. On the other hand, the results showed from parental pupae irradiated with γ-rays demonstrate that dominant lethals in the egg, larval, and pupal stages of F₁ offspring resulting from irradiated pupae are more effective during the egg stage followed by the larval stage complete lethality was achieved at 4600 R and 5600 R, respectively. γ-rays showed no significant effects on the F₁ pupal trage, i.e. adults would emerge from most of the pupae in spite of high doses of γ-irradiation. (Authors.)

1911

Late 3rd-instar larvae from the laboratory colony were reared in Nika water containing 0.1%, 0.5%, 1.0%, and 2.0% CI^-1 Pr. Insects to be autoradiographed were subsequently placed on x-ray dental films for 7 d. Mating frequency was tested on 200 labelled larvae. Half of the mating labelled pupae were irradiated with a 15,000 r dose of y-rays (the sterilizing dose). The adult males were then allowed to mate with non-radioactive normal females. It was possible to detect the radioactive source of males treated with 0.2% CI^-1 Pr in the progeny of 3rd and 4th generation of their mates. By this technique it was feasible to determine whether females could mate more than once. By examining the mating behaviour and mating frequency in males, it was found that irradiated males were as effective as normal males in inseminating normal virgin females. Laboratory males could inseminate either wild females or laboratory females as copiously as wild males, if each was confined to the same number of females.

A study of mating competitiveness between sterilized males and normal males of A. pharaonis Theobald showed that males treated with 20,000 r (the sterilizing dosage of y-rays) were slightly less competitive than normal males when present in the population cages in ratios of 1:1:1 and 2:1:1 (irradiated males + normal males + normal females). But at ratios of 16:1:1 and 15:1:1, the competitiveness of the irradiated sterile males was increased. Normal males exposed from nature as larvae and bred in the laboratory showed almost the same mating competitiveness as males from the laboratory colony. By replacing normal males with irradiated males in the normal population, egg hatchability showed a decrease as compared with their controls. Replacing irradiated males with normal males did not produce a decrease in egg hatchability. (Auth.)

Laboratory tests were made at Beltsville with sterile males of Drosophila to determine the effectiveness of some of their main techniques. In suppressing populations, y-irradiation or feeding with apholate was used. Irradiated flies were exposed about 24 hours before release by 16 hours of y-irradiation from a 220 source delivering about 200 kGy. All flies, irradiated or apholate-fed, were 4-5 days old when they were released. The two methods of sterilization, at the indicated degrees, have been shown to produce no viable eggs when the treated males, at 2, 5, or 10 d of age, were mated to untreated females. 24 h after treatment, male flies exposed to 16 hours are as reproductively competitive as untreated males. In the first experiment, newly emerged, untreated virgin flies were aged 56 pairs placed in each cage. One cage received irradiated, another apholate-treated males. The initial release of sterile males, made immediately after the untreated flies were introduced, were made at a rate of 50 sterile to one untreated (1950/1950). The two lasted 97 d. About 6 generations. Temperatures during the test ranged from 17-20°C, with an overall average of 20°C. Additional releases of 9200 and 9000 apholate-treated each were made 10 and 20 d, respectively, after the start of the experiment. A final release of 1500 irradiated or was made the 34th day. The fly population in the check cage increased noticeably during the first 77 d, increase in the cages containing irradiated and apholate-sterile males was not apparent until after 67 h. The number of nylon and nylon in the medium in the two cages of treated flies was markedly less than that in the check cage. After 57 d the fly population in the cage containing irradiated males was 88% less, and that in the cage containing the apholate-sterile males 77% less than the population in the check cage. However, some flies in the two cages containing treated males produced viable eggs because of the long interval between releases, which permitted a small percentage of the newly emerged females to mate with sterile males. The 2nd experiment consisted of three cages, one receiving weekly releases of apholate-treated males, one receiving weekly releases of y-irradiated males and one check, receiving no releases. All initial releases were based on a ratio of 25 sterile to 1 untreated or. The cages were initially infested with 20 untreated pairs, and the 1st release of sterile males were made at the time of initial infestation with the untreated flies. Eight releases were made during the 57 d. Average daily releases varied between 16-40°C, with an overall average of 25°C. In experiment 2 no reproduction occurred when apholate-treated males or irradiated males were released weekly in the cages.

In experiment 2 no reproduction occurred when apholate-treated males or irradiated males were released weekly in the cages.

434
THE EPIDEMIOLOGIC OF Anopheles V. MATING COMPETITIVENESS

male of A. quadrimaculatus (gamma-rays) were slightly less in number of 1:3:1 and 1:1:1:1 and 5:1:1:1; the complete capture of nature as competitiveness as males from the normal population, age (using irradiated males with

1. POPULATIONS OF Propopella 1726.

To determine the effectiveness of irradiated males to release of 10 lb of gamma-rays or apholate-fed, were 4-6 d of age, were used to 12-16, and are as reproductively compared, untreated virgin flies were fed another apholate-treated (the untreated flies were inoculated). The test lasted 77 d at 80°F, with an average temperature of 70°C. Insects were held for 20 d after irradiation, and they were reared on the same amount of food. The results showed that sterilized males had a lower mating rate compared to untreated males. The 2nd experiment consisted of ten resulting weekly tests. All test results were initially tested with 20 untreated males in the irradiation temperature ranging from 0°C to 50°C. No mating occurred when apholate-treated 67%, less than 20% of the untreated males and 3% of the untreated females. In the case of treated males was 40%.

Popular illustrated article describing present efforts in Greece to apply the sterile release method to the olive fly, Dacus oleae.

The release of sterilized Ceratitis capitata on Capri is the last full-scale trial in Europe of the sterile-male technique. Improved rearing techniques allow the production of Medfly at a food and labour cost of ~1-10/million flies. A fly cannon was developed through which paper bags containing the flies and wood wind are dropped, dropped open, and released behind the hill stream of aircraft, enabling the flies better to survive the fall and to disperse. Pioneering work was done by the Biological Control Institute of the Citrus Marketing Board of Israel and the Agency's Entomology Laboratory in Sanktuar, Austria. A mainland campaign against the Medfly is being carried out in Central America by the IAEA/FAO Joint Division of Atomic Energy in Agriculture, to demonstrate over an area of 50,000 acres the feasibility of sterilizing the pest with the help of radiation. Other types of pests (flea beetle) studied for possible control by the sterile-male technique are indicated.

In entomology, the research has continued chiefly of developing and promoting the application of the sterile-male technique in insect control. The work is being put to good use in the United Nations Development Programme Special Fund project for the eradication of Ceratitis capitata in Central America, where Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, and Panama are working together under the technical guidance of the joint FAO/IAEA Division of Atomic Energy in Food and Agriculture.

See also:

14 Insect control. 1. Tagging the fruit fly Ceratitis capitata Wied. with radioactive phosphores for the sterile male technique. (Saito and Nakayama, M., et al., 1965)
1129 Application of radioactive isotopes to the investigation of methods for the biological control of pests. III. The obtaining of sterile males of C. capitata by irradiation of the pupae with gamma-rays. (Ariyoy, M., et al., 1965)
1220 Application of radioactive isotopes to the investigation of methods for the biological control of pests. IV. The effects of y-irradiation on C. capitata when the dose of irradiation is fractionated. (Ariyoy, M., et al., 1965)
1345 On the radioactive isotope utilization for fruit protection. (Popa, A., et al., 1965)
1551 Sterilization of la mosca mediterránea des frutos, Ceratitis capitata Wied., par irradiation des pupes aux rayons gamma. (Pérez, M., 1966)
1668 Sterilization of anther maggots by irradiation with cerium-187. (McClanahan, K.J., et al., 1965)
1631 Radiation sterilization of the black blow fly. (McClanahan, R.J., et al., 1960)
1654 Effect of radiation on males: an autogenous dominant mutation in the screwworm fly with recessive lethal effects. (LaChance, L.E., et al., 1960)
1668 Sterile technique - principles involved, current application, limitations, and future application. (Kamering, E.L., 1967)
1690 Irradiation-induced sterilization. (LaChance, L.E., et al., 1967)
1791 Integrating control of pest populations in large areas. (Lawson, F.R., 1960)
1797 Control of Queensland fruit fly. (O'Laughlin, G.T., 1960)
2.4.2.1.3. Lepidoptera

The biological effect of x-irradiation of the hollyhock seed moth is dependent on the age of the irradiated pupae for the dosage employed. Pupae 1-3 days old are the most sensitive to radiation. Mortality obtained from these pupae lay single eggs or are sterile. The greatest biological effect is obtained by irradiating 1-3 day old pupae with a radiation dose of 5,000 Ro. The moulting of the moths reaches 100% in the combination of irradiated male plus non-irradiated female. The radiosensitivity of the pupae is approximately the same for the winter and spring generations. The biological effect is higher for a single radiation dose. Radiation of this type yields the largest number of externally normal moths and the least number of sterile moths. The egg laying period is in shorter for moths obtained from irradiated pupae than for those from non-irradiated pupae. Life span is approximately the same for moths from irradiated and non-irradiated pupae and is not affected either by radiation dose or by the age of the pupae at the time of irradiation. (t-Auth.)

* Pectinophora giloella Hb.

Results of release of sterile moths in a commercial orchard were reported successful from both Summeerland, B.C., and Yakima, Washington. Both laboratories have found that it is not necessary to separate the sexes, and that release of sterilized mixed sex is given results equal to release of sterile males alone. The main difference in techniques between the two stations is that the moths are sterilized by x-radiation at Summeeland and by chemosterilants at Yakima. There is some evidence that moths mated sterile by chemosterilants are not as long-lived as those sterilized by x-radiation. An additional complication with chemosterilants is the variability of their effectiveness which requires constant monitoring.

Work on the suitability of Diatraea saccharalis (Fab.) for sterilization by x-radiation was started in 1963. The sterilizing dose for adults of both sexes is 50 brand, egg hatchability only, not egg number, is affected even at 10 brand. Behavioral changes in males irradiated with 100 brand did not prevent mating. Males irradiated at 2-4 brand mated sooner than non-irradiated males. Optimum ratios and rearing methods are also being studied. The borer usually mates more than once. See also:

1127 Radiation sterilization studies on the tobacco budworm, Heliothis virescens Fab. (Flint, H.M., 1960)
1145 Sexual sterilization in the fight against codling moth in apples. (Ferruzhova, N.I., 1967)
1146 Exploratory studies on frequency of population in Prodenia litura F. (Lepidoptera: Noctuidae). (Shazil, A., 1965)
1158 Radiation-induced sterility for population control of the sugarcane borer (Diatraea saccharalis) in Puerto Rico. (Waller, D.W., 1960)
1207 Laboratory and field cage studies of the effects of gamma radiation on codling moths. (Hathaway, D.O., 1960)
1255 Gamma irradiation of pupae of the tobacco budworm. (Flint, H.M. et al., 1967)
1259 Radiation-induced sterilization. (LaChance, L.E. et al., 1967)
1277 Radiosterilization in the fight against insect pests. (Andreev, S.V. et al., 1967)
1688 Puerto Rico Nuclear Center. Its principal irradiation facilities and scientific program. (Rutishford, F.K., 1967)

11616 Galuz, H., Warburg, M., IN THE TICK Ommatodeso

The tick is an important vector of diseases in other parts of the world. It is considered to be an important vector in the Middle East, Syria, and Cyprus. It is known to carry the causative agents of tick-borne diseases such as tularemia, Rocky Mountain spotted fever, and others.

1267 Effects of gamma radiation on the tick. (Kisnitsa, S. et al., 1967)

2.0.2.3. MUSCIA. J. POPULATION (1965) 1965-1966.

In theory, population of insects is controlled by natural factors such as predation, parasitism, and environmental factors. However, in practice, these factors are difficult to control, and alternative methods such as biological control, chemical control, and genetic control are often used. Genetic control involves the use of genetic factors to control insect populations. For example, the use of insect-resistant crops can reduce the population of insects that feed on these crops. Genetic control can be effective in both the field and the laboratory.

1268 Genetic weapons, genes are off ppc 1964)
2.4.2.1.4. Hemiptera

See:

1144 Biology and radiation sterilization of sugar cane leafhopper. (Coburn, A. W. et al., 1966)
1149 Radiation sterilization of sugar-cane leafhoppers of the family Delphacidae. (Ship, E. et al., 1969)

2.4.2.1.5. Acarina

The tick is an important vector of human relapsing fever in Israel, and is also found in Jordan, Iraq, Syria, Cyprus, Turkey, and the Caucasus. In the Middle East the tick occurs as isolated populations in caves (from several hundred to many thousands) and old costumes. A method for the application of the sterile-male technique in O. tholozani is described, and its practicality discussed. The project is considered to be economical in spite of the long period involved before complete eradication could be achieved. Releases would be required every six months. Techniques for rearing large numbers (10,000-15,000 annually) on rats, and feeding through artificial membranes are given. A 60Co-source emitting 7700 r/min was used. Nymphs are prevented from molting at >2000 R if exposed before feeding. Both sexes emerging from nymphs irradiated by >2000 R, two weeks after feeding, are sterile. These males are not competitive due to lack of sperm. Females become sterile after irradiation by >2000 R, whereas males require 15,000 R in order to induce 90% dominant lethality. They are effective in competing with normal males.

See also:

1267 Effects of gamma radiation and chemorepellants on the cattle tick, Boophilus microplus. (Khan, R. et al., 1967)

2.4.2.2. Overloading Resources

In theory, populations of animals can be displaced by overloading a resource with introduced sterile animals. The theory was tested on natural populations of the Queensland fruit fly Dacus tryoni. Female sterile flies were reared at 25°C and 8-4 old pupae sterilized with 3000 rad of γ-rays (60Co). After emergence they were held for 4 days, fed for 2 days on sucrose containing 3H (NatP·PO4) of a concentration of 100 μCi/g sugar, and then released into the treated populations. Three of four treated populations declined sharply within 2 days after sterile flies had been introduced. This procedure may be useful both as a tool in experimental ecology and as a means of controlling pests.

See also:

1558 Genetic weapons. Population replacement, induced sterility, or the introduction of deleterious genes - are all promising biological methods of fighting disease-carrying insects. (Collins, P., 1964)
2.4.3. Infestation and Countermeasures

2.4.3.1. Stored Products

Most of the papayas shipped out of Hawaii are heat-treated to control decay and then fumigated to meet official disinfection requirements (fruit fly control). The merit of the irradiation treatment in terms of shelf-life extension was judged objectively against that of fumigation treatment. The results of a semiquantitative experiment are shown in a table, in terms of storage decay, overall firmness and delay in senescence. In general, the edible life of the irradiated fruit was 2-3 days greater than that of the fumigated fruit. The irradiation dose was 75 krad. Irradiation as a quarantine measure has not yet been approved.

"Requests for proposals went out last Friday for 125,000 lb of canned wheat flour, treated with a disinfestatlon y-dose of 30-50 000 rad. Although more than 80 irradiation companies and Facilities were solicited directly, other companies may propose, by June 30, to the Subsistence Regional Head-

1626 Bowdell, L., Horne, T. BRADATION SHIP WOULD ELIMINATE GRAIN LOSS TO INSECTS IN TROPICS. Nuclear News 25, 8 (1964) 88-90.

A specially constructed grain irradiation ship is envisaged, with a 100,000 curie Co-60 source. Touring the world, it would call at ports where there was the greatest need. In order to irradiate grain supplies on site, the ship is equipped with a grain-irradiation unit and its own power plant. The ship carries a crew of 24, permitting operation at a rate of one 10,000-ton vessel a week. The ship would also carry one of the special grain dryers which are necessary to reduce the moisture content to 12% to 15% before irradiation.

Two fishing interests in the interior of Africa find it impossible to arrange the transport of fresh fish from the fishing grounds to the centres of consumption and storage. Moreover, resort to deep-freezing or simple refrigeration is impossible or too expensive. It is therefore necessary to dry or smoke, on the spot, all fish which is not immediately consumed by the local population. Drying and smoking offer many advantages to the developing countries, including low preparation costs, high nutritional value for low weight, and preservation and transport facilities. However, the dried or smoked fish is attacked by insects of the genera Dermestes and Necrophora and the damage is all the more serious since the fish is stored in large quantities. Chemical methods of disinfection involve serious disadvantages. An attracive solution appears to be irradiation, which leads to the death or sterilization of the insects and which can be employed when the fish is already packed in hermetically sealed containers. (Auth.)

Review of the extent of dry natural enemies, and expedi-
Review of the extent of damage caused by insects to stored food products and their control (by chemicals, natural enemies, and exposure to low temperatures or radiation) and discussion of storage techniques.

Development of processes utilizing ionizing and microwave irradiation for food preservation is reviewed. In programmes investigating the use of ionizing radiation, the foods of greatest interest are: fish; shellfish; vegetables and fruits: poultry and eggs; and grains and potatoes. Studies with these foods are described. Relatively low doses (30,000 rad) are effective in destroying the insects that are important economic pests in grain.

Recent approval has been given to “gamma radiating” wheat and flour for insect control. “Gamma” from sources with max. energy not exceeding 2.2 MeV provide a safe-use absorbed dose of 20,000 - 50,000 rad. This insect control technique is effective, and millers don’t oppose the increased regulations. However, they have seriously studied this technique and feel, at this time, that there is insufficient data to guarantee y-radiation not having an adverse effect on the baking quality of the treated flour or wheat. (Bailly Geneve Card-916)

Exposure of stored rice to a dose of 10,000 rad of 60Co γ-irradiation was found to kill insect pests and their eggs. Results are reported from a taste-panel evaluation of the flavour, texture, taste, and colour of cooked irradiated and control rice. It was concluded that radiation treatment causes no undesirable changes in the organoleptic properties of rice. (NSA 21, 1967, 20453)

A report to destroy the cotton fly in Florida using radiation sources are reviewed. The conditions under which sterilization of the male can be applicable to insect pests in cereal stores are defined. Hazards from the use of radiation are summarized. (NSA 21, 1967, 6642)

A review of the current status of investigations on the radiation processing of foods. The fact that radiation processing of cereal grains, cereal products, and military rations components destroys adult insects, larvae, and eggs of insect pests that infest these foods is mentioned. Nonradioactivity is induced in food products by high radiation doses. Extensive studies have shown that radiation processing has no effect on the wholesomeness of foods. The economic feasibility and potentialities of the radiation processing of foods is discussed.

γ-Irradiation at doses of not less than 21 rad can be used in lieu of ethylene dibromide and methyl bromide fumigation, or vapour heat treatment to destroy the ability of dangerous pests in Hawaii fruits and vegetables to reproduce, and thus permit immediate export of the commodity. Adoption of the method must await final approval by the US Food and Drug Administration and of mainland quarantine officials, both State and Federal. The mango weevil lives from young larvae to adult within the seeds. Irradiated mangoes could carry live adults to the mainland. If a mil. dose of ~26 rad is required most of the adults in the treated fruit will weaken and die without escaping from the seed. Any that survive would be sterile. Some earlier pioneering work, and existing facilities and possibilities are reviewed briefly.

439
Use of the flowline method of radiation sources of tabulated coefficients are

ANONYMOUS. PROGRESS COUNTRIES. Int. Br. "

The status of research in Belgium, Canada, Denmark, Sweden, Switzerland, the studies on toxicity and means of quality improvement of foods. Foods include products, bacon, white peach, chicken, pork, bull, carrots, tomatoes, dehydrated grapes, bananas, and tress the radiosensitivity of certain microorganisms, and the con

ANONYMOUS. TWIN COB, ATOMIC ENERGY ESTAB "...will be supplied by (100,000-Ci) package irradiated 27 860-Ci device that can be used 5,800,000 and will be dist

ANONYMOUS. GRAIN RR. The first full-scale appi
te was installed in Turkey, barley, rice, and maize a grain are outlined. With grains at a rate of 30 lb., features and economic as

ANONYMOUS. LOCKHEED Maelstrom, Week 27, 21, on the irradiation side in wheat flour. Prince corn and Hawaiian Flour Mills mental irradiator. The S been operational for some milling companies bid on next month to four Defen

† See 1639.

ANONYMOUS. A 150,000 t Maelstrom, week 7, 30 (1... late this year under it Co unit available in the acquisition with the pe designed for Abe by Alpro. Use of the irradiator and qualified organization will did engage an outside

440

See also:

1496 Study of the irradiation tolerance of some destructive storagehouse insects and technical and economic aspects of insect destruction by irradiation. (Parkes, J., 1965)

1498 Grain irradiation plant. (Anonymous, 1967)

1499 Lockhead-Georgia and the Hawaii development irradiator are winners. (Anonymous, 1967)

1500 The world's first large-scale continuous grain irradiation plant, Iskander, Turkey. (Anonymous, 1967)

1501 Design of the world's first industrial-scale grain-irradiation facility. (Carden, J.E., 1967)

1502 Radiation preservation of several fresh fruits and vegetables. (Hayakawa, A., et al., 1964)

1503 Food irradiation research and pilot facilities in operation or planned in India. (Kumta, U.S., et al., 1966)

1504 Control of the Queensland fruit fly by gamma irradiation. (MacFahse, J.I., 1966)

1505 Potential role of radiation in alleviating some world food problems. (MacQueen, K.F., 1967)

1506 Conceptual designs for Hawaiian irradiation and quarantine demonstration irradiators. (Masuvati, R., et al., 1963)

1507 Recent advances in food irradiation research in Japan. (Matsunaga, A., 1965)

1508 Applications of intense radiation sources to biotechnological development. Part III. (Moeur, R., 1964)

1509 Hawaii development irradiator - a new tool in tropical fruit processing. (Osugi, K.K., 1967)

1510 Irradiation of grain and potatoes. (Powern, J.I., 1967)

1511 L'effort belge en matière d'irradiation des aliments. (Pouret, M., 1965)

1512 Gamma-irradiation of grains and other foods for sterilizing and extirpating pests. (Rabinovitch, E.I., 1964)

1514 Food irradiation in Australia. (Scott, W.J., 1962)

1515 Prospects and needs for radiation disinfection of packed fruits and vegetables. (Tallonik, A.S., 1960)

1516 X-ray irradiation effects on storehouse destructive insects. (Tomie, G., et al., 1969)

1517 [null]

1518 Effects of gamma irradiation on the longevity and fertility of five species of stored-product insects. (Witham, P.E., 1968)

1519 Economics of grain irradiation. (Raines, R.D., et al., 1968)

1520 Economic aspects of the food irradiation programme in Israel. (Legorlot, M., et al., 1966)

1521 Rice weevil biology as affected by grain storage conditions. (Bassol, M.P., 1966)

2.4.3.2. Disinfection Measures (Sources. Conveyor Systems, etc.)

Food irradiation studies using the Hawaii Research Irradiator are reported. These investigations have been studied in detail: the papaya, mango, and pineapple. Evidence obtained for each fruit to the biological feasibility of γ-irradiation for insect disinfection. Associated studies suggest possible applications of γ-irradiation in commodity treatment of ginger, sweet potato, and even of Hawaiian radishes, while its successful application for disinfection of taro and avocados appears unlikely. Dosimetry studies were extended to include dose-response behavior when the central chamber was filled with water or potato juice. (NSA 31, 1967, 4929)

Use of the flowline method for disinfection ensures greater economy and permits the employment of radiation sources of lower activity, that would otherwise be necessary. Formulae including tabulated coefficients are derived for a grain irradiator of such a type.

The status of research and development studies on food irradiation in 1985 is summarized for Austria, Belgium, Canada, Denmark, France, German Federal Republic, Italy, The Netherlands, Spain, Sweden, Switzerland, the United Kingdom, and the United States. Research programmes include studies on toxicity and nutritional value of irradiated foods. Developmental studies include various means of quality improvement, methods of extending storage life, and public acceptance or irradiated foods. Foods cleared by the U.S. Food and Drug Administration include wheat and wheat products, bacon, white potatoes, and packaging materials. Foods under intensive investigation include chicken, pork, hunchen meats, pre-cooked meat dishes, fish and other marine foods, onions, carrots, tomatoes, dehydrated vegetables, apples, strawberries, sweet cherries, raspberries, peaches, grapes, bananas, and tropical fruits such as papayas and mangos. Related studies include studies on the radioactivity of certain bacteria involved in food poisoning, such as Clostridium botulinum and salmonellae, and the control of insect pests that infest foods by irradiation. (NSF 295 1968, 769)

1839 Anonymous. TWO COBALT IRRADIATORS FOR A FOOD-TREATMENT LAB AT INDIA'S TRISHNAYATOMIC ENERGY ESTABLISHMENT.... Nuclear Notes, 3, 2 (1967) 7.

"...will be supplied by Canada under the Colombo Plan aid plan. They include a 100,000-Ci package irradiation, capable of treating about 100 lb/h at 6,3 MeV, and a portable 27500-Cl device that can handle 500 lb of grain/h at 15 kV. The irradiators are valued at $300,000 and will be delivered by Atomic Energy of Canada Ltd.'s Commercial Products Div."

The first full-scale application of radiation from a 60Co source for insect disinfection of grain has been installed in Turkey. Specifications of this irradiation plant that is designed to treat wheat, barley, rye, and maize at rates up to 50 lb/h, with a dose sufficient to sterilize the insects in the grain are outlined. With the initial loading of 100,000 Ci of 60Co the plant can continuously treat gran at a rate of 50 lb/h. The grain irradiation facilities and the process used are described. Safety features and economic aspects of grain irradiation are also discussed. (NSF 21 1967, 1555).

on the irradiation side in the Defense Dept.'s test procurement of 150,000 lb of very disinfected wheat flour* pending contracts with Hella Milling Co., Portland, Ore., bidding with Lockheed, and Hawaiian Flour Mills of Honolulu, whose subcontractor will be the ABC-State of Hawaii experimental Irradiator. The $600,000 facility coincidentally was dedicated just last Monday, but has been operational for some weeks. The flour contract is its first non-ABC commitment, seven milling companies bid on the DOC procurement contract. Deliveries of the canned flour will begin next month for four Defense installations. (Cited verbatim)

* See 1859.

1842 Anonymous. A 550,000 CUORE CERIUM IRRADIATOR WILL BEGIN TOURING THE COUNTRY.... Nuclear Notes, 7, 30 (1967) 7.

...Late this year under the auspices of the ABC Div. of Interspace Development. By far the largest 137Cs unit available in the U.S., it is intended primarily for use by food packers and processors to acquaint them with the potential of γ-radiation preservation techniques. The 18 ton irradiator is being designed for ABC by Vito Engineering Co. Bids for fabrication will be sought by DID next month. Use of the irradiator and the services of an ABC-trained operator will be offered free of charge to qualified organizations whose demonstration proposals will be formally solicited later this year. DID will engage an outside firm to handle the demonstration. Bids for this service will be sought by New York Operations. DID has only recently stepped up food-treatment research with

441

... are on their way from Harwell, England. The prototype plant, designed to hold 170,000 Ci and to process 80 u/s of maize, barley, and oats, is located in Iskenderun. The $1.80 million project received $720,000 from the U.N. Special Fund (now known as the Development Program) and its construction was administered by the International Atomic Energy Agency. Nuclear Chemical Plant Ltd. of Britain won the contract to design and build the plant over stiff international competition (NU Wks, 16 Feb., '68, 7). The disinfestation plant is owned by the Turkish firm of Topaz Mahallesi Ofislo, but its 260-000-U. N. financing came from the Turkish government. (Cited verbatim)

A 60Co source is used. Designed to treat 50 m wheat/b, with an absorbed radiation dose of 18,000 rnd, its max. handling capacity is 50 t of wheat/b, and barley, oats, and maize can also be treated. The plant could accommodate 260,000 Ci instead of the present 260,000 Ci of 60Co. The irradiation facility comprises a concrete tower, with the irradiation plant at a low level, and two 356-t food hoppers at high level, with a covered way connecting the existing silo installation. The feed hoppers are supplied by a system of chutes, elevators, and conveyors from the existing plant, and appropriate conveying equipment returns the irradiated grain to the silo installation. Details of the source, cooling, safety aspects, and processing costs are given. Minimum costs for a Co-plant are 6.25 $/t and for a 3 MeV Cyclotron installation 6.68 $/t. These costs correspond to throughputs of 150 and 460 t/h, respectively, for 3000 b of plant operation per year at these throughputs. Grain flow is controlled by annular flow channels and the rotating flow regulator. A variable speed drive mechanism is used. The building design is described.

- r-rays from a 60Co source were applied to egg and larval infestations of the oriental fruit fly, Dacus dorsalis Hendel; melon fly, D. cucurbitae Coquillett, and Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in various fruits and vegetables to investigate such radiation as a quarantine treatment for fruit commodities. A dosage of 25 kG generally prevented immature stages of fruit flies from developing to adults. Damages over 40 kG failed to prevent pupal mortality. Mortalities were converted to pounds, and LD 95.6 and LD 99.6, respectively, for the oriental fruit fly and the melon fly. Soda papayas, tomatoes, cucumbers, bananas, lettuce, and grape mangoes tolerated damages between 25 kG and 40 kG without losing commercial acceptability. Most varieties of avocados and mature-green Haden mangoes were injured by 25 kG. (Auth.)

The effectiveness of irradiation of grains and potatoes to kill insect pests and to prevent germination has been well established. Forced flow is preferable to gravity flow since it minimizes losses due to abnormal irradiation on starting and stopping the plant, and also ensures the greatest constancy and uniformity of motion within ensuring a constant absorbed dose. More closely examined activity of the central source of a cylindrical irradiator is cylindrical irradiator can be operated without absorbing air, reaching areas free from.

Fresh water fish are one of flesh is disinfested by drying or smoking and not insect infestation (mostly F. The irradiation was done for in dry food. The effectiveness of irradiation was determined for 1000 b. The results of the tests and the study of packing were also included in the costs.

1850 Bowersohn, J. L., DOSAGE TREATMENT OF FRUITS AND Vegetables with Gamma Irradiation. In: Food Irradiation, Division of Research Develop. Disinfestation and shell-fish tangerine, lime, pepper, o o, and applications for applications to Hawaii are mango used was for A suitable disinfestation (fly) (Dacus dorsalis and D. - weeds are sterilized by in.

1851 Carden, J. E. DESIGN OF STRUCTURAL RADIATION SOURCE FOR IRADIATING MATERIALS. J. Radio]. Techn. p. 7. (Auth.)

The design of the world's II is described. (Auth.)

1852 Clark, M. A. COBALT-60 Cell. 6, 4 (1967) 186.

1853 Currell, P. R., ed. 7th J 1966, 226p.

See III/1010. (For individual.

1854 Currell, P. R. CONTROL International Food Industry
uniformity of motion within the irradiator. Geometrical considerations play an important role in ensuring a constant absorbed dose throughout the bulk of the material. The cylindrical configuration was more closely examined, determining the efficiency of the system on the basis of the total activity of the central source and the distance of the moving material. Since the relative efficiency of a cylindrical irradiator is relatively low (5-9%), an additional linear source along the axis of the cylindrical irradiator is convenient. The calculations indicated that about 90% of the radiation energy may be absorbed usefully. Only qualitative conclusions could be drawn because "dead angles", reaching areas free from material to be irradiated, were not taken into account. (NEA 51: 1897, 10675)

Fresh water fish are one of the major sources of protein in Africa. More than 300,000 tons of commercial fish are removed from the Niger basin annually and 150,000 tons from the Chad basin. The fish are dried or smoked and shipped throughout Africa. More than 50% of the fish are destroyed by insect infestation (mostly Dermestes and Nicros) and some of the conventional methods of combating these insects has produced practical results. Results are reported from France on the control of insect infestations in dried or smoked fish by exposure to γ-radiation. Data are included from entomological studies on Dermestes and Hectrocoelus, and on radiation doses necessary to kill these insects during various developmental stages in dried or smoked fish. The exact dose necessary for sterilization has not yet been determined but is estimated at between 15,000 and 40,000 rad. No radioactive changes were observed at 50,000 rad. The effects of doses of 20,000 to 50,000 rad γ-radiation on the taste of dried and smoked fish of several varieties when exposed in polyethylene bags or removed from them were also studied; the effects of 50,000 to 100,000 rad γ-radiation on the nutritional value of fish; and a study of packaging materials for fish to prevent reinfestation after radiation processing. Studies were also made on the economic feasibility of radiation processing of fish caught in African waters.

Disinfection and shelf-life extension studies have also included the lychee, ginger, avocado, tangerine, lime, peppers, eggplant, and papaya. Preliminary experiments on possible economic applications in Hawaii are also encouraging for pepper and eggplant. Subtropical fruit flies and the mango seed weevil are the major targets of the University of Hawaii disinfection programme. A suitable disinfection (lethal) dose of 33 krad was established for the Oriental fruit fly and melon fly (Dacus dorsalis and D. cucucita) although considerably lower doses sterilize these flies. Mango weevils are sterilized by treatments of < 20 krad, and a petition has been made for clearance at that dose.

The design of the world's first industrial-scale (50 t/b) grain irradiator, completed Feb. 1, 1967, is described. (Auth.)

See IS 11610. (For individual papers see also IS 11611, 1181, 1182, 1183, 1189, and 1191.)

A review of the present state of knowledge and the steps being taken to encourage the application of ionizing radiation for disinfection of grain is given. The grain is treated in motion, passing through a shield housing the source or machine that delivers the required dose of radiation. Consideration of the physical properties of γ- and electron radiations suggests that grain should be treated during gravity fall. The dose level for grain disinfection (18,000 rad) does not adversely affect the milling, baking or organoleptic properties of wheat, but does several times this dose. There is no loss in nutritional adequacy and there is no induced toxicity. The minimum annual throughput of grain which can be treated economically by irradiation is about 200,000 t. The operating costs are competitive with those for conventional measures of insect control. The reliability of 60Co plant and electron machines under conditions of commercial grain handling would require pilot operation for evaluation. (NSA 21: 1967, 24703)

1658 Cornwall, P.R., CONTROL OF INSECTS IN STORED FOOD BY IRRADIATION. PD Mf. 29, 6 (1964) 28.

Radiation disinfection by subjecting food to radiation from radionuclides or from an electron machine are discussed. It is shown that with the grain falling through a system or vertical annulus, 70% of the radiation from Co can be utilized. Such irradiation is not harmful to the consumer, and clearance has been given in the USA for the use of radiation energies 2, 2 MeV. Advantage of sterilization by irradiation over fumigation by ordinary methods including immediate reproductive sterilization, and the delayed death of irradiated insects affords partial protection against reinfestation. Both methods can give 100% control when properly carried out, while irradiation does not affect the milling, baking or organoleptic properties of the wheat. Operating costs of control by irradiation are competitive with conventional methods of insect control.

The author considers some suggested irradiation applications using 60Co plant at export/import centres and interstate collecting centres. Irradiation of passenger baggage at airports was planned for pilot evaluation in 1967. The treatment of fruit and vegetables commercially exported from Hawaii is discussed with reference to fruit flies (Dacus cucumisii, D. dorsalis, and Ceratitis capitata); also, the movement of fruit between states in Australia (Ceratitis capitata and D.tryoni). The treatment of timber imports into Australia (wood wasps, Strex spp. and European house borer, Ligrinus balsae) is discussed for logs, prepared timber, and packing cases. Stored foodstuffs are threatened by the Khapra beetle (Trogoderma granarium), so that irradiation, particularly for shipments, has great possibilities. Examples of possible quarantine operations of eradication, or containment, by sterilemale releases are discussed.

Research into the use of ionizing radiations for the control of insects infesting stored foodstuffs has demonstrated the technical feasibility of irradiation for the treatment of grain. Studies in radiation entomology have established the susceptibility of the principal grain storage insects and the extent to which environmental factors may modify the efficacy of treatment. Investigations into chemical and physical properties of irradiated grain have shown no adverse effects on organoleptic and manufacturing properties at the dose level required for disinfection. Work on the wholesomeness of irradiated grain has shown no loss in nutritional adequacy, with the result that clearance has been given in the United States for the human consumption of irradiated wheat and wheat products. Engineering considerations suggest that irradiation is an economic competitor to chemical methods for the treatment of grain at large exporting or receiving centres. With bulk storage and automated conveying systems now established as the most expedient method of handling grain between producers and consumers, it can be widely predicted that implementation of radiation disinfection into the grain-handling industry will.

1664 Hayakawa, A., Umetsu, Y., AND VEGETABLES, Plow.

The use of γ-radiation for the treatment of a 90Co source with a 40Co-113Co source, was used before irradiation.
To encourage the application of radiation treatment of food in motion, passing through the mill, and can be handled in the milling process and can be stored in the storage and handling facilities. Radiation treatment of grain is a viable alternative to chemical treatments and can be used to extend the shelf life of grains. The use of radiation in the food industry has been a topic of discussion for several decades, and its potential benefits have been widely explored. (Author)

The irradiation facilities that are being built in the USARC food irradiation programme are described. These facilities, which are designed for use in the production of food products, use Co-60 or Cs-137 as a source of radiation. Insecticidal characteristics such as source strength, production capacity, source dose rate, and cost are given for the research irradiation, Marine Products Development Irradiation, Grain Products Irradiation, Mobile Gamma Irradiator, Onboard Ship Irradiation, the Hawaii Development Irradiation, and the Portable Irradiation. (Author)

Among the irradiators mentioned is the Mobile Gamma Irradiator (MGI), at present located at the Davis Campus of the University of California. (Author)

1060 Pasco, I. - IONIZING RADIATIONS FOR THE DISINFECTION OF STORED PRODUCTS. Agriculture Ital. 12, 4 (1968) 5-8. (In Italian)

Details of site, design, and irradiation capability, housing, and loading are given. The total cost of the irradiation system is $200,000. Specialized equipment such as source elevators and product conveyor was scheduled for completion by early Feb, 1967. (Author)

Current interest in radiation treatment of grains and seeds mainly revolves around its ability to control insect infestation in these products. The recent literature on this subject is reviewed and gaps that exist in current methods and potential for the development of practical systems is pointed out. Research programmes in the United States Department of Agriculture that are underway, or planned for the future, are described in detail. Current studies are being directed toward establishing the effectiveness of radiation treatments for insect infestation, and the development of biological resistance. In May 1966 the scope of the work expanded as a new grain products irradiation project became active and applied studies were initiated. An important part of this research is a study of the effects of radiation on the quality of food and grain products, and on cereal products, at the doses are for both insect control and fungal disinfection. This paper examines critically the results of research in this area and estimates future research needs. (Author)

The use of irradiation for increasing the stability of fresh fruits (oranges, pomegranate) was studied with a 100Cy, 66Co source. The storage life of these fruits was prolonged when polyethylene bags were used before irradiation. With doses of 1.00 x 10^6 to 0.4 x 10^7 rep., the storage life of
maturation was increased for at least 7 d. With doses from (1.3-5.6) x 10^5 rad, chrysanth showed no decrease in organoleptic acceptability, and the possibility of controlling insects in chrysanth by radiation was indicated.

The use of radionuclides and Soreq's large 13C carbon sources for application in both industry and agriculture is reviewed. Authorization for using radiation for insect eradication in wheat has been requested.

The Israel program on the irradiation of agricultural produce is being coordinated by a committee set up by the Israel National Scientific Research Council, consisting of representatives of the Israel Atomic Energy Commission (IAEC), The Ministry of Agriculture, and the various growers and marketing associations. The programme is 3-fold: to obtain Government approval and to build a facilities (potatoes, onions), to work on local problems (apetite, pests) and on items of export importance (citrus, bananas, avocados). - A 30 000 Ci source was installed in a variable irradiation of novel design. Objects ranging from a few grams to 50 kg are treated with 20 to 5 x 10^3 rad dose at dose rates of 1.3-2.0 krad/h. For citrus, the effects of growing conditions, maturity, irradiation conditions and storage temperature were investigated. 7 x 10^6 Me/atom (Geraldi, Stapples) were released per week in a test programme. The initial doses for immature stages of the fly were determined. A dose of 5.5 krad proved sufficient to prevent emergence of viable adults from any of the stages in laboratory-bred yielding and will probably constitute a sufficient dose for quarantine purposes.

1867 Kuru, I.A. AMBAR ZARALIKARI VE SAYASTA RADY ASTONDAN YARASLANMA VE TURK TEKE YAPILOGAÇI UYGULANMA (Grain irradiation and the pilot plant to be built in Turkey.) Ankaer Univ. Zit. Feb. VIII. 17 (1967) 172-186. (In Turkish, with English summary)
In 1962, the International Atomic Energy Agency looked into the possibility of setting up a pilot plant. Surveys were undertaken in Pakistan, Turkey and Argentina, and India and Australia were also considered. Turkey appeared to be most suitable for the project, the precise location to be at Kandian grain terminal. A 30 000 Ci source was installed, the irradiation unit was then set up and calibrating 10 000 rad to the grain (bulk). The dose, too low to kill in a very short time, however, protect grain against contamination by back contamination of the insect. This will be the first commercial project, and will allow a detailed study of the of the method to large-scale operation. Financial support of the project is provided by the UN and the Turkish government.
The FAO/IAEA Division of Atomic Energy in Agriculture is responsible for the technical aspects of the operation.

Irradiation facilities, present and planned, are described. The Food Irradiation and Processing Laboratory is to house a 30 000 Ci package irradiator (160 000 Ci), a 30 000 Ci portable grain irradiator (28 000 Ci) and other facilities for food processing, analytical and research laboratories. The irradiator is designed for a throughput of 100 lb/h at 50.6 rad/h, and the portable irradiator could handle 500 lb/h of grain at 15 krad. Irradiation and pest control aspects have received considerable attention at the Biology Division of the Trombay Establishment. Since a wide spectrum of insects cause damage to stored grains, detailed investigations have been carried out on the effects of irradiation on developmental stages (eggs, larvae, adult), with special reference to viability, larval mortality, sterilization dose, and the use of radionuclides in the disinfection of stored products.

The lethal effect of g-ray irradiation to (Trogoderma granarium), was insensitive to dose at 25°C. No recent temperature, or in a scale the first 64 after pupation mortality increased rapidly for quarantine purposes. To Queensland fruit fly, (Altomyia curculionoidea) and "International Co California". Applications of radiation p.

The proposed Haitian laptop irradiator are described. It contains two 25 in. high, by 10" in. wide, by 20" in. deep, and 10 in. thick, and 10 in. thick aluminum tanks. The unit is under 75 individual, double-ended one of 85 000 Ci and one of 45 000 Ci. The function of the vertical separator, lead shield is to make advantage of the source material. Mechanism in the post-type irradiator, shielding above the source.

1874 Maran, P.G., Pogisser, L. CULTURAL RESEARCH, 9.
viability, larval mortality, pupation rate and adult emergence. Considerable differences in the sterilization dose were noted among the females (8000 rad) and males (14,000 rad) of the rice blast beetle (Cercospora oryzae), a pest on wheat grain. The effective lethal dose for rice weevils of all age groups was found to be 6000 rad. The flour beetle (Tribolium castaneum), the fig moth (Ephestia cautella), and the lesser grain borer (Oryzaephilus surinamensis) appeared to be relatively resistant, the sterilizing dose being near 10,000 rad. γ-Radiation has advantages over chemical fumigation in being able to sterilize eggs as well as adult insects and in not leaving any toxic residues.

The lethal effect of γ-radiation on the developmental stages of the Queensland fruit fly, Sarcophaga bullata (Froggatt), was investigated. A dose of 60 krad or more was required to kill within 3 d all eggs and larvae treated, but a dose of 6 krad prevented the emergence of adults under normal growing conditions at 25°C. Fractionation of the total radiation dose, or of treatment of the larvae at lower temperature, or in a sealed container, was less effective. The radiation resistance of pupae for the first 5 d after pupation was similar to that of mature larvae, LD 50 being near 1.6 krad. Resistance increased rapidly as the pupae aged. The LD 50 exceeded 50 krad for pupae 16 d old.

1066 Applications of radiation processing discussed include the control of insect infestation of foods.

The proposed Hawaiian irradiators, and the two pool-type and one dry unit, are based on a demonstration irradiation and processing irradiation and processing irradiation irradiation unit. The demonstration unit is designed for a refrigeration unit and a packaged water treatment system. One of the pool-type irradiators has a 60Co plaque positioned vertically in a rectangular well inside the bottom plate of a cylindrical tank. The cylindrical portion of the tank is 1/4 ft deep filled with water. The unit is underground and is designed for two-pass operation. The source is made up of 75 individual, double-encapsulated Brookhaven 60Co strips. Two 60Co source loadings are considered, one of 50.66 Ci and one of 42.60 Ci. The second pool irradiator uses an inclined tunnel rather than a vertical elevator, load shielding is provided on the underside of the pool, multiple passes are employed to take advantage of "shine through," and "open" source material is used with regular source material. Mechanical handling of food packages in the dry unit are the same as those used in the pool-type irradiator. The dry unit is also located underground. A shipping dock provides shielding above the source. The irradiator uses 50 Brookhaven source strips. (USA 21 1967, 36064)

The status of γ-irradiation design for the destruction of bacteria and insects and for the initiation of chemical reactions is reported. (USA 23 1966, 36066)

A 60Co irradiation unit is described and illustrated in detail that was designed for the irradiation of a wide range of materials. The 60Co source consists of two 2 x 37 mm discs with a total activity of 488 Ci. The manipulation of the source is entirely mechanical and is controlled from the outside. A labyrinth-type construction attenuates the dose near the chamber. Various sample holders were constructed for the irradiation of fruit, vegetables, soil, microorganisms, plant materials and insects. With the source raised above floor level, dose-rate measurements were carried out in vertical directions at distances of 5 cm to 2 meters from the source. An important feature of the source arrangement is that samples can be placed close to the source by a means of a turntable, so that irradiation of small samples at a dose rate of 500,000 rad/h is possible. (NSA 50: 1956, 697)

Radio-preservation of food is reviewed with emphasis on required doses, units of measurement, radiation intensity, and the interaction of radiation with matter. Direct and indirect effects of radiation on biological and chemical systems are discussed. Radio-sensitivity of the various stages in the life cycle of common pests are reviewed. Grain product irradiation is considered economically with particular reference to the situation in Italy. (NSA 20: 1956, 3545)

Practical studies on food irradiation fall into three categories, depending on their purpo...s (3) radiation preservation, (2) the elimination of harmful biological and biochemical factors in foods, from the point of view of public health, and (2) the utilization of the chemical effects of radiation. At present, there are about 30 IC-radiation sources of radiocobalt, and almost the same number of electron generators, including some pilot-scale irradiation facilities, such as a 34C 60Co-source in Japan. A realistic dose for grain disinfection in Japan would be in the range of 10-50 krad, judging by results obtained to date, although definite conclusions as to the appropriate dose must await further investigations as part of the new national programme. Irradiation of the soybeans and amil beans have also been studied, to control insect and microbial spoilage: somewhat higher doses, 0.1 Mrad for soybeans and 0.2-1 Mrad for the amil bean, have been recommended.

A mobile unit (Atomic Energy of Canada Ltd.) was used for determining effects of r-irradiation on six beetles, two moths, and the grain millet. Resistance of beetles and moths to radiation increased with advance in life stages. With the moths, however, the most resistant stages were the adult, egg, and hoppers, with the larvae showing least resistance. - The whole-grain and packaged-commodity irradiation in Savannah avoids calibration and subsequent operation (at the time of writing), radiation exposure to 30-50 krad upset the development of grains-infesting species. Chemical bioassay analysis of grains treated at 50 and 200 krad indicate no noticeable degradation of malation residue during a storage period of six months. - A research programme is outlined.

1678 Monson, R. APPLICATIONS OF INTENSE RADIATION SOURCES TO BIOSYNTHETIC FOOD AND MEDICAMENTS. PART III. Indu stern, 2, 11 (1964) 79-89. (in French)

The use of intense radiation sources for the radiation processing of foods, pharmaceuticals, and medical supplies is discussed. Examples cited include the preparation of antibacterial and antibiotic vaccines, the radiosterilization of thermolabile pharmaceuticals, the treatment of grain for the destruction of insect pests, and the radiation processing of potatoes and onions to increase the storage life. The economic potentialities of radiation processing and the possibility of combining radiation with other chemical and physical treatments are discussed. (NSA 19: 1956, 13829)

1679 O’Laughlin, G.T. CONTR (1964) 201-201.

The discovery of the Queen Elizabeth II through the use of new tools for the study of the nucleus is described, including the study of the survival of the nuclei of the positive G, S, L, E, O, but is likely to take more time, if the large scale. Mention is made

1680 Ohanone, S., Fukumura, M. FOODS AND THE CHANG... Effects on the Red Cells. Studies were made on the p...ation. The optimum dose of 0.05 x 10^10 to 100, 0 x 10^10 air or nitrogen. After irradiation, appearance, tissue, some appear...remain, beams from getting badly, thus the mold growth. A of the samples were equally characteristic properties of the result of storage. This small quantities and carbon...tion of soybeans. (NSA 18: 1966, 451)

1681 Ohanone, S., Fukumura, M. FOODS AND THE CHANGE...TT, EFFECTS ON THE RED Cells. The prevention of moldy...irradiated W 60Co gamma at film bags in an atmosphere of red. Outward sp...relations between irradiation and the...t, brown and its density increased dose of more than 4.0 x 10...10 rice was not affected for eating. A effects of irradiation on the changeable by irradiation a specific gravity, reflective six months later, but after index and the l-number dec...the baked rice in...it is preferable for...18: 1966, 451)

1682 Ugaoka, K.Y. HAWAI... CESSING. Papers presented Nov. 13-16, 1967. AID

The prospects for commercial irradiation of tropical f...

The discovery of the Queensland fruit fly in Victoria in 1964 and its spread during the century from Queensland through New South Wales is traced. It is now established in Eastern Victoria. The life history of the fly is described. The occurrence of geographic races has been demonstrated by studying the survival of flies at cool temperatures. Various control measures are considered. An investigation of the possible application of sterile male release is being carried out by the C.S.I.R.O., but it is likely to prove difficult if flies can survive for several months and are known to mate more than once. It is also expected that costs would prohibit the use of the method on a large scale. Mention is made of the potential use of γ-irradiation for infested fruit.

Studies were made on the preservation of mould growth and vermin damage on red beans by γ-irradiation. The optimum dose was determined. Red beans were irradiated by 20 Co γ-rays at a dose of 0.05 x 10^6 to 100.0 x 10^6 R in about 0.5 mm thick polyethylene film bags. Atmosphere was air or nitrogen. After irradiation, samples were stored at room temperature for 30 months. Outward appearances, tastes, and contents of fats were estimated. Immediately after irradiation, outward appearances remained unchanged. Irradiation at a dose of 0.0 x 10^6 R could not keep red beans from getting mouldy, but irradiation at 10.0 x 10^6 to 100.0 x 10^6 R was effective in suppressing the mould growth. A higher dose was even more effective. The boiled states and the tastes of the samples were equally good as compared to the control in every case. The contents and the characteristic properties of the fats were almost unchanged by γ-irradiation. Vermiculite were not found during storage. Therefore it was desirable to irradiate red beans that contained fats in small quantities and carboxylates in large quantities at a dose of 10.0 x 10^6 to 100.0 x 10^6 R in air. Good results were not obtained by irradiation of the red beans in N atmosphere as in the case of soybeans. (NSA 19 1965, 26868)

The preservation of mould growth and vermin damage on rice by γ-irradiation was studied. Rice was irradiated by 20 Co γ-rays at a dose of 0.0 x 10^6 to 400.0 x 10^6 R in about 0.5 mm thick polyethylene film bags in an atmosphere of air or N. After irradiation, samples were stored at room temperature for 18 months. Outward appearances, tastes, and changes in nutrient components were estimated. Relations between irradiation doses and these factors were investigated and the optimum dose was determined. Irradiation at a dose of more than 40.0 x 10^6 R caused the colouration of yellowish brown and its density increased with irradiation dose. Vermiculite was not formed in unirradiated rice, but over 40.0 x 10^6 R, the boiled rice was not fit for eating and after six months' storage this difference became quite remarkable. Effects of irradiation on the contents of water and fats were not recognized. Acid value was most changeable by irradiation and more increased in the polished rice than in the unpolished one. The specific gravity, refractive index, sapothallic value, and #number were almost unchanged until six months later, but after 18 months' storage, the acid value increased and both the refractive index and the #number decreased with the irradiation dose. These changes were more remarkable in the polished rice than in the unpolished one. It was concluded that the preservation of rice, it is preferable to irradiate at a dose of 10.0 x 10^6 R on unpolished rice and polish it before cooking. (NSA 19 1965, 26994)

The prospects for commercial utilization of irradiation to achieve shelf-life extension and effective disinfection of tropical fruits are very encouraging. Doses of 25 krad prevent the development
of adult fruit flies in infested fruits and retard ripening and senescence, thus improving shelf-life of papayas, mangos, and other tropical fruits. Mango seed weevils, not affected by the commercial level of fumigation for papayas, are controlled by > 65 ppm. A 4Co-source of 252-000 Ci is available, with a throughput of 4000 lb of packaged papayas/h. If, however, designed for a 500-000 Ci capacity with a max. throughput of 16000 lb/h. The system can treat semi-commercial quantities at doses from 18 to > 1000 rad, doses suitable for pasteurization or disinfection. Details of the installation, economics, and projects are given.

Some mention is made of work in process on disinfection of grain, but details of radiation of bulk grain and of packaged grain products.

Les diverses applications ont été classées en trois catégories selon les doses appliquées pour obtenir l'effet désiré: (1) traitements à faibles doses (50 000 rad ou moins); (2) traitements à doses moyennes (50 000 rad à 1 Mrad); (3) traitements à doses hautes (2 à 3.5 Mrad). Parmi les traitements à faibles doses figurent la désinfection des insectes infestant les produits alimentaires. Une dose de 5 à 10 000 rad est suffisante pour désinfecter les denrées alimentaires entourées. Dans ce cas, la Station d'Entomologie de l'État à Ghent a effectué une série d'expériences sur des calamars. La réduction de divers stades de développement de Thysanus granarius L. et de Gryphaea L. aux irradiations a été vérifiée. (En collaboration avec le C.E.C.N., une étude sur la radio-résistance des Arachnéides et des blonds, un coléoptère infestant les haricots blancs, est en cours. Des expériences analogues sont effectuées au Laboratoire de Désinfection, Rijksinstituut voor Vleescontrole, Gand, sous la direction de la professeur, Edouard Kromhout Z.

A prototype irradiator designed by Vfro Engineering Co. to handle 5000 lb/h of grain at 50 000 rad is under construction at the USDA Experiment Station, Savannah, Ga. The grain flows in a square box, through a source array consisting of doubly encapsulated strips of Co. arranged in parallel rows in a horizontal plane. The grain is kept a min. distance from any 65 Co-source by an aluminum sheath around each source. The basic advantage achieved by this configuration is that the product approaches the source very closely. The product surrounds the source except at its perimeters, exhausting to 1 ft in depth above and below the source plane. Thus the flux of unabsorbed photons is minimized. These factors contribute to the unusually high efficiency for this irradiator, which is expected to exceed 90%. The nuclear analysis of the product distillation was made using a modified version of an 1856-1940 programme called Fudge-2A. Flow tests were made using transparent-sliced him to determine the flow profile of a variety of grains past the grid of source rods. Appropriate flow and vibration modes were developed to achieve a uniform product flow. The prototype irradiator has an additional package capability. - A schematic illustration of the design is given.

The author lists lethal and sterilizing doses of γ-rays for various insects and their larvae which damage grain, fruit, furniture, etc. Resistance to lethal and sterilizing actions of γ-rays increases, depending upon the extent to which insects have developed from egg to larva and, within one stage of development, with an increase in age. Instead of receiving a single dose, grain was irradiated with divided doses of γ-rays (two or more exposures to sublethal or sterilizing doses which, taken together, equalled or slightly exceeded the lethal or sterilizing dose for a single exposure) which made it possible to reduce the cost of treatment by a considerable reduction in the output of the source of radiation and had the advantage that insects were sterilized but not killed, with divided doses of irradiation germ-cells were invariably damaged, but damaged tissues in the body were able to regenerate in the interval between exposures. The author describes laboratory and industrial (portable and stationary) equipment used for irradiation of grain and of

1867 Radiation. N. L. GA AND EXTERMINATING #5 (See 1866)

with fractionated doses, γ-rays injected into insects were sterilized but...

1868 Rushford, F.E., PURT-L SCIENTIFIC PROGRAM... The chief irradiation facility was also available... a sterile males technique, as under investigation. Vain

1883 Rawe, D.M., Murphy, G. GRAINS AND FORAGERS... Some γ-ray irradiation facilities in grains as it is transpor... and insect control has not... interaction of γ-rays with... seed accurately and the m... material and the number c... in determining the... of these materials have no

1880 Scott, W.J. FOOD IRADIAL At food irradiation presents at Los Alamos Height. Radiat... 30 500 Ci, a fi... Dandernong near Melb by disintegrating animal hair, i... investigated at a low do... interest is concentrated on... fly Sitisma tryson, produced noticeable organ... of potatoes under Australia... irradiation of food must be... with irradiated food

In countries with adequate the growth of particular or multiplication of many p... although cosmopolitan, p... are likely to be affected b... control are desired, and... disinfection... not the dried fruit mo... and Tribolium interstinctella. Fila reproduction unimportant... goods strictly unsuitable by
stationary) equipment used for γ-irradiation. He compares the effectiveness of γ-irradiation and fumigation for grains and other agricultural products. (3A)

With fractionated doses, germ cells were damaged irreversibly but body tissues were able to regenerate; insects were sterilized but not killed.

The chief irradiation facility at the PNC is an AMP pool-type research reactor: a 10000 Ci 198Co source is also available. Apart from food irradiation programmes, the possible applicability of the sterile male technique, using γ-irradiation, to the sugarcane borer, Diatraea saccharalis (Fah.) is under investigation. Various other programmes are discussed.

Some γ-ray irradiation facilities have been built and others are planned for the eradication of insects from grains as it is transported to and from storage. The in-storage irradiation of grains for mould and insect control has not been utilized, largely because of the lack of knowledge regarding the interaction of γ-rays with grains. Linear and mass attenuation coefficients can, however, be measured accurately and the measured values are in good agreement with theory. The density of the material and the number of electrons per atomic mass unit (0.586) are the important parameters in determining the attenuation coefficients. The kind of grain or forage and the moisture contents of these materials have negligible effects on the attenuation coefficients.

All food irradiation research in Australia is carried out at the A.A.E.C. Research Establishment at Lucas Heights. Irradiation sources are an on-line 198Co irradiator which soon will have a strength of 10 000 Ci, a fuel element of 100 Mev/dec., and a small Van de Graaff accelerator. At Denison near Melbourne, a very large 158Co source (30 000 Ci), operated commercially for disinfesting animal hair, will also be available for food irradiation. Presently, food preservation (investigated at a low dosage of 10 krad and at which level no organoleptic changes are detectable) is concentrated on the preservation of fruits which are often infected with the Queensland fruit fly (Bactrocera tryoni). Dosages of 10 000 rad, which are necessary to kill the insect, have not produced noticeable organoleptic changes in citrus fruits. Dosages of 8000 rad control the sprouting of potatoes under Australian conditions for 6 months. However, the introduction of the commercial irradiation of food must await acceptance by the Public Health Authority which carries out experiments with irradiated foods on animals. (Auth.)

In countries with adequate precipitation or irrigation water and high average yearly temperature the growth of particular crops is favoured. The suitable climatic conditions, however, favour the multiplication of many pests in the stores. The problem of pests of packed fruits and vegetables, although cosmopolitan, poses a particular concern to the developing countries. The pests that are likely to be affected by irradiation and are less susceptible to the conventional methods of control are discussed, and recommendations made. Some specific instances are given where radiation disinfection would be very useful. Amongst the serious pests of packed fruits and nuts are the dried fruit moth, Ephesia cautella, E. cautella, and the polyphagous pyralis farinalis and Phyciodes meticilla. Owing to the lack of forced dispersal during their life cycle, these pests reproduce uncontrollably in the warehouses and ship holds, and often render the expensive goods utterly unsaleable by the time the cargo reaches the retailer, or even the wholesaler. The
commodities often contain Tribolium confusum, T. castaneum as well as a number of Curculio beetles of cosmopolitan distribution. These beetles, as well as the Calandra granaria and ovata, spend their entire life in or on the commodities, which fact makes irradiation more advantageous than the conventional methods of treatment. Other serious pests are Cerealis capillata, the red spider, Metatateranychus ulmi and Tetranychus urticae, and the potato tuber moth Phthorimaea operculella.

1692 Tape, N. W., Ferguson, W. E. QUALITY EVALUATION OF IRRADIATED PAKISTANI RICE. Fo.

1694 Deleted.

1698 Val-Cob, M. Dol., Orwell. PRESENT STATUS IN THE V. 61p. Translation of Report; Review article, with a relat.

1699 Warten, F. L. EFFECTS OF SPECIES OF STORED-FOOD.

1700 Woodton, C. B. OPERATIONAL FOOD IRRADIATION CONTRACTORS Division of holotope Develop (First operation of the unit 6.

After three years in which pr designed and is being built in plant construction are available, making for radiation installations.
Fruit flies attack all fresh pineapples but the larvae are generally restricted to the shell and often fail to penetrate. Preliminary studies indicate that discolouration in the dose range of 50-500 rad also brings about a significant extension of shelf life without producing undesirable changes in fruit appearance or quality. (The crowns of irradiated fruits could not be used to establish growing plants since irradiation above 15 rad inhibits rooting.)

Review article, with a relatively brief section on de-insectation of cereals and stored products.

A mobile X-ray source was used to irradiate larvae in wheat at doses of 820 - 156 000 rad. Results are presented on (1) initial and delayed mortality; (2) fertility of survivors; (3) germination, and milling and baking tests of wheat irradiated at 15 and 19% moisture content. (Abstr.)

(First operation of the unit for demonstration purposes was scheduled for March 1967.)

See also:

1942 Gross effects of gamma radiation on the Indian-meal moth and the Angoumois grain moth. (Cogburn, B.R. et al., 1965)

1944 Dyes and their use in the control of pests in stored products. (DeBartolo, M., 1965)

1945 Influence of radiation on the development of stored products pests. (Kohn, R.S. et al., 1965)

1946 Study of the irradiation tolerance of some destructive storage pests and technical and economic aspects of insect destruction by irradiation. (Faris, I.A., 1965)

1951 The defense department is on its third test ready to use irradiation to control insects. (Anonymous, 1967)

1957 Delt. 800 rad of irradiated fruit and its effect on storage life. (Cotton, J.H., 1965)

1959 Advances in food preservation technology with special reference to the tropics. (Dobrevsky, M.T., 1965)

1960 Applications of pest control to stored products. (Goldblatt, S.B., 1965)

1961 Latest approaches to pest control. (Gossners, W.K., 1964)

1701 Economic aspects of food irradiation programme in Israel. (Apelblat, M. et al., 1966)

2.4.3.3. Economics

After three years in which preliminary designs were prepared, a grain irradiation plant has been designed and is being built into an existing silo. From this experience, actual costs of plant construction are available for a plant using 60Co, and this experience is incorporated in estimates for machine installations for high grain throughput. Costs are compared for plants of compa-
rabble complexity, and they indicate those areas in which each type of plant is pre-eminently suitable and those areas where either type may be best, dependent upon local site conditions, the standard of local technology and methods of operation. The two plants compared are described in sufficient detail to enable the precise extent of the equipment supply covered by the costs to be appreciated. The accounting methods employed have been discussed with industrial accountants to ensure that they are acceptable to the potential user. The methods employed are explained so that they can be applied to problems of a similar nature. (Auth.)

The economics of food irradiation must be surveyed on a national scale at the outset of any ambitious technological feasibility study programme. This must be followed by detailed economic studies as the programme progresses. Such a technological-economic survey of radiation-preserved agricultural produce was made in Israel in July 1966. All items which, potentially, could benefit from irradiation (fruits and vegetables, fodder, cereals and cereal products, fish, meat, poultry, and poultry produce) were examined. Irradiation costs were estimated on the basis of available and extrapolated data for small irradiators in the growth areas and for large irradiators in ports or along main highways. Surface treatment by electron accelerators and bulk treatment by 60Co, 137Cesium or x-ray sources were considered. The survey was useful in formulating the programme for detailed technological applications for the period up to 1971. - Disinfection problems could easily be solved by incorporating irradiation sources in the flow patterns of the food through the silo. This would be at a minimum cost because of the simple design of the irradiation facility and the very efficient radiation absorption. Preliminary packing and service irradiation in central facilities would allow disinfection of cereal products at an irradiation cost of less than 1% of their value. Irradiation at low doses would provide satisfactory quarantine measures for citrus fruit, and would also allow bulk sale in large shipping containers, or pre-packaging in small perforated plastic bags. - The sterile male technique used on Ceratitis capitata shows great promise here.

See also:

1483 Study of the irradiation tolerance of some destructive storage insects and technical and economic aspects of insect destruction by irradiation. (Fischer, I., 1966)
1547 Towards better insect control. (Nelson, S.O., 1966)
1634 Preservation of food by low-dose ionizing energy. (Quartermaster Research and Engineering Center, Mitch, Tenn., 1961)
1639 Two cobalt irradiators for a food-treatment lab at India's Trombay atomic energy establishment. (Anonymous, 1966)
1640 Grain irradiation plant. (Anonymous, 1967)
1642 A $100,000 cuttle cestrum irradiator will begin touring the country. (Anonymous, 1966)
1643 The world's first large-scale continuous grain irradiation plant, Lobudden, Turkey. (Anonymous, 1967)
1644 Control of insects in stored grain by irradiation. (Cotswell, P.S., 1964)
1648 1 - USAEC food irradiation program. (U.S. Geological Survey, 1968)
1651 Hawaii development irradiator (HDI). (Garber, H.L., 1966)
1668 Food irradiation research and pilot facilities in operation or planned in India. (Kutara, C.S., et al., 1968)
1876 Techniques of the future for the preservation of food products in deposits. (Marinus, A., 1964)
1892 Hawaii development irradiator - a new tool in tropical fruit processing. (Higashid, K.K., 1967)
1936 Bulk-grain-irradiation design. (Rehfeld, F. et al., 1965)

2.4.3.4

1705 Caldwell, M., Higashid, (AND DATA ON ITS ECOLOGY (in Hebrew, with English summary). A heavy infestation of the insect in the life cycle of insects was obtained, at 20°C as well as 28°C, it was shown that all was affected. (Kanae, 1962, 887, 890, 892) 100°C at 1.00 (147) d, carried out to obtain addi...
2.4.3.4. Detection and Damage Assessment

A heavy infestation of stored biscuits by L. serricorne is recorded and the type of damage described. The detection of hidden infestation by means of radiography is illustrated. Preliminary work on the biology of the insect in biscuits is described, aimed at determining the use of x-rays in the study of the life cycle of insects in particular foods in stored products. As a result, the following data were obtained. at 23°C and 65±3% R.H. (1) the size of L. serricorne ranged from 0.8 mm-0.8 mm (full size), Pupae are 2.4 ± 0.3 mm (standard deviation) mm long; (2) use generation (from adult to adult) takes 38.9 ± 1.09 (SD) d, the pupal stage lasting for 6.8 ± 1.22 (SD) d. Further work is being carried out to obtain additional data. (Based on auth.)

The insect tunnel is considered the most significant characteristic of insect infestation. General characteristics of insect tunneling are described to distinguish between natural appearance and infestation. Certain criteria have proved applicable to insect tunneling in green coffee beans and other products: numbers of terminal ends, parallel walls, presence of insect excreta (small patches of granular material), uniform size, definite margins, and tunnels devoid of plant tissues. Coffee beans have certain characteristics which cannot be detected by inspection. In particular, the germ, especially in slow coffee beans that have lost moisture during storage, was not detected. However, with practice a rapid radiographic analysis is feasible.

In part of the study radiography was used. Daily x-ray radiographs were made of the larval-pupal development of T. enneatoma in wheat kernels, 44 in corn, and 36 in sorghum, using a G.E. X-ray unit. Study of the series of enlarged photomicrographs made from these radiographs revealed the typical larval-pupal periods if larvae fed on germ and after emergence of the kernels. Penultimate and last larval instars, preupal, and pupa could be distinguished in radiographs. Insects with longer larval periods spent more of their period in the larval stage than in the pupal stage. These differences were significant (with 0.05 significance level) in comparison with the earlier ones. The late-developers were in the endosperm without access to the germ during the early stages.

Daily x-ray radiographs were made of 73 wheat, 44 corn, and 86 sorghum kernels. Daily x-ray radiographs revealed the length of development and behaviour of larvae and pupae of Anchylus in wheat, corn, and sorghum. Lengths of larval periods were generally associated, because time of mothing to the penultimate and last instar usually could be determined. The ranges and means of the periods of hatching to penultimate instar were 8-38 d and 14.9 d in wheat, 9-38 and 33.9 d in corn, and 9-31 and 32.9 d in sorghum: the penultimate larval period was 4-10 and 8.3 d in wheat, 3-7 and 4.7 d in corn, and 3-7 and 4.5 d in sorghum; ultimate larval period (including prepupa) 8-12 and 8.3 d in wheat, 8-10 and 7.9 d in corn, and 8-6 and 6.4 d in sorghum: pupal period 11-13 and 9.8 d in wheat, 7-10 and 6.9 d in corn, and 7-10 and 9.3 d in sorghum. Ranges and means of the overall larval-pupal periods were 20-63 and 37.9 d in wheat, 20-32 and 35.3 in corn, and 25-34 and 33.5 d in sorghum. Insects with longer developmental periods spent disproportionately more time as larvae than the insects with shorter developmental periods. (Auth.)
2.4. Sericulture

2.4.4. Biological Control

2.10 Caudwell, C. G., Franklin, B. A., INACTIVATION BY IRADIATION OF SPORES OF Bacillus thuringiensis VAR. thuringiensis. J. invertebrate Path., 8, 2 (1968) 258-265.

Sporos of B. thuringiensis var. thuringiensis on filters or glass slides were exposed to u.v. light, \gamma\-irradiation or sunlight. All treatments had deleterious effects. Nearly 80% of the spores were inactivated by exposure for 30 min to sunlight at temperatures of 70-92°F. \gamma\-irradiation effects might explain some of the discrepancies between laboratory and field tests of biological control of pests with B. thuringiensis. (RAF-A 55: 1067, 74)

Results are presented of experiments on the influence of \gamma\-irradiation on the growth of six entomopathogenic varieties of the Bacillus cereus Group. Growth of all six varieties was inhibited in the range, 250-300 to 450-500 rad and suppressed at 600-900 rad and over. Bacillus cereus var. cereuscides was the most sensitive. Up to 500-800 rad, no modification in multiplication and crystal formation appeared; the only observable change was the time required for lytic, which increased as the dose increased. (Auth.)
2.4.6. Disease Control

The effects of topa, metepa and γ-radiation on longevity, viability and reproductive potential are compared.

Review of the possible use of insecticides, biomethods, repellents, attractants, and sterilization in mosquito control.

The programme is designed specifically to study the effects on natural virus cycles (arthropod-borne viruses, especially Arbovirs) in γ-irradiated portions of the tropical rain forest.

See also

1586 Radiacion de los escarabajos: an agent of myiasis. (Baumhover, A.H., 1966)

2.4.7. Miscellaneous

Results of laboratory and field studies are reported. They indicate that radiation-processed wood-plastic combinations (produced by applying γ-radiation from a 60Co-source to wood previously preserved with a liquid monomer, the result being to initiate polymerization and to produce a plastic-reinforced wood that is stronger and harder than natural wood) possess considerable resistance to attack by Reticulitermes flavipes. This is true of impregnation with methyl methacrylate or Taylor's solution (30% methacrylic acid and 70% methacrylate), whereas impregnation with polyvinyl acetate confers considerably less resistance. (Based on RAB-68: 1967, ref. 708.)

1716 Boldyrev, M.I. Thysanoptera tibetana AND ITS ERADICATION. Izv. timiriyazeva, set. 2907.

On p.182, it is pointed out that the application of γ-rays from a 60Co-source appears promising for the protection of cuttings. At the doses used (300-1000 r) the cuttings were not injured. Disinfestation by irradiation was directed against Thysanoptera tibetana.
Utilization of various radioisotopic devices and methods in the oil and chemical industries, Conf-64/64-12, "Symposium on Use of Radioisotopes", Warsaw, Poland, n.d., 23p.

Radiocarbonates are used in measurement and control equipment, as tracers, and for inducing chemical reactions. They have also been used to evaluate the amount of the γ-sources in hexachlorocyclohexane, which determines its triodocephal properties, and to monitor the production of Metafo.

Industrial applications of nuclear radiation in connection with some chemical processes are outlined. The production of gammaexes (CpH2Cl) by irradiation-induced chlorination and sulphotreatment of hexene by means of γ-radiation from a Co-60 source are among them.

Feed supplemented with an irradiated industrial meal including silkworm pupae administered to piglets in progressive doses (starting with 500 mg/kg body weight) stimulated their growth and development rate. The supplement administered at a 6 mg/kg level, on the average, while the average daily gain in the 2nd lot was 60-70 g, as against the control. The treatment was more efficient during winter than in summer. The test observation period showed that the gains of the 1st lot had 8-10% stronger litter (as compared with the 6-8 strong litters of the controls) and that newly born piglets registered higher birth weights. (Abstr.)

Degradation of a number of pesticides were obtained at doses of 0.1-5.0 Mrad. Changes were evident with pesticide solvent standards as well as extracts of treated crops. Chromatographic and biological analyses were employed to analyze solutions. Decreases in concentration followed a 1st-order reaction. (Abstr.)

Treated and untreated blocks of maple, birch, and white pine measured 1 in. x 1 in. x 3 in. Radiation from a Co-60 source replaces the activating agent (chemical catalyst) ordinarily used to bond the plastic molecules. Radiation activates the monomers (plastics) themselves, so they join together or polymerize. The treatment consisted of (2) irradiated blocks impregnated with (a) vinyl acetate, (b) methyl methacrylate, and (c) 90% methacrylic acid and 10% methyl methacrylate of different ratios: (2) irradiated control blocks; and (3) untreated control blocks. 8 to 10 replicates of each treatment were used. Each block, in a sterile jar with its seed contained, was exposed to approximately 500 exterior terms. Sterilized termite, the jars were kept in an incubator at a constant temperature of 77°F and 90% relative humidity. The laboratory results (Table 1) reveal that termite attack, reflected by weight loss, is less for wood treated with the mixture of methacrylic acid and methyl methacrylate. Second most effective is methyl methacrylate, and the least effective is vinyl acetate. The weight loss time of maple blocks impregnated with vinyl acetate was almost as much as the weight loss in the irradiated and the untreated control blocks. Results of the field tests showed that methyl methacrylate stains had fewer termite attacks than the vinyl acetate stains. There was a direct correlation between termite attack and wood decay in each series treated. Some resistance to termite attack may be deduced from the monomer treatments. The length of this resistance over extended periods of time is being investigated.

Newspaper article. Protection results from venom-induced stress or free radical scavenging.

Mice were injected with bee venom dissolved in a 0.2% NaCl solution. This injection was given either intraperitoneally or subcutaneously 24 h before the mice were irradiated with x-rays. It was found that, after exposure to a lethal dose of radiation (800-850 R) the venom-injected mice had a consistently higher number of survivals than the controls, and that the subcutaneously-injected mice had a higher number of survivals than the intraperitoneally-injected mice. The question as to whether this radioprotective effect of bee venom is due to its general stress-like effect, or to the action of a specific chemical component was discussed. (Auth.)

Studies using the lyophilized Bulgarian royal jelly aquaporin and cystamine chloride in 380 rad irradiated with LD 90 to LD 160 (750-850 R) revealed that a dose of 0.8-1 g/kg daily for 10 d (with irradiation on day 5) protected rats more effectively than an optimal (nearly toxic) dose of cystamine: 60% survival (p < 0.05), compared with 20% for cystamine. Only 10% of the untreated controls survived. (NAR 1968, 1969)
Quantitative studies on the
of the salivary gland (1st,
interference microscopy &
manual chromosome struct-
of distal and proximal sal-
ivary gland). A new method
was characterized by its:
It was applied to labelled
of isocyanate with increasing
traction of salivary chan-
and peptolysis removal of D.
larvae; and deamination
were found to be not much
higher due to the large
were performed and control
interferometric and micro-
and interferograms. RNA was
in the bands than in interb
with the protein distribution;
could not entirely explain
to contain high levels of a
and histone component.

Electrode cytometry
END PLATES OF A VERTE
2H-dilisopropylmercuri-
motor end plate of mouse
epidural stimulating b
whose sensitivity to 2H had
end plate was calculated.
The concentration of ACs
The resolution of the techn
the nerve end bulb; hence
that at the junctional field

Influence of the
radiation sensitivity
3. ADDENDUM

3.1. TECHNIQUES

3.1.1. Autoradiography

Quantitative studies on the cytochemical and cytophysiological properties of the polytheen chromosomes of the salivary gland (1st, 2nd, and 3rd instar) of Drosophila melanogaster were undertaken using interferometry microscopy and microspectrophotometry in order to elucidate some aspects of fundamental chromosome structure. The refractive indices of nucleoplasmin, nuclei, bands and interbands of distal and proximal salivary glands and nucleoplasmin tubules of the 3rd-instar larvae were determined. A new method of automated autoradiography grain counting was developed. This method was characterized by its extreme accuracy and rapidity, even for small areas within a single cell. It was applied to labeled (in vivo) 3rd-instar salivary glands. A removal of the rate of incorporation of isotopes with increasing acidity was observed. Among the experiments carried out were the extraction of salivary chromosomes with DNase, and RNase; treatment of chromosomes with trypsin and papain; removal of DNA and RNA with trichloroacetic acid and perchloric acid; and denaturative and densitometric studies. RNA concentrations in the cells of living salivary gland cells were found to be not much higher than those in some bands, the total volume was, however, much higher due to the large volume. Quantitative cytochemical studies by microspectrophotometry were performed and correlated with interferometry microscopy. The data obtained from combined interferometric and microspectrophotometric studies indicated that DNA was present in both bands and interbands. DNA was present in variable degrees in certain bands. The absolute mass was greater in the bands than in interbands. The distribution of DNA did not correlate on a proportionate basis with the protein distribution. It was, therefore, evident that simple swelling of the chromosomes could not entirely explain the distribution of nucleic acids and proteins. The interband regions appeared to contain high levels of non-histone proteins which were probably not directly associated with the nucleohistone component.

The accuracy of the technique was not sufficient to determine whether there was any Achase in the nerve end bulb; however, if there is any there, the concentration must be less than 1% of that at the junctional fold region. (Auth.)

See also:

275 Influence of the physical state of chromatins on nucleic acid and protein synthesis and on radiation sensitivity of cell division. Progress report. (Gaudien, M. E., 1967)
3.1.2. Dosimetry

Calibration dose-rate measurements were made above two 3 cm-diameter plane-parallel sources containing approx. 70 mCi and 750 mCi of $^{90}Sr + ^{85}Y$, respectively. The contact dose rate in the center of the 750 mCi source was 650 rad/hr and the measured dose rate at contact in the center of the 750 mCi source was 480 rad/hr. The data presented are intended to be useful in the planning of experiments for investigation of the effects of radiation on insects. (Auth.)

The decay curves were determined from measurements of the pulse rate of radioactively labelled compounds on live insects by means of a FORTRAN 7000 computer programme. The biological half-lives are then calculated on the basis of formulae which are given. An exact mathematical method with rational data processing produced reproducible results. The method was tested with various kinds of bugs, including Pyrrhocoris apterus L., Mononectes trigons L., and Coccus facialis Dall., using ^{35}S, ^{85}Sr, and ^{85}Y. Water bugs Cerceris glomerata L., Cressus marginatus Ill., Gerga lanestris L.) secreted the tracers used more quickly than the bugs. For phosphate and iodide the biological half-life for bed bugs amounted to about 50 d and for water bugs to 2 d. Half of the rubidium chloride, on the other hand, was eliminated by bed bugs within 14 d.

3.1.3. Isotope Dilution

A discussion on the principles of radioisotope dilution procedures and the development of double isotope derivative analysis for pesticide residues, such as DDT and dieldrin. (CA 98: 1988, 20371R)

See also:

307 Formulation of DDT

The specific merits and the pesticide analysis are now containing Hg, As, Cl, in formation activation, paracite technique. Tracer study varieties of pesticides potential interest are available in h

1793 Buchner, J. D., Golin, J. E. Technol. 17 (1969)
A most useful application is the functioning or brownstone include DDT and toxaphene, which have been used in a mixture of Na and Mg and the activated sample. In and electronic abundance for their interaction with the measurement of residual amounts in the air.

1792 Pouey, A. LES APPLET ET ALYMENTAIRES, Bio Various potential uses of a pesticides and analysis of

1793 Pouey, A. BIOLOGIE ET ACTIVATION ANALYSIS. The general method of the radiochemical separation. Fe, Zn, Ba, Cd, Ca, Sr, I are outlined in the area of matter, pesticide residues, 2762W

1784 Golin, V.F. ACTIVATED. A review on this method of nuclear particles employing radioactive decay schemes as the speed, precision and the determination of the analyte, analysis of food, and applications i
3.1.4. Labelled Pool Technique

See:

907 Formation of tritium pools during mixing. (Leach, W. M., 1964)

3.1.5. Neutron Activation Analysis

The special merits and limitations inherent in activation analysis procedures as they apply to pesticide analysis are reviewed. The technique is admirably suited for the measurement of pesticides containing Hg, As, Cl, Br, Zn, and Cu. The combination of chromatographic separation with neutron activation, particularly of activable derivatives, greatly extends the scope of activation technique. Tracer studies dependent upon activation analysis are potentially valuable for several varieties of pesticides provided that non-radioactive or quasi-stable isotopes of the elements of interest are available in highly enriched form.

1781 Buchanan, J. D., Guin, V. P. ANALYSIS OF FOODS BY NEUTRON-ACTIVATION TECHNIQUE. Fd Technol. 17 (1963) 17-22.

A most useful application of neutron activation to the analysis of foods has been in determination of chlorinated or brominated residues in foods. The chlorinated pesticides that have been determined include DDT and toxaphene. Generally, the analyses have been performed on organic extracts, which have been used to separate these insecticides from inorganic chlorides and from other elements (particularly Na and Mg) whose activation products would tend to make NaCl in the y-ray spectrum of the activated sample. Small amounts of Na and Mg are often seen, even in the organic extracts, and electronic subtraction of their contribution to the observed y-ray spectrum is used to minimize their interference with the chlorine determination. Total fr concentration has been used as a measure of total amounts of methyl bromide in wheat, wheat products, walnuts, lentils, and spices.

Various potential uses of activation analysis are indicated, among them efficacy studies of pesticides and analysis of pesticide residues.

The general method of neutron activation is outlined, including preparation of organic samples and radiochemical separation. Elements utilized in agronomy studies are Cl, Al, Na, As, W, Mo, Co, Fe, Zn, Cu, Ca, Se, Sb, Be, Se, Mo, P, Si, Al, P, and the lanthanides. More specific studies are outlined in the areas of the physiology of mineral nutrition, trace element analyses of vegetable matter, pesticide residues, industrial pollution, and indication of radioactive pollution. (CA 65:1882, 5732b)

A review on this method of elemental analysis that is based on nuclear reactions, including types of nuclear particles employed (neutrons, charged particles, and photons), neutron sources, theory, radioactive decay schemes, y-ray spectrometry, experimental procedures, statistical considerations, the speed, precision and accuracy, sensitivity, and some of the method, and applications in the determination of C, analysis of high-purity materials for trace impurities, determination of pesticides in food, and applications in the petroleum, chemical, rubber, and plastics industries. (CA)
3.1.6. Miscellaneous (including Radiography)

A large volume 2-liter liquid scintillation detector, Scint-P, was constructed at Purdue University under a grant from the Atomic Energy Commission. This instrument is capable of measuring extremely low level γ-activity of large foodborne objects and live animals weighing up to 250 lb. The detector is also being used in connection with isotopes such as 45Ca, 47Ca, 58Co, 59Fe, 51Cr, 131I, and other γ-emitters. It can play a vital role in the measurement of radioactivity in animal feedstuffs and human food, is of value in studying residue problems involving isocyanates, herbicides and pesticides in general, and in studying intermediary metabolism in properly labelled drugs.

Laboratory and field experiments were designed to determine the effect of insect predators on immature broods of D. brevicomis. Twenty pairs of ponderosa pine bark, each, 40 sq. in., were selected from a large number of samples from trees infested with Dendroctonus. Samples were then exposed for 30 days to the daily hourly exposure of predators and prey as possible. The bark samples were reared 4 times in 3 weeks. In the field, 8 trees containing first generation Dendroctonus broods were sampled, by removing 4-in. wide circular wedges from 4 ft up the infested hole and repeating at 10×7 intervals. A total of 865 was collected and the number of beetles and predator larvae determined radiographically for each sample. Data were presented by (graphical) and regression methods. The results indicate that predation is independent of the predator density and the time predator and prey are exposed together. Prey density was generally very high and had little effect on the rate of predation. The correlation of laboratory and field experiment gives confidence to the conclusion that the mean predation rate (6.261 prey/predant/day) can be used to estimate western pine beetle mortality from predation, provided temperatures remain within the 30° to 70°F range.

Results of initial investigations designed to demonstrate the feasibility of double isotope derivative dilution analysis for selected chemical residues in foods were presented. Four compounds were selected as representatives of commonly employed pesticides of different chemical structures that would necessitate the exploration of a variety of isotope derivative procedures. In this study, it was anticipated that the feasibility of radioscintillation procedures could be demonstrated and further investigations of the techniques could be stimulated. The four pesticides studied were DDT, dieldrin, syny and diazinon. A double isotope derivative dilution analysis for DDT was devised based on the trituration of DDT and added 14C-D DDT, subsequent formation of the diisodiphenyl derivative with 3H-aniline, purification of the double-labelled derivative by paper chromatography, and simultaneous counting of the 3H- and 14C-content of the derivative in a liquid scintillation spectrometer. One to 10-mg quantities of DDT were determined by using 14C-DDT and 3H-aniline of specific activity which are readily available and easily prepared. Simultaneous determination of DDE is discussed and the expected advantages of the isotope dilution technique are reviewed. Dieldrin was shown to be amenable to analysis by a double isotope derivative dilution procedure which involved derivatization of dieldrin and 14C-derivatives with 3H-acetic anhydride to form a double-labelled derivative and purification by multiple recrystallizations with carrier non-labelled dieldrin derivative. A potential that hydrosol cleavage of the corresponding sulfoxide, a reagent that can read.

1788 Boudic, J. B., Faust, M. FOR THE MEASUREMENT OF THE RADIATION TREATMENT. Isotopes 18 (1)

An improved radiation evolved 4He and the s of added radioactivity, with insects or small and experiment utilizing the...

1789 Eidevall, M. E. LIQUID ANIMAL TISSUES. AOC

A procedure using nitric acid H and C water-soft of different tissues from the... The counting efficiency is Bray's dioxane cocktail; this cocktail, increasing efficiency of 14C... (NSA 80: 1967, 586)

Females of G. moletta, yet simple case from wa a hole in the cage by we numbers of insects. Vari... density of the moths. A was needed for testing th the moth. The collector of eggs hatched determin... for the mating and max... detected and removed.

1791 Hayes, T. L., Pease, R. OF LIVING Tribhun on

The scanning electron m... at magnifications up to 1 of electron beam scans in the vacuum and the electron beam... 101 and the beam current of...

1792 Kimura, S. K. DETECTI... RAYOGRAPHY.

Fourteen species of aglets cracks or breaks in the to. by the seed coat could b... larvae of adult insects...
derivative. A potential isotope derivative procedure for synos was suggested by the demonstration that hydrolytic cleavage of the thioand thiol isomers yielded 8-hydroxyethyl sulfide and 8-mercaptoethyl sulfide, respectively, which could be derivatized with dibromomethyl chloride, a reagent that can readily be 3H-labeled. (Auth.)

An improved radionucldic respirometer is described which permits periodic sampling of both the evolved 3CO$_2$ and the activity remaining in the substrate solution, as well as the complete recovery of added radioactivity. The system, although described for use with plant tissue may be used with insects or small animals. A procedure for the use of the system is described, and a typical experiment utilizing irradiated cotton tissue is discussed. (Auth.)

1730 Edesfawzi, M.E. LIQUID SCINTILLATION COUNTING OF 1H AND 14C COMPOUNDS IN ANIMAL TISSUES. Anal. Biochem. 27 (1968) 353-355.

A procedure using nitric acid for tissue digestion is described, which gives a high counting efficiency for 1H and 14C water-soluble non-volatile compounds. This technique was applied to small pieces of different tissues from the rat and the American oystercatcher, including the rat skin and reach cuticle. The counting efficiency for 1H ranged from 0.3 - 11% compared to 10.9% for counting 35S standards in Bray's dioxane cocktail, and was 60% for 14C, which is the max. efficiency obtained with 14C in this cocktail. Increasing the amount of rat brain and reach muscle hardly affected the counting efficiency of 14C but 1H counting efficiency was reduced by increasing the amount of tissue. (NSA 1: 1967, 829)

Females of G. molesta deposit eggs readily on waxed paper. The construction of a very satisfactory yet simple cage form wax paper is described in detail. The moths are introduced or removed through a hole in the cage by aspirator. Cages of various sizes can be made for accommodating different number of insects. Various ratios of males to females can be reared without a change in the density of the moths. A satisfactory method for collecting all eggs over the lifetime of a female was needed for testing the effects of y-radiation and disinfectants on the fertility and vitality of the moth. The collected eggs are introduced for 9 d in a warm humid atmosphere, and the number of eggs hatched determined subsequently. Optimum conditions that can be replicated are provided for the rearing and max. longevity of adults. By using transparent waxed paper dead moths could be detected and removed daily.

The scanning electron microscope has been used to produce stereoscopic pictures of living T. tubifex at magnifications up to 1200 times. The physiological implications of survival in the environment of electron beam scanning are discussed. Larval, pupal, and adult forms are capable of surviving the vacuum and the electron beam bombardment involved in the scanning. Local elevation of temperature due to the bombardment has been estimated at only 5.005°C but the dose rate of ionizing radiation may reach 106 rad/sec. Observations times of 1 h were tolerated. 25 keV electrons and a beam current of 10^{-7} A were used.

1742 Kansa, S.K. DETECTION OF MECHANICAL DAMAGE AND INTERNAL INSECTS IN SEED BY X-RAY RADIOPHOTOG. Svensk biol. Tidskr. 61, 1 (1967) 43-46. Fourteen species of agricultural seed were used. The external mechanical damage to seed (e.g., cracks or holes in the testa, etc.) as well as the internal mechanical damage (to peas encased by the seed coat) could be seen on x-ray pictures. The radiographs revealed the occurrence of larvae (for adult insects) and/or holes bored by them in the seeds. Thus, larvae of Taphrophaga grandum K. in Triticeum aestivum were clearly seen in some cases. Sometimes only the
empty coat was left. Tunnels bored into seed (Lem esculenta) by larvae of Bruchus sp. are distinctly visible. A few adults have also been seen in some cases. In Phascolus minor, many of the seeds were seen to show big holes, some containing insects (Bruchus sp.). Various views of tunnels bored by members of the Bruchus sp. were also observed in P. aureus and C. arietinum. Larvae of different sizes (Pachnoda sp.) were visible in Vicia faba, sometimes in the same seed. Many seeds of Phaseolus vulgaris were found to contain larvae of Stenopius graemianus. Illustrations of the above are given. - The radiographical method can evidently be reliably used for detecting mechanical damage and internal insects in seed. Various other uses and advantages of the method, which make it suitable for routine seed testing and research are pointed out. Soft x-rays (Crozet rays) were used: kV = 24, mA = 10. Source 25 cm, 0 sec-exposures, with x-ray industrial film type B (CEA var. Int, Stenograph, Sweden).

1743
Korcz, J. ETUDE RADIOPHUIQUE DU TRANSIT INTESTINAL CHEZ UN TRANCHEE SUPERIEUR. Expérience 10, 1967. 520-521. (With English summary)

1744

1745

1746

1747

1748
Pease, B.W., Bayer, INSECTS. Science, N.

1749
Pierce, F.P., Oster, M. STUDY OF THE EFFECTS (1960) 413.

1750
Robbins, J.D., Bailey, J. DETECTOR. J. Opt. CI

A method was developed allowing for the measurement of the energy of thermal neutrons using a detector. The method is particularly useful for studies involving the interaction of neutrons with matter.

* (1962)
by larvae of Brachitus sp. are
present. In Phelopsinus niger.
larvae of Brachitus sp. Various views
in the same mod.
illuminated. Illustrations
be reliably used for detecting
advantages of the method,
out. Soft X-rays (Gratz pop)
radiation. Film type L

The principle of the instrument consists of focusing an electron beam on the surface of a specimen, the diameter of the beam, after passing through several electron lenses, being ~100 A. A portion of the current leaving the specimen is collected by a plate and conveyed to an amplifier, and hence to a cathode ray tube. The principles of design (schematic arrangement, fundamental limitations, factors affecting contrast, effects of electron penetration on the specimen, and practical limits of resolution (in practice ~200 A for average specimen) are discussed, followed by a section on techniques and applications. The examination of biological materials is described. Direct examination is possible without any change in appearance of the specimen when the coil within remains unbroken on being placed in a vacuum. Photos are shown of the coil at the vertex of a fly's head, the compound eye of Musca domestica, and a bristle of Perebrotia miliaris at 20000 X magnification. Under suitable conditions, a more readily inspected 3-dimensional image may be obtained than in the ordinary transmission electron microscope, while using a very much smaller mean current density.

A scanning electron microscope, in which the electron current is very much lighter than in the conventional electron microscope, was used. Electron micrographs of living specimens of the various developmental stages of Tribolium confusum, have been obtained. Samples of eggs, larvae, pupae, and adults were kept for 80 min in a chamber evacuated to a pressure of 10^{-4} mm. All developmental stages survive this vacuum. Periods of exposure to the vacuum and to the electron beam in the scanning microscope ranged from 2 min to 1 h. The electron current ranged from 2 x 10^{-11} to 2 x 10^{-6} amp, at an electron energy of 20 keV. The magnification used here was only 670 times but can certainly be increased a great deal where necessary. The possibilities of the system are discussed. The energy or current could be raised, so that the biological effects of irradiation on selected areas as small as 10^{-6} cm^2 in living specimens could be studied.

1279 Person, F. P., Opper, M. APPLICATION OF AN AUTOGRAPHIC RECORDING METHOD TO THE STUDY OF THE EFFECTS OF IRRADIATION ON Calandra granaria LARVAE. Folia Ent. 7 (1965) 26.
G. Bannai, Director of the I.N.R.A. "Laboratoire de la Physiologie acroptique à Jouy-en-Josas" has constructed an apparatus for us that enables the mouse of Calandra larva to be picked up by a microphone, followed by amplification and continuous recording. The apparatus is sufficiently sensitive to record the activity of a single larva in a grain of wheat. Only preliminary tests have been performed. Over three consecutive weeks, we have recorded the activity of a larva hatching to emergence of the adult. We have also compared the activity of larvae before and after irradiation. In this way it is possible to assess the effects of irradiation immediately after exposure, and at varying intervals thereafter. The lethal effects of the doses used can thus be rapidly determined, without incubating the irradiated wheat and waiting for any adults to emerge. Results of these experiments are in press.** (Cited version)

* (1965)

1279 Robbins, J. D., Balle, J. E. A METHOD FOR COLLECTING 14CO_2 FROM A HYDROGEN FLAME DETECTOR. J. Gas Chem. 21 (1967) 568-569.
A method was developed for determining radioactivity in the effluent from a gas chromatographic column. The method permitted rapid determination of the radioactive metabolites from CO_2-labelled compounds, such as pesticides. Gases from an enclosed flame detector are passed through
A 15-m1 pipette was used with ethanolic amide to trap $^{14}CO_2$ from labelled herbicides. Recovery of $^{14}CO_2$ was 42-68% when treated with ^{14}C-labelled propazine (C-Clomine-6,8-dihydropropylylamino)-N-triazine uniformly ring labelled and previously passed through a column composed of 5% Carbosorb 10X or Chromotone W at 51°C with N at 30 ml/min. (CA 68:1063, 1968)

* Applicable to other herbicides. (Comp.)

Six varieties of sorghum stored for periods of 6-18 yr. were infested with fixed numbers of the rice weevil Sitophilus oryzae. The oviposition rate was measured by berbrine staining and x-ray counts, and the number of emerging adults was noted. Relative grain hardness, net storage time, influenced the reproductive rate. (Absst.)

A simple apparatus and method is described for the combustion of biological samples containing 14 Cl- labelled compounds. The samples are combusted in a mixture of zinc and sulphuric acids and the liberated chloride trapped as silver chloride, which is dissolved and counted in a scintillation counting system. With these techniques it is possible to detect chlorine-labelled compounds with specific activity of 5.02 mC in concentrations of 0.02 to 0.05 ppb in tissue. (Auth. Summary)

Talas, L. Drábek, J. Získání vhodnosti použití mikrodávkovacích prostředků pro topáním aplikace insekticídů na brosky Mandelinký bramborové. (Determination of the suitability of a microdose for topical application of insecticides to the Colorado potato beetle.) Věd. Pr. výsk. Čes. res. Výzkum o plaga. Plod. Praha - Krup. 31 (1967) 281-286. (In Czech, with Russian, German and English summaries)

The apparatus was tested for accuracy and suitability at the Central Research Institute for Plant Production in Prague-Krpany. A radioactive method was used for determining the drop size of the deposit of tricline-14Cl oil solution amounting to 6.40 x 10^-6 ml. The mean square error amounted to 1.60 x 10^-5 ml. On the 2nd day after application of the tricline oil solution cleaning movements of the beetles had transferred 18.8% of the deposit to the hind pair of legs, 14.6% to the front and central pairs, and 1.4% to the antennae. At the original place of deposit only 55.9% of the substance remained.

During a field test of lin dane 0.001 ppm to control the California flatheaded borer, Metaporia californica Van Dyke, in Jeffrey pine, Plum Jefers, and Ball, x-rayography was used to check for unma larval winter hibernation in the bark after most of the insects had emerged. An attempt was also made to identify late larval-instar mortality. Back samples 1 in. thick were radiographed after adult emergence was completed. A General Electric LC-90 (set at 5 ma, 25-30 kVp, for 15 sec at 24 in. FD) and Kodak industrial-type A x-ray film in regular packs were used. Dead larvae and pupae were easily distinguished on radiographs, and the results confirmed by dissection.

See also:

94 Control of crop insects in the blower. (Gelletty, A., 1969)
576 Distribution measurements for testing new devices of insecticide and fungicide spreading. (Belyg, W. et al., 1967)
1525 Ecological methods with particular reference to the study of insect populations. (Southwold, T. R. E., 1968)
1703 Damage to biceps caused by Lasioderma serricorne (F.) (and data on its biology as shown by radiographs). (Caldwell, M. et al., 1960)
1704 Criteria for radiographic examination of internal insect infestations. (Freeman, C. C., 1960)

1705 Laboratory mycotoxins (Oliveira, S. F. L. et al., 1967)
1706 Radiographic x-ray kernels. (Mull, A. R., 1965)

3.2. VIETNAM

1708 Blomrell, M.-H. RADI (1964-1965), International Series No. 26. Fully annotated bibliography. (Bibliographical Series) References on radiogenic rocks are given, complete indexes are given. A map of the relevant radians devoted to table, consolidating references, (2) 43.

1756 Deleted,

1797 Deduk, W. RADIOACTIVITY in a pesticide chemistry. Continuation of the latter surveys and analytical of thiophosphates and diithiophosphates and thiophosphates, nematocides substances (insecticides)

1758 Franz, I. M., Simon, I. Synopose 12, 1 (1964) Continuation of bibliography with autocatalytic measures. References in any one or earlier listings, see III/3

1759 Ingram, M. BIOLOGIC TID-3007, Division of B The 12756 references; they were collected. T) each followed by one of

1760 International Atomic Energy Agency (1964-1965). The circuitry is aimed at its included in this circuit study, 17 on the effects of radiation sterilisati
3.2. BIBLIOGRAPHIES AND GENERAL SURVEYS

3.2.2. DECEK, W. RADIOACTIVE NUKLEIDE IN DER CHEMIE DER PESTICIDE (II. Radioactive nucleides in pesticide chemistry. II.) Anorganika 15.3 (1967) 116-120. (In German)

3.2.5. INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA (Austria). INFORMATION CIRCULAR ON RADIATION TECHNIQUES AND THEIR APPLICATION TO INSECT PESTS. No. 7. WP31/1, May 1966. 48p.

The circular is aimed at disseminating research information to workers in the field. An author index is included in this circular which contains 5 review articles and 1 bibliography, 1 ecological study, 17 on the effects of ionizing radiation, including disinfection, 21 on rearing techniques, 8 on radiation sterilization theory and application, and 88 on chemosterilants.

469
3.2.2. Surveys

Brief survey of applications in pest control. 6

6 Original not available.

The potential uses of radiation and biocidal measures are discussed in addition to the more conventional methods in use at present.

General review. Stabilizing and lethal effects of radiations are discussed, and the data collected in two tables.
1770 Castaño, D. **IONIZING RADIATION IN APPLIED ENTOMOLOGY.** Montes 22 (1965) 159-168. (In Spanish)

A review is given of the present state of experimentation and application of radioisotopes in entomology. Studies on genetics, sterilization, and lethal effects of radiation are included. The practical uses of radiation in the control of insects are summarized under four headings: release of sterile males, development and release of insect races with inherited lethal genetic characteristics, irradiation of products attacked by insects, and irradiation of plants for the production of useful mutations. (NRA 22: 1966, 10083)

Techniques using radiation, sound, electostatic charges, or other physical methods are described; hazards due to chemical and biological agents are minimized.

Survey article.

The International Atomic Energy Agency uses large radioisotope sources as well as tracers in its work. Among the programmes currently being sponsored by the IAEA is the use of radioisotope sources for disinfection of grains and processing of other foods, sterilization of pharmaceutical and medical supplies, remote therapy of cancer, and insect control by the sterile-male-release technique. Tracer studies include those in hydrology, fertilizer utilization, and nutrition. (Auth.)

Review of control techniques: chemical, sterilization, biocidal, and integrated means.

1775 Jenkies, D. W. **RADIOISOTOPES IN ECOLOGICAL AND BIOLOGICAL STUDIES OF AGRICULTURAL INSECTS.** AD-636695, Army Biological Labs., Frederick, Md. 1960, 30 p.

For abstract, see 11/4.

1776 Kratz, W. **ÜBER DIE VERMÖGENSVOH RADIOAKTIVEN ISOTOPEN IN DER MODERNEN BIOLOGIE.** (On the application of radioactive isotopes in modern biology.) Progr. Biol. 6 (1957) 125-130.

The survey also considers the use of radioisotopes in entomology.

1777 Ladoray, J. R. **APLICACION DE LOS RADIOISOTOPES EN ENTOMOLOGIA.** (Application of radioisotopes in entomology.) Ingenieria agron. 21 (1963) 19-25. (In Spanish)

Applications of radioisotopes in agriculture and food research are described. In South Africa, the greatest interest was shown in the possibility of preserving meat by irradiation. For this purpose, a 500-Cl Co irradiation center was installed. With this high intensity radiation, male insects are sterilized so that insect pests can be eventually eradicated.

1779 Mia, M. M. **ATOMIC ENERGY FOR AGRICULTURE.** Nucleus, Lahore 2, 1 (1965) 20-34.

The importance of using in agricultural fields the latest research tools - radioisotopes and radiation sources - in Pakistan is discussed. A brief survey is presented of the activities of the Agricultural Research Centre, Dacca in plant genetics, plant physiology, soil chemistry, and entomology. The IAEA-FAO coordinated programme is also briefly discussed. (NRA 19: 1966, 20728)
Montagné, P. G. de. LES RECHERCHES FRANÇAISES EN AGRONOMIE NUCLEaire.

Work in the field of nuclear agronomy carried out in France since 1958 is reviewed. Topics discussed include applications of radiation in studies of plant genetics, pest eradication, food processing, measurements of soil humidity and density, and the use of radioisotopes as tracers in studies of plant physiology, agronomy, pathology, agricultural entomology, and metabolism in domestic animals. (NSA 13: 1964, 879a)

This monograph was compiled on behalf of the Institute of Isotopes of the Hungarian Atomic Energy Commission, the authors being scientists of the Hungarian Research Institute for Plant Protection. After indicating the expected advantages of using radiations in integrated pest control, some fundamental concepts are outlined. The biochemical effects of irradiation at the cellular level, on animal behavior, populations, and the relation between the effects of radiation and some abiotic factors are treated in separate sections. Pest control techniques employing radiations, and other potential applications against insects are discussed. In an appendix the effects of radiations on the chemical composition of food-stuffs, radiation protective substances and their application, and radiation facilities and radiation health requirements in radioecology are treated in individual sections. Proposals are made for the use of ionizing radiations in pest control in Hungary. 122 references are cited.

Nagy, B. POSSIBILITIES OF USING IONIZING RADIATION IN THE CONTROL OF INSECTS IN HUNGARY. isotherm, Tech. 10 (1965) 1-6. (in Hungarian)

The uses of ionizing radiation and radioisotopes in entomology are reviewed. Radioisotope application in the study of food dispersion, libitation, and migration of insects is considered. Techniques for eradication of insects by irradiation are compared, and the application of small doses in the sterile male technique for control of May cockchafers in Hungary is discussed. (in Hungarian)

Survey article. The use of electromagnetic, sonic, and ultrasonic energy to control insect pests is discussed. γ- and x-radiation have already been used in applications of the sterile male technique, the examples quoted being the screw-worm and the tobacco fly. Insect light traps were used to control the tobacco bollworm population. Grain beetles were killed by γ-rays, radio frequency electric fields or infrared radiation without damaging effects on the nutritional qualities of the grain. The possibility of using sound and ultrasound for insect control through influencing behavior is suggested.

Radio, u.v., visible, Infrared, ionizing radiation effects on insects, products and applications.

A computer-based system is described that maintains a master data file on Drosophila melanogaster mutants and that can provide output lists in various arrangements. More than 3,000 mutants are on file. Flow charts are given, and the program phases are described in detail. The program are written in the COBOL language with some MAP routines for the IBM 7090/7094 and 1401 computers. (NSA 21: 1967, 53077)

Some of the newer methods for insect control are discussed. These include microbial insecticides, integrated control, behavior determinants, biological control, and sterility and genetic manipula-

472
Control of insects in food processing. Radioisotopes application. Techniques for sublethal dose in sterile insect release. (K-math)

The studies made at the Bayr. Landesanstalt für Bodenkultur, Pflanzenbau, and Pflanzenzucht on the use of radioisotopes and radiation in agricultural science are reviewed. Among the studies discussed are the spread of insect pests, early detection of virus diseases, tracing growth patterns, germination, production of mutations, and uptake of nutrients. Examples of the results obtained are given to indicate the type of information that can be obtained with the use of radioisotopes and radiation. (NSA 16: 1994, 33672)

This paper reviews the major physical agents presently being used or studied as methods of insect control. Included in the discussion are: electromagnetic radiation, ionizing radiation, temperature, sound, mechanical force, air movement, atmospheric ions, insect-proof containers, and sanitation. The possibility of integrating these methods with chemical control is discussed and the use of radiation in programmes of sterile male release is explained. (BA)

Applications of radioisotopes in agriculture, medicine, and industry on an international basis are discussed. Programmes described include: isotope techniques in rice cultivation, the use of radiation for control of harmful insect populations, and radiation disinfestation of grain.

See also:
40 Some biochemical aspects of insect metamorphosis. (Gilbert, L.J. et al., 1963)
564 Radioisotopes in entomological studies of endemic and tropical diseases. (Jenkins, D.W. 1960)
565 Radioisotopes in entomology and tropical medicine. (Jenkins, D.W., 1961)
1263 Institut National de Génétique du Japon. (Tokio, B.G., 1967)
1301 Research activities of the association EURATOM-ITAL. (Zeewe, D. de, 1966)
A list of participants and lecturers is given. Abstracts of the lectures are included. Part I of the lectures gave a background to the whole course: the fundamentals of tracer methodology in theory and practice (C. H. Schmidt); counting statistics, and laboratory work on autoradiography (G. S. Atkinson); fundamentals of radiobiology, and medical applications of isotopes and radiation (H. L. Compton); fly eradication projects (J. C. Keller); neutron activation analysis (G. G. Cockroft); and on the use of various types of instruments available commercially. Part II dealt with the use of radioisotopes for the study of systemic insecticides in plants (D. L. Ball); metabolism of chlorinated hydrocarbon insecticides by insects (A. S. Perry); use of irradiated water for continuous registration of insect movement; use of radioisotopes in research on social insects; principles of internal and external tagging of insects under special consideration of physiological and ecological aspects; use of radioisotopes with plant sucking insects: some aspects on phytopathology (all four by W. J. Kahl); use of radioisotopes in dispersion studies: part A = flies, part B = mosquitoes and coldroaches (H. F. Schoof); sterilization of the screw-worm fly from Southern United States (A. H. Baumhovet); laboratory and field studies of ticks labelled with radioisotopes (M. L. Emmons); chemoentrants as a potential weapon for insect control (C. N. Smith); application of chemosterilants (G. C. Lalonde); cytological effects of chemosterilants on house fly ovaries (P. B. Morgan); use of gamma radiation and sterilization techniques for control of fruit and vegetable insect pests (A. K. Burdett, Jr.); dispersion studies of Culex pipiens fatigans. Wind tagged with 14C in the Kannelorskoye Area of Rasegoa, Eanna (from WHO/Vacket Control/297.602); sterile male release studies with Protophila malagasyet (J. C. Honaker); fundamental principles of radiation-induced insect sterilization (L. E. LaChance); the effects of gamma radiation on soil (C. F. Eno); projecting laboratory rearing of insects to mass-scale forestry-type project (G. H. Fussman). Laboratory exercises were divided into metabolism of 14C in mammals in the house fly (W. W. Flagg, Jr.); the use of radioisotopes for the study of systemic insecticides in plants (D. L. Ball); laboratory exercises for studying the metabolic fate of insecticides by use of isotope-labelled compounds (A. S. Perry); laboratory exercises on insect sterilization (Lalonde, G. C., Morgan, P. B., Glancy, B. M., Meisner, D. W.); tracer experiments on uptake and social distribution of food in ants; use of radioisotopes as tracers in biological half-life in cockroaches using 14C and 3H separately; tagging adult house flies for estimation of population density by "isotope dilution" method; topical application of 3H as phosphate in water solution on the pronum of German cockroaches: determination of the speed of haemolymph circulation in insects by injected tracers: artificial feeding of bloodsucking insects; tracer experiments with aphids (all by W. J. Kahl).

The training course was held at the United Nations, Rome, Italy. The course ended on November 6th. The course was divided into lectures given in two parts: lectures on the principles of using radioisotopes and radiotracers in entomology and laboratory exercises on the properties of radioactive tracers, and an applied part consisting of detailed laboratory exercises in the use of isotopes and radiotracers in entomology. (From the foreword)
The training course was held at the University of Florida, Gainesville from Oct. 26 - Nov. 30, 1987. Similar training courses had been held at the University of Florida in 1983 and 1986. Objectives of the course were to teach and train entomologists in the theories and nature of radiation, radioisotope methodology, and the applications of radioisotopes to research in entomology. The course was divided into lectures given by invited specialists in the field. The proceedings give a list of the lecturers, abstracts of the lectures, and the laboratory exercises. There were primarily those in the IAEA "Laboratory Manual on The Use of Isotopes and Radiation in Entomology" (see 1980). 16 countries were represented.
4. TABLES

TABLE 1. SYSTEMATIC LISTING OF INSECTS AND RELATED ARTHROPODS
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARACHNIDA</td>
<td>Aranea</td>
<td>Agelenidae</td>
<td>Ar. 1</td>
<td>Agelenopsis conicaea (Dondi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avephidiidae</td>
<td>Ar. 3/3</td>
<td>Avephidia conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidiidae</td>
<td>Ar. 3/3</td>
<td>Acanthidium conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidae</td>
<td>Ac. 1</td>
<td>Acanthidium conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidae</td>
<td>Ac. 2</td>
<td>Acanthidium conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidae</td>
<td>Ac. 2/3</td>
<td>Acanthidium conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidae</td>
<td>Ac. 7/8</td>
<td>Acanthidium conicaea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthidae</td>
<td>Ac. 8</td>
<td>Acanthidium conicaea</td>
</tr>
</tbody>
</table>

* See *Tyrophagus dimidiatum* (Herman)
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tegenaria domestica (Dennis)</td>
<td>funnel-web weaver</td>
<td>120</td>
</tr>
<tr>
<td>Ariculaea arculata</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Ariculaea arculata</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>Ariculaea arculata</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Lycosa punctulata (Hentig)</td>
<td>wolf-spider</td>
<td>78, 543</td>
</tr>
<tr>
<td>Acara stro Londonis</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Tyrophagus dimidiatus (Hiernann)</td>
<td>mites and ticks</td>
<td>514</td>
</tr>
<tr>
<td>Tyrophagus longior (Germ.)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oribatodes papillipes (Skr.)</td>
<td>sarcoptes mites</td>
<td></td>
</tr>
<tr>
<td>Oribatodes paulozarti (Lab. & Meg.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azurnae paperilator (Of. Mill.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oribatodes (Oribatida) basoti (Nishi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblyomma americanum (Linnaeus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ixodes microplus (Canestrini)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermacentor andersoni (Stiles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermacentor occidentalis Marx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermacentor variabilis (Say)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*see Tyrophagus dimidiatus (Hiernann)
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARACHNIDA</td>
<td>Acarina</td>
<td>Tetanychidae</td>
<td>Ac. 14</td>
<td>Rhozyenychus ulmi (Koch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetanychus telarius (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetanychus urticae (Koch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepismatidae</td>
<td>B</td>
<td>Lepisma saccharina Linnaeus</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Thysanura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ephemeroptera</td>
<td>Heptageniidae</td>
<td>E. 6</td>
<td>Heptagenia hebe (McDunnough)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Steronema fascun (Clemens)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Steronema interpunctatum (Say)</td>
</tr>
<tr>
<td></td>
<td>Odonata</td>
<td>Aeshnidae</td>
<td>F. 1</td>
<td>Aeshna cyanea (Müll.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aeshna grandis (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aeshna viridis Eversm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anax imperator (Leach)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boyeria liene (Foussacolombe)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriomidae</td>
<td>F. 2</td>
<td>Platyembris perthipes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calopterygidae</td>
<td>F. 2/2</td>
<td>Calopteryx splendens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coenagrionidae</td>
<td>F. 3</td>
<td>Aspius transtria</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panonychus ulmi (Koch)</td>
<td>spider mites</td>
<td>1138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetramyces telarius (Linnaeus)</td>
<td>European red mite</td>
<td>AFX. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetramyces urticae (Koch)</td>
<td>two-spotted spider mite</td>
<td>730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidocloea saccharina Linnaeus</td>
<td>two-spotted spider mite</td>
<td>725, 487, AFX. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptagenia hebe (Drummough)</td>
<td>bristletails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternera fascia (Clemens)</td>
<td>firebrats, silverfish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternera intrepidata (Say)</td>
<td>silverfish</td>
<td>1449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeschyla cyanura (MILL.)</td>
<td>mayflies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeschyla grandis (Linnaeus)</td>
<td></td>
<td>651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeschyla vindis Svecnu.</td>
<td></td>
<td>652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anax imperator (Leach)</td>
<td></td>
<td>653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyeria line (Fuscelcombe)</td>
<td>damselflies and dragonflies</td>
<td>408-4, 531.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platyceramis pensipes</td>
<td>a dragonfly</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td></td>
<td>62, 435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angia translata</td>
<td>a dragonfly</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a dragonfly</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a dragonfly</td>
<td>452</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a dragonfly</td>
<td>452</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Odonata</td>
<td>Cordulegastridae</td>
<td>F.4</td>
<td>Cordulegaster boltonii (Donovan)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lestidae</td>
<td>F.7</td>
<td>Lestes sponsa Han.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Libellulidae</td>
<td>F.8</td>
<td>Libellula depressa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Libellula quadrimaculata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Somatochlora flavomaculata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sympetrum danae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sympetrum depressiusculum (Szl.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sympetrum vulgarum</td>
</tr>
<tr>
<td></td>
<td>Picoides</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthoptera</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrididae</td>
<td>H.1</td>
<td></td>
<td>Chorthippus elegans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chorthippus longicoenis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chorthippus parallelus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chorophaga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chorophaga vididifasciata (De Geer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chortogenus incertus Bolivar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Encyclophthalmus wodidus (Burmester)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gomphocerus maculatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Locusta migratoria Limnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Megacoptes gramineus</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudullagaster boltonii (Duosvert)</td>
<td></td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leates sparsa Han.</td>
<td></td>
<td>422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilellula depressa</td>
<td></td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilellula quadrangularis</td>
<td></td>
<td>422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomatocloes flavomaculata</td>
<td></td>
<td>432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphron danse</td>
<td></td>
<td>433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphron degresimusculum (Sols.)</td>
<td></td>
<td>432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphron vulgarum</td>
<td></td>
<td>519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stonesflies</td>
<td></td>
<td>422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cockroaches, grasshoppers and allies</td>
<td></td>
<td>524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grasshoppers</td>
<td></td>
<td>51, 223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonihnippus elegans</td>
<td></td>
<td>1, 54, 185, 207, 414, 959, 968, 982, 986-7, 1886, 2924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonihnippus longirostris</td>
<td></td>
<td>873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonihnippus paralleus</td>
<td></td>
<td>1088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hortophaea</td>
<td></td>
<td>973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hortophaea viridifasciata (De Geer)</td>
<td></td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogenius incertus Bolivar</td>
<td></td>
<td>262, 274, 396, 1016-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acroptodorus scutulatus</td>
<td></td>
<td>2032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acroptodorus acutus</td>
<td></td>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cuesta migratoria linnacea</td>
<td></td>
<td>973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>migratory locust</td>
<td></td>
<td>137, 152, 194, 199, 251, 301-2, 352, 385, 405-4, 417, 536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coctelhues gremas</td>
<td></td>
<td>973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Orthoptera</td>
<td>Acrididae</td>
<td>H. 1</td>
<td>Melanoplus billetatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melanoplus blivitatus (Say)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melanoplus differentialis (Thomas)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melanoplus femurrubrum (De Geer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oedipoda conglobata Linnæus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Omocestus viridulus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Podisma sapporens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schistocerca gregaria Forst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blaberidae</td>
<td>H. 1/2</td>
<td>Blaberus fusca Br.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blattidae</td>
<td>H. 2</td>
<td>Blaberus sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blaberus craniifer Burmeister</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blaberus diocoidalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blaberus giganteus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blattella germanica (Linnæus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lucopephala maderae (Fabricius)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pterygota floridana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neoplatea cinerea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Periplaneta americana (Linnæus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conocephalidae</td>
<td>H. 2/3</td>
<td>Periplaneta australasiae (Fabricius)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Homoscopnews</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoplus bilineatus</td>
<td>grashoppers</td>
<td>386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoplus bivittatus (Say)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoplus differentialis (Thomas)</td>
<td>two-striped grasshopper</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoplus femurrubrum (De Geer)</td>
<td>differential grasshopper</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oedipoda conica (Linnaeus)</td>
<td>red-legged grasshopper</td>
<td>547, 665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omocosa viridula</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podisma podagana</td>
<td></td>
<td>925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistocerca gregaria Forst</td>
<td></td>
<td>1920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blaberus fusca Lin.</td>
<td>desert locust</td>
<td>47, 289, 388, 177, 362, 386, 565, 599, 600, 838, 921, 1001-3, 1347, 1441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blaberus sp.</td>
<td></td>
<td>1324, 1329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blaberus crassifemur Burmeister</td>
<td>cockroach</td>
<td>766, 1234, 1708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blaberus discoidalis</td>
<td></td>
<td>382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blaberus giganteus</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattella germanica (Linnaeus)</td>
<td></td>
<td>821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucophaea maderae (Fabricius)</td>
<td>German cockroach</td>
<td>175, 189, 369, 387, 390-4, 657-8, 657, 868, 1108, 1701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buryctis floridana</td>
<td>Madeira cockroach</td>
<td>165-7, 325, 376, 421, 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nauphoeta cinerea</td>
<td></td>
<td>364, 382-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentatryx americana (Linnaeus)</td>
<td></td>
<td>1129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentatryx acetablastae (Fabricius)</td>
<td>American cockroach</td>
<td>81, 70, 84-8, 87, 156, 158, 175, 327, 328, 348, 352, 372, 381, 383, 387, 401, 412-3, 420, 428, 557, 652-3, 656, 658-9, 699, 700, 767, 785, 849, 1109, 1739, 1791, APX 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homotettix crassispinus</td>
<td>Australian cockroach</td>
<td>362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grashoppers</td>
<td>51, 53, 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Orthoptera</td>
<td>Coscophalidae</td>
<td>M.2/3</td>
<td>Homoeocephalus nitidulus Scop.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gryllidae</td>
<td>H.6</td>
<td>Acheta domestica (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gryllus bimaculatus (De Oese)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gryllus campestris Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gryllus domesticus Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gryllus firmus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oecanthus celeripectus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gryllotalpidae</td>
<td>H.5</td>
<td>Gryllotalpa grilotalpa Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mantidae</td>
<td>H.6</td>
<td>Mantis religiosa (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenodera aridifolia (Karszewski)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phasmatidae</td>
<td>H.7</td>
<td>Anisomorpha buprestoides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Canthasius microsus Bt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tettigonidae</td>
<td>H.9</td>
<td>Ephippiger ephippiger Fleb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oedaleus rubescens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tettigonia viridissima</td>
</tr>
<tr>
<td>Dermaptera</td>
<td></td>
<td>Labiidae</td>
<td>L.3</td>
<td>Chelisoches morio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isoptera</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kalotermitidae</td>
<td>K.2</td>
<td>Cryptotermes brevis (Walker)</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homoroeophus vitellus Scop.</td>
<td>crickets</td>
<td>58, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acheta domestica (Linnaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryllus bimaculatus (De Geer)</td>
<td>brown cricket; European brown cricket;</td>
<td>281, 283, 431, 515-6, 538, 543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryllus campestris Linnaeus</td>
<td>house cricket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryllus domesticus Linnaeus</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryllus firmus</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecanthus celerinictus</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryllotalpa gryllotalpa Linnaeus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantis religiosa (Linnaeus)</td>
<td></td>
<td>190, 547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenodera aridifolia sinensis (Saussure)</td>
<td></td>
<td>543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaxiorma buprestoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carausius morosus Fr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphysiger euphysiger Fleb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecanthus planusoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tettigonia viridissima</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelioglossa monso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptotermes brevis (Walker)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalotermes flavicollis (Osteen & Neato)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drywood termites

Termites

487
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTA</td>
<td>Isopera</td>
<td>Rhinotermitidae</td>
<td>K. 3</td>
<td>Reticulitermes flavipes (Kollar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Termittidae</td>
<td>K. 6</td>
<td>Microcerotermes dentatus Wasmann</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Belostomatidae</td>
<td>Q. 3</td>
<td>Hydrobaenus columbiae</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Belostomatidae</td>
<td>Q. 3</td>
<td>Leptocerus concinatus</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Clinidae</td>
<td>Q. 5</td>
<td>Clinectes lactatus Linnaeus</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Coreidae</td>
<td>Q. 6</td>
<td>Harmonia sextonius</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Coreidae</td>
<td>Q. 7</td>
<td>Codex gregory</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Coreidae</td>
<td>Q. 7</td>
<td>Coris punctata Ill.</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Coreidae</td>
<td>Q. 7</td>
<td>Microcorus minutissima</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Geocorididae</td>
<td>Q. 8/9</td>
<td>Ichnodermus basius</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Geocorididae</td>
<td>Q. 8/9</td>
<td>Trigonostylus sp.</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Genididae</td>
<td>Q. 9</td>
<td>Griesbuscot (Kirk.)</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Genididae</td>
<td>Q. 9</td>
<td>Geotrupes locustis (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Lygaeidae</td>
<td>Q. 10</td>
<td>Euscelidius servius (Fabricius)</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>Lygaeidae</td>
<td>Q. 10</td>
<td>Nysius neptanus</td>
</tr>
</tbody>
</table>

- Eastern subterranean termite
- true bugs
- giant water bugs
- bat, bed, and bird bugs
- bed bug
- coccid bugs
- grass bug
- water boarmen
- water striders
- lygaeid bugs
- peanut litter bug
- milkweed bugs
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catantopus flavipes (Kollar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcentrum edentatum</td>
<td>Eastern subterranean termite</td>
<td>1715, 1721</td>
</tr>
<tr>
<td>Hydropsyche columbiae</td>
<td></td>
<td>1743</td>
</tr>
<tr>
<td>Prochoerus condonarius</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>Limex lectularia Linnaeus</td>
<td></td>
<td>1322</td>
</tr>
<tr>
<td>harpactor reflexus</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Orsina geoffroy</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Orsina punctata Ill.</td>
<td></td>
<td>1728</td>
</tr>
<tr>
<td>Stegnotena rufipennis</td>
<td></td>
<td>801</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td></td>
<td>506</td>
</tr>
<tr>
<td>Lycoria hispida</td>
<td></td>
<td>596</td>
</tr>
<tr>
<td>Water boatmen</td>
<td></td>
<td>531</td>
</tr>
<tr>
<td>Hesperis malinacea</td>
<td></td>
<td>1728</td>
</tr>
<tr>
<td>Scolopostethus sp.</td>
<td></td>
<td>506</td>
</tr>
<tr>
<td>Water beetles</td>
<td></td>
<td>526</td>
</tr>
<tr>
<td>Hesperis punctata (Kollar)</td>
<td></td>
<td>546</td>
</tr>
<tr>
<td>Hesperis leucotricha (Linnaeus)</td>
<td></td>
<td>192-3</td>
</tr>
<tr>
<td>Hesperis raphana</td>
<td></td>
<td>586</td>
</tr>
<tr>
<td>Milkweed bugs</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Hemiptera</td>
<td>Lygaeidae</td>
</tr>
<tr>
<td></td>
<td>(Heteroptera)</td>
<td>Miridae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nepticidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notonectidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentatomidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrrhocoridae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduviidae</td>
</tr>
<tr>
<td></td>
<td>Hemiptera</td>
<td>Aleurodidae</td>
</tr>
<tr>
<td></td>
<td>(Homoptera)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aphididae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Oncopeltus fasciatus (Dallas)</td>
<td>large milkweed bug</td>
<td>87, 140, 167, 282, 430, 404, 510, 680, 729, 1728</td>
</tr>
<tr>
<td>Lygus oblineatus</td>
<td>plant bugs</td>
<td>550</td>
</tr>
<tr>
<td>Ranaella linearsis Linnæus</td>
<td>watermoccups</td>
<td>516</td>
</tr>
<tr>
<td>Notonecta glauca Linnæus</td>
<td>backswimmers</td>
<td>519, 1728</td>
</tr>
<tr>
<td>Rhexopus punctiventris (Stål)</td>
<td>stink bugs</td>
<td>192-8</td>
</tr>
<tr>
<td>Psylla buculata (Fabricius)</td>
<td>two-spotted stink bugs</td>
<td>469</td>
</tr>
<tr>
<td>Dysdercus peregrinus</td>
<td>pythocorid bugs</td>
<td></td>
</tr>
<tr>
<td>Pythocoris apterus Linnæus</td>
<td>Peruvian cotton stainer</td>
<td>1290</td>
</tr>
<tr>
<td>Rhinocoris iracundus Pfl.</td>
<td>amasin bugs</td>
<td>1729</td>
</tr>
<tr>
<td>Rhinocoris iracundus Pfl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetratoma infestans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chymomphalus aspidium (Linnæus)</td>
<td>aphids, leafhoppers, planthoppers, scale insects, and whiteflies</td>
<td>555</td>
</tr>
<tr>
<td>Tetratoma vasonaestonum (Westwood)</td>
<td>Florida red scale</td>
<td>18</td>
</tr>
<tr>
<td>Aphiella ovipara</td>
<td>greenhouse whitefly</td>
<td>802, APX. 9</td>
</tr>
<tr>
<td>Aphis fabae (Scopoli)</td>
<td>aphids</td>
<td>452</td>
</tr>
<tr>
<td>Chalcoptora xanthomerida (Schaum)</td>
<td>bean aphid</td>
<td>454, 473-4, 479, 480, 632</td>
</tr>
<tr>
<td>Ciona larveola</td>
<td></td>
<td>549</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Hemiptera</td>
<td>Aphididae</td>
</tr>
<tr>
<td></td>
<td>(Heteroptera)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cercopidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cicadellidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cocidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delphacidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitigeridae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Macrosiphum pellucidi (Kaltenbach)</td>
<td>pea aphid</td>
<td>802</td>
</tr>
<tr>
<td>Macrosiphum pisi</td>
<td></td>
<td>799</td>
</tr>
<tr>
<td>Megoura viciae (Huck.)</td>
<td></td>
<td>322, 476, 640</td>
</tr>
<tr>
<td>dynastis discolor</td>
<td></td>
<td>1630</td>
</tr>
<tr>
<td>N. persicæ (Sulzer)</td>
<td></td>
<td>479-1</td>
</tr>
<tr>
<td>Neys ascalonicus</td>
<td></td>
<td>569, 1702</td>
</tr>
<tr>
<td>Neys pumilus Sulz.</td>
<td>green peach aphid</td>
<td>30, 176, 495, 460, 560, 1792</td>
</tr>
<tr>
<td>Aulacorthum aegypius</td>
<td>willow aphid</td>
<td>84</td>
</tr>
<tr>
<td>Chilo partus xanthochroa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neotragulinaa saundersiana (Povolnack)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alligmoptera pellucida (Fabricius)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. flaviceps (Gill.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamae costalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exaponea sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysella pellucida (Fabricius)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalophaga acutus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acmatogaster lituras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerkotinella saccharicida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidnally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elphacoidea sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leontopus delicatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrosiphum pisi</td>
<td></td>
<td>999</td>
</tr>
<tr>
<td>N. ascalonicus</td>
<td></td>
<td>1630</td>
</tr>
<tr>
<td>N. pumilus Sulz.</td>
<td></td>
<td>569, 1702</td>
</tr>
<tr>
<td>Aulacorthum aegypius</td>
<td></td>
<td>30, 176, 495, 460, 560, 1792</td>
</tr>
<tr>
<td>Chilo partus xanthochroa</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Alligmoptera pellucida (Fabricius)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. flaviceps (Gill.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamae costalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exaponea sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysella pellucida (Fabricius)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalophaga acutus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acmatogaster lituras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerkotinella saccharicida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidnally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elphacoidea sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leontopus delicatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order (Common Name)</td>
<td>Family</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Hemiptera (Hemiptera)</td>
<td>Fulgoridae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jassidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudococcidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudococcidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psyllidae</td>
</tr>
<tr>
<td></td>
<td>Neuroptera (Neuroptera)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gheycopidae</td>
<td>RR. 1</td>
</tr>
<tr>
<td></td>
<td>Macroptera</td>
<td>S.</td>
</tr>
<tr>
<td></td>
<td>Panorpidae</td>
<td>S. 3</td>
</tr>
<tr>
<td></td>
<td>Trichoptera</td>
<td>T.</td>
</tr>
</tbody>
</table>

494
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoscelides obtectus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleurococcus citri (Izumi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleurococcus galantei green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleurococcus nisicaulis Klang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleurococcus obscursus Kig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrocera pyricola coreter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blatta pyricola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryophila posta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupriocrella communis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deuterocentrus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mealybugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mealybug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mealybug Citrus Mealybug</td>
<td></td>
<td>832, 1402</td>
</tr>
<tr>
<td>Mealybug Citrus Mealybug</td>
<td></td>
<td>1402</td>
</tr>
<tr>
<td>Mealybug Citrus Mealybug</td>
<td></td>
<td>1402</td>
</tr>
<tr>
<td>Jumping plants or psyllids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumping plants or psyllids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leafy Psylla</td>
<td></td>
<td>158, APX. 9</td>
</tr>
<tr>
<td>Green lacewings</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>Scorpionflies</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>Caddisfly</td>
<td></td>
<td>496, 523+4, 239</td>
</tr>
<tr>
<td>Caddisfly</td>
<td></td>
<td>523</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Trichoptera</td>
<td>Hydropsychidae</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td></td>
<td>Arctiidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bombycidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coelidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crambidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galleridac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gelechiidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hesperiidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Hydropsyche</td>
<td>butterflies, moths, skippers</td>
<td>51, 465, 566, 1335, 1337, 1877</td>
</tr>
<tr>
<td>Hyphantria cunea Drury</td>
<td>tiger moths and allies</td>
<td></td>
</tr>
<tr>
<td>Hyphantria cunea Drury</td>
<td>fall webworm</td>
<td>57, 3338</td>
</tr>
<tr>
<td>Bombyx mori (Linnaeus)</td>
<td>silkworm moths</td>
<td></td>
</tr>
<tr>
<td>Zeuzera aequalis</td>
<td>silkworm</td>
<td>40, 196, 253, 500, 254, 263, 664, 265-8, 904, 972, 974-6, 987, 1083, 1084, 1085, 1157-8, 1219, 1228, 1271, 1288, 1586-70, 1708, 1718</td>
</tr>
<tr>
<td>Chilo suppressalis (Walker)</td>
<td>caspertorworm moths</td>
<td></td>
</tr>
<tr>
<td>Diatraea saccharalis (Fabricius)</td>
<td>gosses moths</td>
<td></td>
</tr>
<tr>
<td>Tryporyza incertulas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galleria mellonella (Linnaeus)</td>
<td>Asiatic rice borer</td>
<td>724, 786, 1385, 1442, 1553</td>
</tr>
<tr>
<td>Pectinophora gossypiella (Saundert)</td>
<td>1156, 1157-8, 1621, 1688</td>
<td></td>
</tr>
<tr>
<td>Pectinophora gossypiella (Saundert)</td>
<td>wax moth</td>
<td></td>
</tr>
<tr>
<td>S lithographicella (Olivier)</td>
<td>greater wax moth</td>
<td>330, 359, 390-1, 405-7, 1303, 1316, 1337</td>
</tr>
<tr>
<td>Calpodes ethlius (Soll)</td>
<td>gelechid moth</td>
<td></td>
</tr>
<tr>
<td>Pectinophora gossypiella (Saundert)</td>
<td>pink bollworm</td>
<td>1589</td>
</tr>
<tr>
<td>Pectinophora gossypiella (Saundert)</td>
<td>hollyhock-mulch docky mallow moth</td>
<td>1123, 1392, 1018</td>
</tr>
<tr>
<td>Sphingidae cornelica (Olivier)</td>
<td>Anguinae grain moth</td>
<td>1342, 1376-7, 1396, 1705-6</td>
</tr>
<tr>
<td>Eupteryx lepidoides (Olivier)</td>
<td>skippers</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera coelia</td>
<td>large cana leaf cater</td>
<td>140-1, 387, 419</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Lepidoptera</td>
<td>Lasiocampidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lesnopteridae</td>
<td>U. 22/23</td>
</tr>
<tr>
<td></td>
<td>Lymantriidae</td>
<td>U. 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noctuidae</td>
<td>U. 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Amaletes
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendrolimus picta</td>
<td>tent caterpillar moths and allies</td>
<td>54</td>
</tr>
<tr>
<td>Macrothylacia rubi Linaeus</td>
<td>pine spanner</td>
<td>499</td>
</tr>
<tr>
<td>Malacosoma</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Malacosoma americanum (Fabricius)</td>
<td>Eastern tent caterpillar</td>
<td>1448</td>
</tr>
<tr>
<td>Malacosoma neustria Linaeus</td>
<td></td>
<td>418</td>
</tr>
<tr>
<td>Leucoptera coffeella Geer.</td>
<td>coffee leaf miner</td>
<td>1131, 1546</td>
</tr>
<tr>
<td>Lymantria dispar</td>
<td>tussock moths</td>
<td></td>
</tr>
<tr>
<td>Lymantria monacha (Linaeus)</td>
<td>gypsy moth</td>
<td>1146</td>
</tr>
<tr>
<td>Oecenia dispar Linaeus</td>
<td>moth moth</td>
<td>499</td>
</tr>
<tr>
<td>Porthezia dispar (Linaeus)</td>
<td>unsnatched gipsy moth</td>
<td>1390</td>
</tr>
<tr>
<td>Agrotis orthogonia Morrison</td>
<td>gipsy moth</td>
<td>878, 1559</td>
</tr>
<tr>
<td>Agrotis segetum</td>
<td>owllet moths and underwings</td>
<td>52, 54, 1476</td>
</tr>
<tr>
<td>Barathia brassicae</td>
<td>pale western cutworm</td>
<td>156</td>
</tr>
<tr>
<td>Heliothis anthiera</td>
<td>a cutworm</td>
<td>1412</td>
</tr>
<tr>
<td>Heliothis vircaecuta (Fabricius)</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>Heliothis zeae (Bodetle)</td>
<td></td>
<td>1577</td>
</tr>
<tr>
<td>Laphygma frugiperda (J. E. Smith)</td>
<td>tobacco budworm</td>
<td>685-7, 700, 702, 818-4, 1121, 1533, 1555</td>
</tr>
<tr>
<td>Peridroma saucia (Hübner)</td>
<td>tomato budworm</td>
<td>689, 700, 702, 709, 807, 814, 1559</td>
</tr>
<tr>
<td>Phytoptera gamma Linaeus</td>
<td>fall armyworm</td>
<td>1309</td>
</tr>
<tr>
<td>Prodenia acridana (Cramer)</td>
<td>variegated cutworm</td>
<td>402</td>
</tr>
<tr>
<td>Prodenia littura Fabricius</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Helicoverpa armigera Linaeus</td>
<td>Southern armyworm</td>
<td>451</td>
</tr>
<tr>
<td>Helicoverpa armigera Linaeus</td>
<td>cotton leaf worm</td>
<td>730, 829, 847, 1148, 1239</td>
</tr>
<tr>
<td>Scallopleryx</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>* Amathis</td>
<td></td>
<td>484</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Lepidoptera</td>
<td>Noctuidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olethreutidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papilionidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phycitidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pieridae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyralidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* see Anagasta
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sctta seta (Schiff.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spodoptera frugiperda (J. E. Smith)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triaphala suturalis (Hubner)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonoptera motocillosa Linnaeus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphana pruina Linnaeus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capocapsa pomatella (Linnaeus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapholita molesta (Busck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyacionia buoliana (Schiff.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papilio machaon (Linnaeus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagasta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagasta hcartellata (Zeiller)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaisornelas laticollis (Zeiller)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephestia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephestia castella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephestia kochiiella Zeiller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parnydoxina transatlantica (Walker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colias erythone (Smechow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieris brassicae (Linn.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyridopteryx ephemeraeformis (Haworth)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcynus cephalonica</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* see Anagasta
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
<th>Common Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTA</td>
<td>Lepidoptera</td>
<td>Pyralidae</td>
<td>U. 41</td>
<td>Flostia interpuscellata (Hübner)</td>
<td>Indian meal moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyraustidae</td>
<td>U. 42</td>
<td>Oestrina multifilis (Hübner)</td>
<td>Pyraustid moths</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saturniidae</td>
<td>U. 43</td>
<td>Antherea analyphi Scott</td>
<td>European corn borer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antherea pomyi</td>
<td>Giant silkworm moths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antherea polyphemus (Clawer)</td>
<td>Oak silkworm: Japanese oak moths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Naxia pavonica Linnaeus</td>
<td>Polyphemus moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hyalophora octoquella (Linnaeus)</td>
<td>Octoquella (kil) moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Philosamia cynthia</td>
<td>Cynthia moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Philosamia cynthia richani (Donovan)</td>
<td>Sphinx moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Samia cynthia perezi (Drury)</td>
<td>Broad-bordered yellow underwing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphinxidae</td>
<td>U. 46</td>
<td>Colusia euphebia</td>
<td>Sphinx moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manduca sexta (Johannson)</td>
<td>Hawk moth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manduca sexta (Johannson)</td>
<td>Tobacco hornworm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pectinaria septa (Johannson)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sphinx ligustri</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tischeriidae</td>
<td>U. 48</td>
<td>Thaumetopoeicida</td>
<td>Pine processionary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thaumetopoea pityocampa Schiff.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tortricidae</td>
<td>U. 49</td>
<td>Argyrestia volutina (Walker)</td>
<td>Leaf roller moths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red-banded leaf roller</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anobiidae</td>
<td>V. 1</td>
<td>Lasioderma serricorne (Fabricius)</td>
<td>Deathwatch and drugstore beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cigarette beetle</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Reference No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthoscelides obtectus</td>
<td>Meal Moth</td>
<td>1983, 1444, 1739</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagasta kuehniella</td>
<td>Meal Moth</td>
<td>35, 50, 206, 2771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antheraea pernyi</td>
<td>Silkworm</td>
<td>1995, 400, 1005, 1038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombyx mori</td>
<td>Silkworm</td>
<td>99, 126, 266, 306, 546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucullia carnea</td>
<td>Sallow Moth</td>
<td>1994, 98, 99, 100, 103, 104, 105, 340, 264-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euproctis chrysorrhoea</td>
<td>Lappet Moth</td>
<td>35, 106, 266, 386, 506, 573</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephestia elutella</td>
<td>Indian Meal Moth</td>
<td>88, 92, 93, 105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philaenus spumarius</td>
<td>Spittlebug</td>
<td>1995, 400, 1005, 1038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieris brassicae</td>
<td>Small White</td>
<td>35, 50, 206, 2771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thaumetopoea pityocampa</td>
<td>Grape Moth</td>
<td>1995, 400, 1005, 1038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoplusia ni</td>
<td>Tobacco Hornworm</td>
<td>35, 50, 206, 2771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yponomeuta evonymella</td>
<td>Lappet Moth</td>
<td>1995, 400, 1005, 1038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygaena deilephila</td>
<td>Grizzled Skipper</td>
<td>35, 50, 206, 2771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>INSECTA</td>
<td>Coleoptera</td>
<td>Buprestidae</td>
<td>V. 5</td>
<td>Rhysopertha dominica (Fabricius)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schildae</td>
<td>V. 7</td>
<td>Acrothosinula obtecta (Say)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schildae</td>
<td></td>
<td>Sbruchus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schildae</td>
<td></td>
<td>Sbruchus obtectus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schildae</td>
<td></td>
<td>Callimorpha chassalis Linnæus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spreestida</td>
<td>V. 8</td>
<td>Melanophila californica Van Dyke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carabidae</td>
<td>V. 11</td>
<td></td>
<td>Bembidion frontale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carabidae</td>
<td></td>
<td>Bembidion muscorina</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canisius albus Linnæus</td>
<td></td>
<td>Canisius granulatus Linnæus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carabidae</td>
<td></td>
<td>Carabus canicollus III.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseustictus (Teroina) nigra Schall</td>
<td></td>
<td>Pseustictus (Teroina) nigra Schall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenophorus ellipticus</td>
<td></td>
<td>Selenophorus ellipticus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenophorus pallidus</td>
<td></td>
<td>Selenophorus pallidus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triploncus rusticus</td>
<td></td>
<td>Triploncus rusticus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerambycidae</td>
<td>V. 12</td>
<td></td>
<td>Hylophorus bajulus Linnæus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysomelidae</td>
<td>V. 12</td>
<td>Attica marvegans</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysomelidae</td>
<td></td>
<td>Chrysomela decorata Say</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysomelidae</td>
<td></td>
<td>Chrysomela knabi Brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysomelidae</td>
<td></td>
<td>Hipsa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysomelidae</td>
<td></td>
<td>Dichlodipsa (Hipsa) armigera (Ch.)</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyzopertha dominica (Fabricius)</td>
<td>false powder-post beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthoscelides obtectus (Say)</td>
<td>lesser grain borer</td>
<td>1991, 1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruchus sp.</td>
<td>seed beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruchus obtectus</td>
<td>bean weevil</td>
<td>1044, 1864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callosobruchus chinensis Linnaeus</td>
<td></td>
<td>1742, 1677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanophila californica Van Dyke</td>
<td>pea weevil</td>
<td>1444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bembidion frontale</td>
<td>flatheaded or metallic wood borers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bembidion maculata</td>
<td>California flatheaded borer</td>
<td>1754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carabus granulatus Linnaeus</td>
<td>ground beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carabus canellatus Ill.</td>
<td></td>
<td>11, 416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterotrichus (Pterotrichus) niger Schall</td>
<td></td>
<td>415, 418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenophorus ellipticus</td>
<td></td>
<td>556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenophorus palliatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachipius rusticus</td>
<td></td>
<td>556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hylothrips bajulus Linnaeus</td>
<td>long-horned beetles or roundheaded wood borers</td>
<td>1290, 1856</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allica marveganus</td>
<td>European house borer; old-house borer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysomela decemlinata Say</td>
<td>leaf beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysomela knabi Brown</td>
<td>leaf beetles; flea beetle</td>
<td>556, 1249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispa</td>
<td>willow leaf beetle</td>
<td>48, 548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioladispa (Hispa) armigera (De.)</td>
<td></td>
<td>1217, 1221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
<td>Common Names(s)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Coleoptera</td>
<td>Chrysomelidae</td>
<td>V.13</td>
<td>Leptinotarsa decemlineata (Say)</td>
<td>Colorado (potato) beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cetidae</td>
<td>V.15</td>
<td>Necoeba</td>
<td>checkered beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coccinellidae</td>
<td>V.16</td>
<td>Chilocorus bipustulatus Linnaeus</td>
<td>- kam beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coleomegilla maculata (De Geer)</td>
<td>lady beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euplochis varivestis Mulsant</td>
<td>a lady beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curculionidae</td>
<td>V.19</td>
<td>Anthrenus granaria boheman</td>
<td>Mexican bean beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apton sp.</td>
<td>mustard beetles or weevils</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cylas formicarius elegansulcus (Summers)</td>
<td>boll weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypera postica (Cylindch)</td>
<td>a mustard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sitophilus granarius (Calandra granaria) (Linnaeus)</td>
<td>sweet potato weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sitophilus oryzae (Linnaeus)</td>
<td>alfalfa weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sitophilus spanalis Motschulsky</td>
<td>ornithoptera leaf roller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stemochetus mangiferus (Fabricius)</td>
<td>grainy weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dermentidae</td>
<td>V.20</td>
<td>Attagenus piceus (Olivier)</td>
<td>rice weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dermentes</td>
<td>mango sap weevil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dermestes vulpines</td>
<td>dermestid beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trogoderma glabrum (Hetzel)</td>
<td>black carpet beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trogoderma granarium Sverta</td>
<td>hide beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trogoderma versicolor</td>
<td>buprestis beetle</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepinotus decemlineatus (Say)</td>
<td>Colorado (potato) beetle</td>
<td>5, 312, 325, 1537, 1577, 1733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nectobia</td>
<td>Shocked beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilo corvus bipyralis Linneus</td>
<td>- hat beetle</td>
<td>1687, 1649</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleomegilla maculata (De Geer)</td>
<td>lady beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilostethus varius varius (Mulsant)</td>
<td>a lady beetle</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimonus grandis Boheman</td>
<td>Mexican bean beetle</td>
<td>1256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apion sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylas formicarius elegansinus (Summer)</td>
<td>sweetpotato weevil</td>
<td>1220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylas postica (Gyllenhiel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitophilus granarius (Calandra ginnata) (Linnaeus)</td>
<td>granary weevil</td>
<td>1247, 1844, 1483, 1254, 1584, 1732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitophilus oryzae (Linnaeus)</td>
<td>rice weevil</td>
<td>709, 816, 1341, 1944, 1301, 1391, 2400, 1409, 7, 1588, 1854, 1701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitophilus zeamais (Motschulsky)</td>
<td></td>
<td>1460-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitophilus zeamais (Motschulsky)</td>
<td>Mango seed weevil</td>
<td>1550, 1636</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagrus piceus (Chlvdz)</td>
<td>Dementid beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demotes</td>
<td>Black carpet beetle</td>
<td>1299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demotes vulpinae</td>
<td>Hide beetle</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogoderma glabrum (Herbul)</td>
<td></td>
<td>1590, 1497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogoderma granarium Everts</td>
<td>Taphra beetle</td>
<td>1409, 1500, 1658, 1742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogoderma versicolor</td>
<td></td>
<td>APX, 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
<td>Common Name(s)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Coleoptera</td>
<td>Dytiscidae</td>
<td>V. 21</td>
<td>Acius sulcatus Linnæus</td>
<td>predaceous diving beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asymaeus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Callitestes asper (Linnæus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capelus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dytiscus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dytiscus marginalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydriotus denticulatus (Sp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elateridae</td>
<td>V. 22</td>
<td>Cosmodema vespertina (Fabricius)</td>
<td>click beetles, wireworms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glenicera destructor</td>
<td>tobacco wire worm, click beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyttinidae</td>
<td>V. 23</td>
<td>Gymnus neator</td>
<td>prairie grass wireworm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydropsphilus plumulus Linnæus</td>
<td>whirligig beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrophilidae</td>
<td>V. 25</td>
<td>Hydropsphilus plumulus Linnæus</td>
<td>water scavenger beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lampyridae</td>
<td>V. 26</td>
<td></td>
<td>fireflies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mordellidae</td>
<td>V. 33</td>
<td></td>
<td>tumbling flower beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitidulidae</td>
<td>V. 35</td>
<td></td>
<td>flower beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitidulidae</td>
<td>V. 35</td>
<td></td>
<td>sap beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phialidae</td>
<td>V. 59</td>
<td></td>
<td>shining fungus beetles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oliurus sp.</td>
<td>flower beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarabaeidae</td>
<td>V. 41</td>
<td></td>
<td>scarabs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amphimallon majus (Fabricius)</td>
<td>European chafer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amphimallon solstitialis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melolontha rubidolotha Linnæus</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulius subactus Linnaeus</td>
<td>producous diving beetles</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aynaurin sp.</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callicerixx audei (Lhung.)</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copehatus</td>
<td></td>
<td>559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyticus sp.</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyticus marginalis</td>
<td></td>
<td>245, 418, 510, 1463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroporus dixerae (sp.)</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granodesa responius (Fabricius)</td>
<td>click beetles, wireworms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenicera destructor</td>
<td>tobacco wire worm, click beetle</td>
<td>559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinus natator</td>
<td>prairie grain wireworm</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophilus picus Linnaeus</td>
<td>whirlingig beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mordellistena</td>
<td>water scavenger beetles</td>
<td>1463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melygaster aeneus (Fabricius)</td>
<td></td>
<td>510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olibus sp.</td>
<td>flies</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphimallon majalis (Lascomowky)</td>
<td>tumbling flower beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphimallon solitadialis</td>
<td>flower beetle</td>
<td>565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>sap beetles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>shining fungus beetles</td>
<td>498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>flower beetle</td>
<td>586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>scarabs</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European chafer</td>
<td>1265, 1278</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melolontha melolontha Linnaeus</td>
<td>1082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
<td>Systematic Code</td>
<td>Scientific Name</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>INSECTA</td>
<td>Coleoptera</td>
<td>Scarabaeidae</td>
<td>V. 41</td>
<td>Melolontha vulgaris Fabricius</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyrtodes chinocerus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xylophaga diastomata (LeConte)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scolytidae</td>
<td>V. 42</td>
<td>Denstrocerus hresviorum LeConte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ips confusus (LeConte)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silphidae</td>
<td>V. 43</td>
<td>Necrophorus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylinidae</td>
<td>V. 44</td>
<td>Pelocyphorus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenebrionidae</td>
<td>V. 46</td>
<td>Alphitobius diaperinus (Pauzer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fleodes armata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eleeodes hylabius</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eleeodes longicollis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gnorithocerus cornutus (Fabricius)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lathridius (lierem) minutus Linnaeus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenebrio molitor (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tribolium sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tribolium castaneum (Fleehot)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tribolium confusum Jacquin in Duval</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Names</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cockchafer</td>
<td></td>
</tr>
<tr>
<td>horn beetle</td>
<td></td>
</tr>
<tr>
<td>bark beetle</td>
<td></td>
</tr>
<tr>
<td>western pine beetle</td>
<td></td>
</tr>
<tr>
<td>California five-spined lisp</td>
<td></td>
</tr>
<tr>
<td>carrion beetle</td>
<td></td>
</tr>
<tr>
<td>carrion beetle</td>
<td></td>
</tr>
<tr>
<td>rove beetle</td>
<td></td>
</tr>
<tr>
<td>darkling beetle</td>
<td></td>
</tr>
<tr>
<td>darkling beetle</td>
<td></td>
</tr>
<tr>
<td>lesser mealworm</td>
<td></td>
</tr>
<tr>
<td>Arizona desert beetle</td>
<td></td>
</tr>
<tr>
<td>bread-bored flour beetle</td>
<td></td>
</tr>
<tr>
<td>grain beetle</td>
<td></td>
</tr>
<tr>
<td>saltan pest</td>
<td></td>
</tr>
<tr>
<td>yellow mealworm</td>
<td></td>
</tr>
<tr>
<td>flour beetle</td>
<td></td>
</tr>
<tr>
<td>red flour beetle</td>
<td></td>
</tr>
<tr>
<td>confused flour beetle</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Melolontha vulgaris Fabricius</td>
<td>cockchafer</td>
</tr>
<tr>
<td>Cryotus rhinocerus</td>
<td></td>
</tr>
<tr>
<td>Xyloctenops diphotoena (Linnæus)</td>
<td>horn beetle</td>
</tr>
<tr>
<td>Dendroctonus brevicomis LeConte</td>
<td>bark beetles</td>
</tr>
<tr>
<td>Ips confusus (LeConte)</td>
<td>western pine beetle</td>
</tr>
<tr>
<td>Necrophorus sp.</td>
<td>California five-spined Ips</td>
</tr>
<tr>
<td>Pelocyphorus sp.</td>
<td>canyon beetles</td>
</tr>
<tr>
<td>Aplthobius diasepinus (Fauser)</td>
<td>rove beetles</td>
</tr>
<tr>
<td>Bredes armata</td>
<td>darkling beetle</td>
</tr>
<tr>
<td>Bredes biplicata</td>
<td>darkling beetles</td>
</tr>
<tr>
<td>Bredes longicollis</td>
<td>lesser mealworm</td>
</tr>
<tr>
<td>Gathroconus conatus (Fabricius)</td>
<td></td>
</tr>
<tr>
<td>Lathridius (Ehlering) misurus (Linnæus)</td>
<td>Arizona desert beetle</td>
</tr>
<tr>
<td>Tribolium sp.</td>
<td>broad-horned flour beetle</td>
</tr>
<tr>
<td>Tribolium castaneum (Kirtel)</td>
<td>grain beetle</td>
</tr>
<tr>
<td>Tribolium confusum Jacquelin DuVal</td>
<td>salmon pest</td>
</tr>
<tr>
<td>Tribolium castaneum (Kirtel)</td>
<td>yellow mealworm</td>
</tr>
<tr>
<td>Tribolium sp.</td>
<td>flour beetles</td>
</tr>
<tr>
<td>Tribolium castaneum (Kirtel)</td>
<td>red flour beetle</td>
</tr>
<tr>
<td>Tribolium confusum Jacquelin DuVal</td>
<td>confused flour beetle</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Hymenoptera</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Name(s):
- ants, bees, sawflies, wasps, and hornets
- bumble, carpenter, honey and social bees
- honey bee
- honey bee
- bumble bee
- bumble bee
- argid sawfly
- braconids
- stem sawfly
- wheat stem sawfly
- chalkid
- conifer sawfly
- European spruce sawfly
- Virginia pine sawfly
- jack pine sawfly
- ants
- smaller yellow ant
- carpenter ant

512
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apis mellifera (Linnaeus)</td>
<td>ants, bees, sawflies, wasps, and allies</td>
<td>51</td>
</tr>
<tr>
<td>Apis mellifera Linnaeus</td>
<td>bumble, carpenter, honey and stingless bees</td>
<td></td>
</tr>
<tr>
<td>Bombus lucorum</td>
<td>honey bee</td>
<td>69, 184, 208, 410, 644, 658, 820, 501, 504, 1289, 1722-4</td>
</tr>
<tr>
<td>Bombus terrestris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arge pagana Panz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beuten hebetor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habrobracon, Habrobracon luglandii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habrobracon rustoideae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbracon hebetor (Say)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephus caricosus Notton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mormoniella vitripennis (Walker)</td>
<td>stem sawflies</td>
<td></td>
</tr>
<tr>
<td>(= Naesid beccucomis)</td>
<td>wheat stem sawfly</td>
<td>175</td>
</tr>
<tr>
<td>Dipteron laevata (Latt)</td>
<td>coleoptails</td>
<td></td>
</tr>
<tr>
<td>(Mormoniella vitripennis (Walker))</td>
<td></td>
<td>1069, 114-5, 1129, 1408</td>
</tr>
<tr>
<td>Neodipteron pratii (Byar, Bolwer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthomyopa claviger (Sloven)</td>
<td>conifer sawflies</td>
<td>240</td>
</tr>
<tr>
<td>Ctenocoritates</td>
<td>European spruce sawfly</td>
<td></td>
</tr>
<tr>
<td>Campocorax hypeneurus (Linnaeus)</td>
<td>Virginia pine sawfly; jack-pine sawfly</td>
<td>376</td>
</tr>
<tr>
<td>ants</td>
<td></td>
<td>620, 516, 1466, 1791</td>
</tr>
<tr>
<td>smaller yellow ant</td>
<td></td>
<td>376</td>
</tr>
<tr>
<td>carpenter ant</td>
<td></td>
<td>616</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Hymenoptera</td>
<td>Formicidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ichneumonidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutillidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pamphiliidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stricidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphingidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vespidae</td>
</tr>
</tbody>
</table>

- **Common Name:**
 - carpenter ant
 - pyramid ant
 - chief ant
 - Ichneumons
 - velvet ants
 - wall-splashing sawflies
 - sawfly
 - hornet
 - wood wasp
 - cicada killer, mud dauber, African hornet, yellow jackets, and paper wasp
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camponotus ligniperda (Latr.)</td>
<td>carpenter ant</td>
<td>522</td>
</tr>
<tr>
<td>Camponotus clarea</td>
<td></td>
<td>526</td>
</tr>
<tr>
<td>Camponotus striatus Emery</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Cataglyphis quadrifasciatus</td>
<td></td>
<td>1013</td>
</tr>
<tr>
<td>Formica pyramica (Roger)</td>
<td>pyramid ant</td>
<td>511, 558</td>
</tr>
<tr>
<td>Formica cinerea (Mayr)</td>
<td></td>
<td>479</td>
</tr>
<tr>
<td>Formica integra</td>
<td></td>
<td>496</td>
</tr>
<tr>
<td>Formica polycymene (Forsk)</td>
<td></td>
<td>1467</td>
</tr>
<tr>
<td>Formica nuda</td>
<td></td>
<td>415, 416, 472, 485-4, 493, 468</td>
</tr>
<tr>
<td>Martius nocalger</td>
<td></td>
<td>1463</td>
</tr>
<tr>
<td>Myrmica l. floricola</td>
<td></td>
<td>499</td>
</tr>
<tr>
<td>Myrmica californica</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Pogonomyrmex californicus (Boody)</td>
<td>California harvester ant</td>
<td>1473</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>thief ant</td>
<td>499</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus (Gravenhorst)</td>
<td>schauerianus</td>
<td>1104</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td></td>
<td>1298</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>velvet ants</td>
<td>1533</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>wood-spining sawflies</td>
<td></td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>sawfly</td>
<td>135, 409</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>hornet</td>
<td></td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>wood wasp</td>
<td>1555</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>clovebitter, mud dauber, and sand wasp</td>
<td>1555-5</td>
</tr>
<tr>
<td>Pogonomyrmex rugosus</td>
<td>hornet, yellow jackets, and potter wasp</td>
<td>465</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Diptera</td>
<td>Calliphoridae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cecidomyiidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratopogonidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chironomidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>flies</td>
<td></td>
<td>43, 254, 267, 290, 396, 397, 347, 556, 994, 1101, 1171, 1310</td>
</tr>
<tr>
<td>beet fly</td>
<td></td>
<td>945, 1482</td>
</tr>
<tr>
<td>blowflies</td>
<td></td>
<td>99, 460</td>
</tr>
<tr>
<td>blowfly</td>
<td></td>
<td>182, 715, 805</td>
</tr>
<tr>
<td></td>
<td>screw-worm fly</td>
<td>22, 266-6, 951</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1558, 1683, 1694</td>
</tr>
<tr>
<td></td>
<td></td>
<td>907, 1079, 1504, 1548, 1559, 1585, 1615</td>
</tr>
<tr>
<td>blowfly</td>
<td></td>
<td>838</td>
</tr>
<tr>
<td></td>
<td></td>
<td>156, 161-2, 369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>296, 1899</td>
</tr>
<tr>
<td>black blowfly</td>
<td></td>
<td>94, 122-3, 146, 276, 298, 326, 329, 458-9, 1481</td>
</tr>
<tr>
<td>Northern blowfly; carrion fly</td>
<td></td>
<td>1186</td>
</tr>
<tr>
<td>gall midges</td>
<td></td>
<td>2176</td>
</tr>
<tr>
<td>biting midges</td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>midges</td>
<td></td>
<td>257, 263, 264, 283, 291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1454</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72, 183, 180-1, 253, 256, 259, 294, 309, 324, 449, 455, 1400-4, 1515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71-5, 180, 275, 296-4, 324, 902</td>
</tr>
<tr>
<td>Glyptotendipes barbipes</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Smitia sp.</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>Smitia parthenogenetica</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>342-3</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Diptera</td>
<td>Chironomidae</td>
</tr>
<tr>
<td>Calicidone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Hippobosca lineola</td>
<td>Eye gnats</td>
<td>1671</td>
</tr>
<tr>
<td>Ochlerotatus atleticus (L. belloni)</td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>Aedes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes aegypti (L.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes cataphylla (Dyar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes communis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes dorsalis (Meigen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes nigromaculatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes pimentum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes taeniorhynchus (Wiedemann)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes trichoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aedes vexans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopheles maculipennis atroparvus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopheles punctipennis Theobald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopheles quadrimaculatus (Say)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopheles stephensi myocyrtus (Sweet & Rao)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culex fatigans</td>
<td></td>
<td>631-2</td>
</tr>
<tr>
<td>Culex nigripalpis</td>
<td></td>
<td>1207</td>
</tr>
<tr>
<td>Culex pipiens</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Culex pipiens fatigans Wiedermann</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Culex pipiens molestus Forsk.</td>
<td></td>
<td>6, 560, 796</td>
</tr>
<tr>
<td>Culex pipiens antiquipalpis Say</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Anopheles aquasalis Say</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern house mosquito</td>
<td></td>
<td>76, 823, 1791</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Diptera</td>
<td>Culicidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oestrideridae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dolichopodidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drosophilidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See p.622.
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clast tasalis Coquillett</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>Caliseta impattens (Walker)</td>
<td></td>
<td>318</td>
</tr>
<tr>
<td>Caliseta incorta (Williston)</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>Taphrophilus aequicrassus (Wagn.)</td>
<td>wheat-sent-gall mosquito</td>
<td>467</td>
</tr>
<tr>
<td>Phorophila confinis</td>
<td></td>
<td>1791</td>
</tr>
<tr>
<td>Phorophila signipennis</td>
<td></td>
<td>318</td>
</tr>
<tr>
<td>Dermatobia hominis (Linsenb., Jr.)</td>
<td>rabbit bois, nodent bois</td>
<td>1546, 1559</td>
</tr>
<tr>
<td>Chaetopterus anomus</td>
<td></td>
<td>525</td>
</tr>
<tr>
<td>Chaetopterus apicalis</td>
<td></td>
<td>556</td>
</tr>
<tr>
<td>Drosofila</td>
<td></td>
<td>558</td>
</tr>
<tr>
<td>Pomace or vinegar fly</td>
<td></td>
<td>16, 28, 36, 46, 76, 100-1, 129, 137, 169-4, 316-7, 320, 338, 337-9, 307, 908, 915, 933-5, 999, 949-7, 950-1, 953, 951-2, 970, 970, 986, 982, 1096, 1018, 1028-9, 1077, 1056-7, 1069, 1050, 1065, 1071, 1090, 1065, 1077, 1069, 1090, 1068, 1199, 1151, 1156, 1173, 1176-7, 1187, 1197, 1200, 1216, 1250, 1258-7, 1261-2, 1264-6, 1269, 1255-6, 1269, 1365, 1280-6, 1280, 1278, 1276, 1263, 1285, 1271, 1385, 1416-7, 1425, 1438, 1480, 1506</td>
</tr>
<tr>
<td>Drosofila affinis</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Drosofila anamesae</td>
<td></td>
<td>645, 1511-2, 1520</td>
</tr>
<tr>
<td>Drosofila birenti</td>
<td></td>
<td>1444</td>
</tr>
<tr>
<td>Drosofila buskii</td>
<td></td>
<td>334, 450</td>
</tr>
<tr>
<td>Drosofila hydei Sturtevant</td>
<td></td>
<td>115-6, 287, 241-2, 262, 285, 326, 451, 1065, 1130</td>
</tr>
<tr>
<td>Drosofila melanogaster *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See p. 622.

* See p. 523.
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTA</td>
<td>Diptera</td>
<td>Drosophilidae</td>
<td>X.14</td>
<td>Drosophila melanogaster (Meigen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila abbreviata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila pseudoobscura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila serrata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila simulans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila subobscura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila tropicalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila virilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drosophila willistoni</td>
</tr>
<tr>
<td>Sphingidae</td>
<td></td>
<td>X.15/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthomyiida</td>
<td></td>
<td>X.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hytesya antiqua (Meigen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pogonomyia hystecynyi (Panzer)</td>
</tr>
<tr>
<td>Muscidae</td>
<td></td>
<td>X.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fannia canicularis (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glossina spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glossina, Glossina morsitans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Haematobia irritans (Linnaeus)</td>
</tr>
</tbody>
</table>

Common Name(s):
- antomyiid flies
- onion maggot
- spinach leaf miner
- house flies, stable flies, and s.
- little house fly
- tsetse fly
- horn fly
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drosophila nebulaea</td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>Drosophila pseudobaculata</td>
<td></td>
<td>441, 1031, 1047, 1515</td>
</tr>
<tr>
<td>Drosophila serrata</td>
<td></td>
<td>1404, 1510</td>
</tr>
<tr>
<td>Drosophila simulans</td>
<td></td>
<td>336, 484-5</td>
</tr>
<tr>
<td>Drosophila subobscura</td>
<td></td>
<td>130, 1415, 1424, 1513</td>
</tr>
<tr>
<td>Drosophila tropicalis</td>
<td></td>
<td>1494</td>
</tr>
<tr>
<td>Drosophila viridis</td>
<td></td>
<td>145, 201, 277-8, 325-6, 963, 1328</td>
</tr>
<tr>
<td>Drosophila willistoni</td>
<td></td>
<td>925, 1505, 1518</td>
</tr>
<tr>
<td>Hylemya antiqua (Boisgen)</td>
<td></td>
<td>825</td>
</tr>
<tr>
<td>Pegomyia hypoevansi (Panzari)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parata canicularis (Limaenus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossina spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossina, Glossina morsitans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematobia irritans (Limaenus)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

antomyiid fly
onion maggot
spinach leaf miner
diary fly, stable fly, and allies
little house fly

testee fly
horn fly
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Systematic Code</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTA</td>
<td>Diptera</td>
<td>Muscidae</td>
<td>X. 19</td>
<td>Musca domestica Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Musca domestica nebulo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phorbia brassicae Bouché</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stomoxys calcitrans (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mycetophilidae</td>
<td>X. 20</td>
<td>Sciara coprophila (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oestridae</td>
<td>X. 22</td>
<td>Hypoderma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypoderma bovis (Linnaeus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phorididae</td>
<td>X. 25</td>
<td>Megastaxis scalaris (Handel 1858)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychodidae</td>
<td>X. 27</td>
<td>Lutzomyia (Phlebotomus) longipalpis (Lutz and Neiva, 1919)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phlebotomus longipalpis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarcophagidae</td>
<td>X. 29</td>
<td>Sarcophaga bullata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sarcophaga peregrina</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Robineau-Desvoidy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciariidae</td>
<td>X. 29a</td>
<td>Rhyncchosciara angeliæ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simuliidae</td>
<td>X. 30</td>
<td>Simulium</td>
</tr>
</tbody>
</table>

Common Names:
- house fly
- cabbage fly
- stable fly
- fungus gnats
- bot and warble flies
- cattle grub
- Northern cattle grub; warble gnats
- humpbacked flies
- moth flies
- sandflies
- flesh flies
- flesh fly
- black flies
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name(s)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musca domestica Linnaeus</td>
<td>house fly</td>
<td>9, 10, 92, 111, 126, 130, 136, 252, 259, 305-8, 370, 380, 417-8, 487, 496, 499, 463, 466, 539-4, 698, 614-6, 626, 687, 607, 617, 664-5, 680-1, 690, 696, 700, 702, 735, 750, 781, 787, 789, 806, 824-5, 830-7, 861, 846-8, 861-9, 876, 944-7, 946, 947, 948-9, 991-3, 999-7, 1046, 1113, 2122, 1169, 1170, 1283, 1296-6, 1306, 1314, 1380-1, 1421-2, 1501, 1554, 1741, 1791</td>
</tr>
<tr>
<td>Musca domestica obscura</td>
<td></td>
<td>1372</td>
</tr>
<tr>
<td>Conia brasicae Bouche</td>
<td>cabbage fly</td>
<td>1906</td>
</tr>
<tr>
<td>Conionyma calcitrans (Linnaeus)</td>
<td></td>
<td>677, 815</td>
</tr>
<tr>
<td>Lepisma sacchari (Bozantzi 1886)</td>
<td></td>
<td>35, 270-1, 294, 333</td>
</tr>
<tr>
<td>Podemna</td>
<td>fungus gnats</td>
<td>35, 270-1, 294, 333</td>
</tr>
<tr>
<td>Podemna bovina (Linnaeus)</td>
<td>bot and waspbe flies</td>
<td>1019</td>
</tr>
<tr>
<td>Podemna bupola [Ox, 1899]</td>
<td>cattle grub</td>
<td>706, 784</td>
</tr>
<tr>
<td>Lepismatella groenlandica</td>
<td>Northern cattle grub, waspbe flies</td>
<td>194-6</td>
</tr>
<tr>
<td>Anomia (Chiloemus) longipalpis</td>
<td>humpbacked flies</td>
<td>1019</td>
</tr>
<tr>
<td>Lepismatella longipalpis</td>
<td>moth flies</td>
<td>1019</td>
</tr>
<tr>
<td>Anomia (Chiloemus) longipalpis</td>
<td>sandflies</td>
<td>7, 464</td>
</tr>
<tr>
<td>Laetonia cornigera</td>
<td>fly</td>
<td>569</td>
</tr>
<tr>
<td>Laetonia cornigera</td>
<td>fly</td>
<td>569</td>
</tr>
<tr>
<td>Sphyrana angulata</td>
<td>fly</td>
<td>1316, 1352</td>
</tr>
<tr>
<td>Sphyrana angulata</td>
<td>fly</td>
<td>1316, 1352</td>
</tr>
<tr>
<td>Sphyrana angulata</td>
<td>fly</td>
<td>256, 294, 305-6, 312-3, 255, 341</td>
</tr>
<tr>
<td>Sphyrana angulata</td>
<td>black flies</td>
<td>4, 24</td>
</tr>
<tr>
<td>Sphyrana angulata</td>
<td>black flies</td>
<td>389</td>
</tr>
<tr>
<td>Class</td>
<td>Order</td>
<td>Family</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>INSECTA</td>
<td>Dipera</td>
<td>Tephritidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiphulidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siphonaptera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulicidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name(s)</td>
<td>Reference No.</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Anastrepha ludens (Loew)</td>
<td>fruit flies</td>
<td>1082, 1179, 1568-9, 1607</td>
</tr>
<tr>
<td>Cerasitis capitata (Wiedemann)</td>
<td>Mexican fruit fly</td>
<td>1593, 1603</td>
</tr>
<tr>
<td>Dacus ciliatus</td>
<td>Mediterranean fruit fly: modify</td>
<td>2, 3, 14, 27, 587, 606, 7119, 1229, 1230, 1325, 1327, 1332, 1334, 1358, 1468, 1474, 1564-9, 1565, 1566, 1569, 1569-6, 1584-6, 1590-9, 1593-5, 1599, 1610-7, 1647, 1650, 1702</td>
</tr>
<tr>
<td>Dacus cucurbitae Coquillett</td>
<td>melon fly</td>
<td>1593, 1571, 1572, 1647, 1650, 1656</td>
</tr>
<tr>
<td>Dacus dorsalis Hendel</td>
<td>oriental fruit fly</td>
<td>1589, 1647, 1650, 1656</td>
</tr>
<tr>
<td>Dacus oleae (Gmelin)</td>
<td>olive fruit fly</td>
<td>906, 1164, 1225, 1325, 1551, 1559, 1614</td>
</tr>
<tr>
<td>Dacus tryoni (Frogg)</td>
<td>Queensland fruit fly</td>
<td>1387, 1597, 1635, 1670</td>
</tr>
<tr>
<td>Dacus sonatus</td>
<td>apple maggot</td>
<td>754</td>
</tr>
<tr>
<td>Bactrocera brontis (Walker)</td>
<td>Queensland fruit fly</td>
<td>1670, 1690</td>
</tr>
<tr>
<td>Strumeta tryoni</td>
<td>craneflies</td>
<td>319</td>
</tr>
<tr>
<td>Tipula clareae</td>
<td>a cranefly</td>
<td>562</td>
</tr>
<tr>
<td>Xenopityla gebithi (Bothachida)</td>
<td>fleas</td>
<td>566, 986-7</td>
</tr>
</tbody>
</table>
TABLE 2. RAJ

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATR</td>
<td></td>
</tr>
<tr>
<td>BOTANICAL</td>
<td></td>
</tr>
<tr>
<td>CHLORINA</td>
<td></td>
</tr>
<tr>
<td>DDT BELLAI</td>
<td></td>
</tr>
<tr>
<td>FUMIGANT</td>
<td></td>
</tr>
<tr>
<td>NICOTINE</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORI</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td></td>
</tr>
<tr>
<td>Aryl (i)</td>
<td></td>
</tr>
<tr>
<td>Hetero</td>
<td></td>
</tr>
<tr>
<td>Chemosteril</td>
<td></td>
</tr>
<tr>
<td>Carbamates</td>
<td></td>
</tr>
</tbody>
</table>

2 Chemical names and "o" compiled following the general Insecticides" (1966) Review in 12: 2, 1966, 381-417, and in a ibid. 12,3 (1966) 566-7. 15: 4 (3
maintained, apart from slight n index, and (ii) Letter-and-Num
2 The chemical name use clature is generally marked with
TABLE 2. RADIOTRACER STUDIES ON INSECTICIDES

Data have been assembled in the following categories:

- **A. ACTIVATORS OR SYNERGISTS**
- **B. BOTANICALS AND DERIVATIVES**
- **C. CHLORINATED ARYL HYDROCARBONS** (containing 6 or more chlorine)
- **D. EDT RELATIVES** (dihyphen aliphatics)
- **E. FUMIGANTS**
- **N. NICOTINE ALKALOIDS** (including ANABASINE and related compounds)
- **P. PHOSPHORUS-CONTAINING COMPOUNDS**
 - **A. ALIPHATIC DERIVATIVES**
 - **C. ARYL (PHERYL) DERIVATIVES**
 - **H. HETEROCYCLIC DERIVATIVES**
- **R. CHEMOSTERILANTS**
- **X. CARBAMATES**

1 Chemical names and "other designations" for compounds cited in the bibliography have been compiled following the general lines of E.T. Kenaga's "Commercial and Experimental Organic Insecticides" (1963 Revision) in Bull. ent. Soc. Am. 8: 2, 1963, 87-103 and (1966 Revision) in ibid. 13: 2, 1966, 183-217, and in announcements of the Insecticide Terminology Committee published ibid. 19: 3 (1970) 356-7; 14: 4 (1975) 202, and 14: 4 (1975) 202. The chemical categories have been maintained, apart from slight modifications. Two indexes (i) Common and Manufacturers' Names Index, and (ii) Letter-Names Index have been prepared.

1 The chemical name used in accordance with the principles of Chemical Abstracts nomenclature is generally marked with an asterisk.*
ACTIVATORS OR SYNERGISTS FOR INSECTICIDES

<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis(α)</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>2-(2-butoxyethoxy)ethoxy)-4,5-methylene dioxy-3-propyl tolune</td>
<td>piperonyl butoxide butoxide</td>
<td>14C [896]</td>
<td>Musca domestica</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>2-(2-butoxyethoxy)ethoxy-3-propyl-piperonyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2</td>
<td>2,3-(2-butoxyethoxy)ethyl)-methyl toluene</td>
<td>Tropol</td>
<td>Tropol-methylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>2,3-(2-butoxyethoxy)ethyl)-3,4-methylenedioxyphenyl acetal</td>
<td>Neoval</td>
<td>Neoval 891</td>
<td>not known</td>
<td></td>
</tr>
<tr>
<td>A.4</td>
<td>1,3,5-methylenedioxy-2-(2-ethylphenyl) propyl benzene</td>
<td>sulfoxide sulfoxide-Cide</td>
<td>14C [886]</td>
<td>Musca domestica</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>2-ethyl sulfoxide of laurafine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α: If no other indication

Additional Information

- A.5: dimethyl sulfoxide
- A.6: methylenedioxyphenyl compounds
- A.7 [899, 896]
| A.5 | dimethyl sulfide | | | |
| A.6 | methylenedioxybenzyl compounds | | | |
| A.7 | 4-allyl-1,2-methylenedioxybenzene | safrrole | 4-allyl-1,2-methylenedioxybenzene | 4C [896] |
| A.8 | 4-propyl-1,2-methylenedioxybenzene | dihydroxafeol | 4-propyl-1,2-methylenedioxybenzene | 4C [896] |
| A.9 | 8-allyl-1-methoxy-2,3-methylenedioxybenzene | myristicin | 8-allyl-1-methoxy-2,3-methylenedioxybenzene | 4C [896] |
| A.10 | 2,3-methylenedioxy-2-phenanthrene | | | |

** if no other indication.

| Muco domestica | 4C [866, 899] | 14C [896] | 15N [896] |

<p>| Muco domestica | 4C [866, 899] | 14C [896] | 15N [896] |</p>
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>rotanone (from plant species Derris and Lecococcus)</td>
<td>rotanone, derris, derris powder and resin</td>
<td></td>
<td>Musca domestica <sup>MC</sup> [820] inhibition sites of amylase and polyphenol A <sup>14C</sup> [871]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reaction sites respiratory chain transferable EPNH-coenzyme Q reductase <sup>14C</sup> [872]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reaction sites respiratory chain binding characteristics <sup>14C</sup> [873]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reaction sites <sup>14C</sup> [874]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mouse <sup>14C</sup> [875]</td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>pyrethrum (principally from plant species Chrysanthemum cinaerifolium)</td>
<td>pyrethrins I <sup>14C</sup> (natural extract) <sup>[851]</sup></td>
<td></td>
<td>Musca domestica <sup>MC</sup> [860] absorption of synthetic pyrethrin I <sup>14C</sup> [862]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>pyrethin (principally from plant species Chrysanthemum cinnamomeum)</td>
<td>pyrethin I</td>
<td>14C (natural enzymes)</td>
<td>Musca domestica in vivo and in vitro 14C [852] portion of synthetic pyrethin I 14C [861]</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

| B.3 | 2,2-dimethyl-3-(5-methylbenzyl)cyclopropanecarboxylic acid ester with 2-allyl-4-hydroxy-3-methyl-2-cyclopentene-2-one
+ dl-2-allyl-4-hydroxy-3-methyl-2-cyclopentene-2-one esters of cis and trans dl-chrysanthemum-monomocarboxylic acid
+ 3-allyl-2-methyl-4-oxo-2-cyclopenten-1-yl chrysanthemumate
+ 2-allyl-4-hydroxy-3-methyl-2-cyclopentene-2-one ester of 2,2-dimethyl-3-(5-methylbenzyl)cyclopropanecarboxylic acid | alliedrin allyl homologue of cinerin I
+ synthetic pyrethrin | Entomol. 87010 | Musca domestica products 14C [862]
+ general studies 14C [863]
+ general studies 14C [969] | labelled in ketol aciddi portion 14C [851] | Musca domestica in vivo and in vitro 14C [852]
+ Metabolism 14C [849] |

| B.4 | 2,4-dimethylbenzyl 2,2-dimethyl-3-(2-methylpropyl)cyclopropanecarboxylate
+ 2,4-dimethylbenzyl chrysanthemumate
+ 2,4-dimethylbenzyl ester of cis trans chrysanthemumic acid | dimethrin | Entomol. 83270 | Musca domestica in vivo and in vitro 14C [852] |
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>B,5</td>
<td>3,4,5,6-tetrahydrophthalimidomethyl 2,3-dimethyl-3-(2-methylpropenyl) cyclopropene-carboxylate</td>
<td>Neo-pyriphthrin ERT 97009 SF-1193</td>
<td>Nuca domestica in vivo and in vitro</td>
<td>14C (852)</td>
<td></td>
</tr>
<tr>
<td>B,6</td>
<td>nicotine</td>
<td>Black leaf 40 nicotine (sulphate)</td>
<td>bioassays</td>
<td>Aedes aegypti metabolism and toxicity</td>
<td>3H (963)</td>
</tr>
<tr>
<td></td>
<td>1-1-methyl-2-(3-pyridyl)-pyrididine</td>
<td></td>
<td>14C (275, 856-862, 868)</td>
<td>Antimicrobial oxidants metabolism of</td>
<td>3H (963)</td>
</tr>
<tr>
<td></td>
<td>1-3-(3-methyl-2-pyridyl)-pyridine</td>
<td></td>
<td>14H (862)</td>
<td>13CH3-L-nicotine</td>
<td>14C (856)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bioassays nicotine 2-14H</td>
<td>14H (862)</td>
<td>14C-DL-nicotine</td>
<td>14C (856)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>synthesis DL-2-14C-nicotine ring-labell</td>
<td>14C (853, 854)</td>
<td>metabolism of</td>
<td>14C (856)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methyl-labell</td>
<td>14C (853, 854)</td>
<td>effects on 42Ca- movement</td>
<td>14C (853)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rabbit</td>
<td>14C (853)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14C (853)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14C (853)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14C (853)</td>
</tr>
<tr>
<td>C.0</td>
<td>Chlorinated aryl hydrocarbons (containing 0 or more chlorines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>- 1,2,2,4,5,6-hexachlorocyclohexane, mixed isomers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>banexen hexachloro-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hexachloro-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclohexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammahexene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>666</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ-HCH occurs in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r.t. (1717)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>production and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>processing monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (676)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bovinus decloclotes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distribution in tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (802)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (803)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distribution in tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (803)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>elimination from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (630)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34Cl (623)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.2</td>
<td>- 1,2,3,4,5,6-hexachlorocyclohexane, 99% or more gamma isomer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>linode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gamma BHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>Rat</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-2-14C-nicotine</td>
<td>34Cl (804)</td>
<td>34Cl (633)</td>
</tr>
<tr>
<td>ring-labelled 14C [659, 654]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl-labelled 14C [660, 654]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>C.2 (col.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.3</td>
<td>1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindane</td>
<td>clorodane; Octa-Klor; Octachlor Velsicol 1098</td>
</tr>
<tr>
<td></td>
<td>1,2,4,5,6,7,10,10-octachloro-4,7,8-tetrahydro-4,7-endomethanoindane</td>
<td></td>
</tr>
<tr>
<td>C.4</td>
<td>1,2,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,1-methanoindene</td>
<td>heptachlor Velsicol 104 8-3314</td>
</tr>
<tr>
<td>Compound</td>
<td>Heptachlor</td>
<td>Anopheles aegypti</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>oxochlordane</td>
<td>*9 1,4,5,6,7,8,8'-heptachloro-3a,4,7,7a-tetrahydro-4,7-methanoindene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*1(2a),4,5,6,7,8,8'-heptachloro-3a(1),4,7,7a-tetrahydro-4,7-methanoindene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4,5,6,7,10,10'-heptachloro-4,7,8,9-tetrahydro-4,7-endogenethybenzidine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,5,6,7,8,10,10'-heptachloro-4,7,8,9-tetrahydro-4,7-endogenethybenzidine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,5,6,7,8,9,10,10'-heptachloro-4,7,8,9-tetrahydro-4,7-endogenethybenzidine</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- *Heptachlor:* A synthetic insecticide.
- *Anopheles aegypti:* A species of mosquito.
- *Toxaphene:* A synthetic insecticide.
- *Chlorinated camphene:* A chemical compound.
- *C.4, C.5, C.6:* Sections of the text.
- *13C, 14C:* Stable isotopes of carbon.
- *Mice, rats, rabbits:* Test subjects.
- *Dieldrin:* A chlorinated hydrocarbon pesticide.
- *Dieldrin-13C:* A labeled form of dieldrin.
- *Andrographis paniculata:* A medicinal plant.
- *Chlorophyll a:* A pigment.
- *3H, 16H:* Stable isotopes of hydrogen.
- *Honey, rapeseed oil:* Commercial products.
- *Synthesis of 3H, 16H labeled heptachlor*
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.7</td>
<td>dichloro</td>
<td>decomposition products (non-metabolite) radiolysis</td>
<td>δH/δC DBA†</td>
<td>Acides aspergil (4) δH [686]</td>
<td>reduced analysis γH/δH C DBA‡ [699]</td>
</tr>
<tr>
<td></td>
<td>Hexachloroperoxycyclohexane</td>
<td>double isotope derivative dilution analysis</td>
<td>[600, 1259]</td>
<td>dihydroton movement (CNS) δNa, δCa [688]</td>
<td>forensic correlates δH [688]</td>
</tr>
</tbody>
</table>

*DBA = δ-acetoxy-δ-bromo-6,7-dihydrodichloro
<table>
<thead>
<tr>
<th>Oecophagus fasciatus (t) uptake</th>
<th>14C [610]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periplaneta americana diodrin ion movement (CNS)</td>
<td>32P, 32Ca [628]</td>
</tr>
<tr>
<td>birds</td>
<td>diodrin: steroid metabolism 14C [669]</td>
</tr>
<tr>
<td>Hela S cells</td>
<td>DDT: NA synthesis, protein synthesis 14C [633]</td>
</tr>
<tr>
<td>mouse</td>
<td>14C [645]</td>
</tr>
<tr>
<td>rabbit</td>
<td>transport in pregnancy 14C [658]</td>
</tr>
<tr>
<td>rat</td>
<td>32Cl [689]</td>
</tr>
<tr>
<td>14C [646, 647, 678] distribution and elimination 14C [647]</td>
<td></td>
</tr>
<tr>
<td>toxicity</td>
<td>32Cl [629]</td>
</tr>
<tr>
<td>fish</td>
<td>uptake 14C [629]</td>
</tr>
</tbody>
</table>

14DHA = 6-acetoxy-6-bromo-4-dehydrosaldrin
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compounds</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.9</td>
<td>6,7,8,9,10-hexachloro-1,2,3,6,7,8,9,10-octahydro-1,4-endo-endu-endu-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-endo-dimethanoaptenalenone</td>
<td>endosulfan</td>
<td>mouse 14C [644]
 rat 14C [644, 646]</td>
<td>14C [644]
 fish [666]</td>
<td>
 endosulfan © properties antioxidation</td>
</tr>
<tr>
<td>C.V</td>
<td>Compound</td>
<td>Species</td>
<td>Rat</td>
<td>Mouse</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-3, 4, 4a, 5, 6, 7, 8, 8a-octahydro-1, 4-endo-endo-endo-endo-endo-endo-endo-endo-dimethanonaphthalene</td>
<td>endrin</td>
<td>compound 269</td>
<td>Aeotes aegypti (4)</td>
<td>*14C [546]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fungi (Aspergillus niger Penicillium notatum)</td>
<td>14C [645]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.9</th>
<th>Compound</th>
<th>Species</th>
<th>Rat</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4, 10, 10-hexachloro-1, 5, 5a, 6, 7, 8a-octahydro-6, 8-methano-2, 4, 2-benzoic-xanthene 3-oxide</td>
<td>endrin</td>
<td>Thiodan 5 Malin BIO [546] Hoe 2071 Niagara 6462</td>
<td>fish</td>
<td>*14C [575]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mouse</td>
<td>*14C [648]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>storage and excetration</td>
<td>*14C [648]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.10</th>
<th>Compound</th>
<th>Species</th>
<th>Rat</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4, 5, 6, 7, 8-octachloro-3a, 7, 7-octahydro-6, 7-methanophthalan</td>
<td>Teledrin SD 4402 CP-14317</td>
<td>Aeotes aegypti</td>
<td>*14C [648]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aspergillus niger</td>
<td>*14C [648]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillium notatum</td>
<td>*14C [648]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mouse</td>
<td>*14C [648]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rat</td>
<td>*14C [648]</td>
</tr>
</tbody>
</table>

DDT RELATIVES

<table>
<thead>
<tr>
<th>D.1</th>
<th>Compound</th>
<th>Species</th>
<th>Rat</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buopilus microplus</td>
<td>*14C [675]</td>
</tr>
</tbody>
</table>

Analysis

<p>| 1H/14C [509] |
| Insects |
| Musca domestica |
| Anopheles |</p>
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
<td>DDT: hydrophilic compounds</td>
<td></td>
<td></td>
<td>Oncopeltus fasciatus resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(018)</td>
<td></td>
<td></td>
<td>14C [690]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>double isotope analysis</td>
<td></td>
<td></td>
<td>Periplaneta americana resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [635]</td>
<td></td>
<td></td>
<td>14C [890]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blattella germanica (CNS): E and S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [637]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Periplaneta americana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [690]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CNS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [692, 693, 694, 693, 692]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heliothis virescens (L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [695, 695]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distributiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [695]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>penetration rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [688-7]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heteroptera lutea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT-resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [693]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alaba domestica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [696]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [697]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT/gene expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT: formation and peroxide metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [153]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistant-suppressive resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [867]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT and substituted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Musca domestica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT's formation and peroxide metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [153]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistant-suppressive resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C [867]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muca domestica</td>
<td>DDT; formate- and proline metabolism</td>
<td>^{13}C [136]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT-resistant and substituted derivatives, comparative toxicity</td>
<td>^{13}C [137]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT-resistant and substituted derivatives, comparative toxicity</td>
<td>^{13}C [670]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT-resistant and substituted derivatives, comparative toxicity</td>
<td>^{13}C [674]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncopelus fasciatus</td>
<td>^{13}C [699]</td>
<td>uptake (c)</td>
<td>^{13}C [839]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stegobium paniceum</td>
<td>^{14}C [611]</td>
<td>DDT-reversed</td>
<td>^{14}C [611]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ocellatus</td>
<td>^{14}C [677]</td>
<td>DDT-reversed</td>
<td>^{14}C [677]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciomyzus calcitrans</td>
<td>^{14}C [677]</td>
<td>DDT-reversed</td>
<td>^{14}C [677]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triatoma infestans</td>
<td>DDT: protein biosynthesis</td>
<td>^{14}C [110]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT: protein biosynthesis</td>
<td>^{14}C [110]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT: protein biosynthesis</td>
<td>^{14}C [110]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT: glutathione turnover</td>
<td>^{14}C [110]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT: glutathione turnover</td>
<td>^{14}C [110]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Method</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*C</td>
<td>Synthesis, protein synthesis</td>
<td>*C [413]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkey</td>
<td>DDT: plasmodium metabolism</td>
<td>*H [653]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Resorption and excretion</td>
<td>*C [682]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT: plasmodium</td>
<td></td>
<td>*H [653]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>Binding (liver, muscle, brain)</td>
<td>*C [809]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT: plasmodium</td>
<td></td>
<td>*H [653]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT: diethyl</td>
<td></td>
<td>*H [653]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT: protein metabolism</td>
<td></td>
<td>*H [653]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td>DDT: plasmodium metabolism (liver, cell-free)</td>
<td>*C [809]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISH</td>
<td>Uptake</td>
<td>*C [629]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elimination</td>
<td>*C [609]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals (various)</td>
<td>Blood-sucking leeches (Haemadipsa maclennani)</td>
<td>Minue (inoffens)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>D-1 (std.)</td>
<td></td>
<td></td>
<td>blood-sucking leeches,
absorption and
demythiolization
^{32}C [483]</td>
<td>Miscellaneous:
bacteria
^{14}C [477]
yeast
dechlorination by
^{14}C [642]
soil
dilution in
^{14}C [663]
anaerobic degradation
in
^{14}C [600]
marsh ecosystem
cycling
^{14}C [601, 862]
field tests
^{60}C [580]</td>
<td>Miscellaneous:
food chains
^{14}C [616]
mud
^{14}C [616]
soil
^{14}C [616, 646]
field tests
^{60}C [580]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plants:
barley
^{14}C [601]
carrots
^{14}C [601, 671]
potatoes
^{14}C [601]
weeds
^{60}C [582]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, 2</td>
<td>*1,1-dichloro-2,2-bis(p-chlorophenyl)ethane</td>
<td>TDE</td>
<td>soil microorganisms & ({\text{CH}}_4)[684]</td>
<td>carrots & ({\text{CH}}_4)[671]</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----</td>
<td>---------------------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dichlorobenzyl dichloromethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tetrachlorodiphenyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, 5</td>
<td>isoamyl 4,4'-dichlorobenzilate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloropropylate & ({\text{C}_2})[670]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUMIGANTS

<table>
<thead>
<tr>
<th>F, 1</th>
<th>carbon tetrachloride</th>
<th>tetrachloroethane & ({\text{C}_2})[695]</th>
<th>rats & ({\text{CH}}_4)[695]</th>
<th>local ambuscades & ({\text{CH}}_4)[684]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CCl(_4)</td>
<td>effect of diet on CCl(_4)-metabolism & ({\text{CH}}_4)[695]</td>
<td>local tenalis & ({\text{CH}}_4)[684]</td>
</tr>
<tr>
<td>F, 2</td>
<td>cyanide</td>
<td></td>
<td>({\text{CH}}_4)[690, 604, 609]</td>
<td>local ambuscades & ({\text{CH}}_4)[684]</td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>---</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>F.3</td>
<td>²⁴⁷ napthalene</td>
<td></td>
<td></td>
<td>Muca domestica, R- and S-, detoxication, M²⁴⁷ C (1944)</td>
</tr>
<tr>
<td>F.4</td>
<td>²⁴⁷ sulfonyl fluoride</td>
<td>Viloxin ²⁴⁷</td>
<td>M⁵ [601]</td>
<td>insect eggs, M²⁴⁷ S [501], Schistocerca gregaria uptake and metabolism (e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M⁵ [589, 569]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenebrio molitor uptake (e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M⁵ [589, 569]</td>
</tr>
</tbody>
</table>

PHOSPHORUS CONTAINING COMPOUNDS

ALIPHATIC DERIVATIVES

PA.1	³¹⁷ dimethyl (2,2'-trichloro-1-hydroxyethyl)-phosphonate	trichlorfen, Dipuran ²⁴⁷, Dylox ²⁴⁷, Neogus ²⁴⁷, chlorophos, Trichlorphon, Tugun, Bayer 123/69, ENT 19763	M³ [748]	insects absorption and metabolism, M⁵ [702] chewing, M³ [738] sucking
			M³ [748]	
			via chloral	
			M⁵ [618]	

Castle

M³ [798, 796]

reception (percutaneous)

M³ [715, 784]

oral

M³ [725, 797]

excretion

M³ [798]
<table>
<thead>
<tr>
<th>PA, 2</th>
<th>Synthetic-type of compound</th>
<th>tinox</th>
<th>protective materials permeability (^{3}P \ [701])</th>
<th>cattle (^{3}P \ [708])</th>
<th>resepsia (percutaneous) (^{3}P \ [715, 784]) (ocular) (^{3}P \ [700, 787]) excretion (^{3}P \ [709]) metabolites in serum (^{3}P \ [713]) milk (^{3}P \ [760]) veterinary medicine applications in metabolic studies (^{14}C \ [702]) fungus (Fusarium sp.) (^{14}C \ [702]) entero plant (^{14}C \ [702])</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA, 1</td>
<td># 2,2-dichlorovinyl dimethyl phosphate, O,2-dimethyl 2,2-dichlorovinyl phosphate</td>
<td>dichlorvos Vapona (^{6}) Herbol DDVP</td>
<td>protective materials permeability (^{3}P \ [707])</td>
<td>Onecopetis facultatus uptake (^{6}) (^{14}C \ [610])</td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>PA.3 (calc.)</td>
<td></td>
<td></td>
<td></td>
<td>cattle polymer/insecticide as food additive</td>
<td>$	ext{^{14}C}$ [762]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>chicken (traces)</td>
<td>32P [706]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>absorption after oral administration 32P [852]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudomonas methylothera (apola maggor symbiont)</td>
<td>14C [754]</td>
</tr>
<tr>
<td>PA.4</td>
<td>d-dimethyl phosphate, ester with $cis-3$-hydroxy-L-methylcrotonamide</td>
<td></td>
<td></td>
<td>Azodan® SD 9129</td>
<td>32C [560]</td>
</tr>
<tr>
<td></td>
<td>dimethyl phosphate of 3-hydroxy-L-methyl-cis-crotonamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dimethyl L-methyl-2-(methylcarbamoyl) vinyl phosphate, OMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anthonomus grandis (a)</td>
<td>14C [706] 32P [706]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heliothis virescens (45)</td>
<td>14C [760] 32P [706]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heliothis sea (45)</td>
<td>14C [706] 32P [706]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Musca domestica (a)</td>
<td>14C [706] 32P [706]</td>
</tr>
<tr>
<td>PA. 6</td>
<td>Bidrin®</td>
<td>methoxy-labelled 14C (988)</td>
<td>cotton plant 14P (701)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dimethyl phosphate, ester with 2-chloro-N,N-diethyl-3-hydroxycrotonamide</td>
<td>phosphoramidate Dimetrid® ML-97 CB-1301</td>
<td>Anthomonas gracilis 14C (702) 14P (701) Helicotrichum virescens (5) 14C (702) 14P (701) Helicotrichum ses (1) 14C (702) 14P (701) Musca domestica (A) 14C (702) 14P (701)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-chloro-2-diehydrazamoyl-1-methylvinyl dimethyl phosphate</td>
<td>14P (702) carbonyl-labelled 14C (702) methyl-vinyl-labelled 14C (702)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>PA.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA.7</td>
<td>*O,O-dimethyl S-(ethylthio)methyl phosphorodithioate</td>
<td>phonate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*O,O-dimethyl S-ethylmercaptoethyl dithiophosphate</td>
<td>Thiram®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC 3811</td>
<td>L 11/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA.8</td>
<td>*O,O-dimethyl S-(ethylthio)ethyl phosphorodithioate</td>
<td>disulfoton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI-Systox®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FRUMIN AC®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOM-FLEX®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dihydrodiammonium Thiodemeton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayer 19850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA.9</td>
<td>*Ethyl mercaptooxacinate, S-ether with O,O-dimethyl phosphorodithioate</td>
<td>malathion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*O,O-dimethyl dithiophosphate of ethyl mercaptooxacinate</td>
<td>Malathion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*O,O-dimethyl S-(1,2-dicarboxyethyl) dithiophosphate</td>
<td>4040</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *P [741, 745]
- *S [745]
- Metab Comb Chem Acta 279:13-14
- Metabolism
- Residues
- Kyklos 26:199-210
- Metab Comb Chem Acta 279:13-14
- Metabolism
- Residues
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* diethyl 4,4'-dimethyl dithiophosphate of diethyl mercurproxocinate</td>
<td>Malathion</td>
<td>4049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* diethyl * (2,2-dicarboxyethyl) dithiophosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*O,4-dimethyl phosphorodithioate ester with diethyl mercurproxocinate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*O,4-dimethyl phosphorodithioate ester with diethyl mercurproxocinate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*O,4-dimethyl phosphorodithioate ester with diethyl mercurproxocinate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*O,4-dimethyl phosphorodithioate ester with diethyl mercurproxocinate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*O,4-dimethyl phosphorodithioate ester with diethyl mercurproxocinate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td></td>
<td>*S [1,2-bis(ethoxycarbonyl)ethyl]4,4'-dimethyl phosphorodithioate</td>
<td>cattle (heifer)</td>
<td>#P [704]</td>
<td>hen numerodes elimination</td>
<td>#P [744]</td>
<td>man (liver)</td>
<td>*C [832]</td>
<td>rat (liver)</td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its composition</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| PA.11 | 0, 0-dimethyl-1-butyloxy-2, 2, 2-trichloroethyl phosphonate | dimethyl (O, O, O-trichloro-1-hydroxyethyl)-phosphonate butyrate | Butanate ENT 30582 | productive materials permeability ^{20}P (1985) | blood (lactating cow) ^{30}P (1906)

cattle ^{30}P (715, 716)
resorption (sider) ^{30}P (1906)
toxicity ^{30}P (715)
apples ^{30}P (715)
plums ^{30}P (715)
wheat ^{30}P (715) | blood (lactating cow) ^{30}P (715, 716)
milk (cow) ^{30}P (715, 716)
apples ^{30}P (715)
plums ^{30}P (715)
wheat ^{30}P (715) |
| PA.12 | 0, 0-dimethyl 2-(methylcarbamoylmethyl) phosphorodithioate | dimethoate Cygon 8
PERFECTION 8
Roger 8
Roxdon 8
AC 12880
ENT 34650
NC-660 | insecticidal activity ^{30}P (1909)
in vivo and in vitro ^{30}P (1903)
Musca domestica ^{30}P (787)
-c/EPN metabolism ^{30}P (787)
Oesopagus fasciatus ^{30}P (787) | apples ^{30}P (808, 789)
apricots ^{30}P (789)
cacao beans ^{30}P (787)
ceaberry ^{30}P (789)
grapefruit ^{30}P (789) |
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
</table>
| PA,13 | O-tetramethylphosphorodiamidic fluoride + bis(dimethylaminomethyl)phosphorodiamidite | dimethox
Terra Zymar
Hanane
Feoxon 14 | ²⁸P [748] | hops | hops leaves | ²⁸P [748] |
| | | | | | |

PHOSPHORUS ARYL (PHENYL) DERIVATIVES

| PC, 1 | O,O-Dimethyl O-p-nitrophenyl phosphorothionate
O,O-Dimethyl O-p-nitrophenyl phosphorothionate | methyl parathion
Menox
methyl homologue of parathion
Nitorox
Bayon 8-602 | Bombyx mori (2) (silkworm) | ²⁸P [748] | ²⁸P [720] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chile suppressa (3)</td>
<td>²⁸P [724, 733]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mursta domestica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC.1</td>
<td>1</td>
<td>D, D-dimethyl D-p-nitrophenyl phosphorochloridate</td>
<td>methyl parathion</td>
<td>Bornyson mori (L) (midgut)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O, D-dimethyl D-p-nitrophenyl phosphoric acid</td>
<td></td>
<td>Chilo suppressalis (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D, D-dimethyl D-p-nitrophenyl thiophosphate</td>
<td></td>
<td>Musca domestica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dimethyl p-nitrophenyl chlorophosphate</td>
<td></td>
<td>Periplaneta americana (a)</td>
<td></td>
</tr>
</tbody>
</table>

PHOSPHORUS ARYL (PHENYL) DERIVATIVES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>methyl homologue of parathion</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrox</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bayer B-661</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bou (748)

hop leaves (748)
<table>
<thead>
<tr>
<th>Code Index</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
</table>

Note: The table contains chemical names and their toxicological information, along with synthesis and metabolisms details.
<table>
<thead>
<tr>
<th>Animal</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rabbit</td>
<td>14C [764]</td>
<td>fish</td>
</tr>
<tr>
<td></td>
<td>#5 [720]</td>
<td>fish</td>
</tr>
<tr>
<td></td>
<td>#5 [763, 767, 768]</td>
<td>translocation in Pseudomonas melolontha (apple maggot symbiont)</td>
</tr>
<tr>
<td></td>
<td>#5 [764]</td>
<td>bean plant uptake, translocation, accumulation</td>
</tr>
<tr>
<td></td>
<td>#5 [760]</td>
<td>cauliflower production monitoring</td>
</tr>
<tr>
<td></td>
<td>#5 [780]</td>
<td>mixture of paraquat and methyl paraquat metastasis production monitoring t.l. [1717]</td>
</tr>
</tbody>
</table>

Note: The table is incomplete and contains placeholders for certain entries. The reference numbers [720] and [1717] are indicated.
<table>
<thead>
<tr>
<th>Code Index</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC. 4</td>
<td>dimethyl p-nitrophenyl phosphate, O,O-dimethyl O-p-nitrophenyl phosphate</td>
<td>methyl parathion</td>
<td></td>
<td></td>
<td>Chilo suppressalis (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sp [7858]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spoplus americana (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sp [7858]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rat (liver homogenates)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sp [7858]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cauliflower Sp [7858]</td>
</tr>
<tr>
<td>PC. 5</td>
<td>2-diethyl p-nitrophenyl phosphate, O,O-diethyl O-p-nitrophenyl phosphate</td>
<td>parathion oxygen analogue of parathion Bayer E-600</td>
<td></td>
<td></td>
<td>ear Sp [723]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>man Sp [723]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rabbit Sp [723]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rat Sp [723]</td>
</tr>
<tr>
<td>PC. 6</td>
<td>2-diethyl O-p-nitrophenyl phenylphosphonothioate, ethyl p-nitrophenyl benzene thiosulfonate, O-diethyl O-p-nitrophenyl benzene phosphonothioate</td>
<td>EPN EPN-500</td>
<td></td>
<td></td>
<td>Musca domestica (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>effect on dimethoate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P [79]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. fischeri (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>effect on dimethoate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P [79]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>guinea pig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>effect on dimethoate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P [79]</td>
</tr>
<tr>
<td>Compound</td>
<td>Mouse</td>
<td>Guinea Pig</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC. 6: + O-ethyl O-p-nitrophenyl phenylphosphonothioate</td>
<td>SPN</td>
<td></td>
<td>EPN-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ p-nitrophenyl benzene thio phosphonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ O-ethyl O-p-nitrophenyl benzene thio phosphonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musca domestica effect on dimethoate metabolism</td>
<td>±H [797]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concopelar fasciatus effect on dimethoate metabolism</td>
<td>±H [797]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guinea pig effect on dimethoate metabolism and toxicity</td>
<td>±H [797]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mouse effect on dimethoate metabolism and toxicity</td>
<td>±H [797]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC. 7: + O,O-dimethyl O-(4-nitro-2-tolyl) phosphorothioate</td>
<td>Focidion®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ O,O-dimethyl O-(2-methyl-6-nitrophenyl) phosphorothioate</td>
<td>Sumithion®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebacthon®: Bayer 41831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumitomo S-1192A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribolium confusum (F)</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattella germanica (F)</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musca domestica</td>
<td>±p [765]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focidion®: americana (B)</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylobiops elaterothora (B)</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mouse</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rat</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver homogenates</td>
<td>±p [788]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>PC. 7 (cred.)</td>
<td></td>
<td></td>
<td></td>
<td>carniflour</td>
<td></td>
</tr>
<tr>
<td>PC. 8</td>
<td>(\text{O,O-dimethyl O-2,4,5-trichlorophenyl}) phosphorothioate</td>
<td>rated (\text{Bionex}) (\text{Pennclor}) (\text{Kwitrin}) (\text{Nanocit}) (\text{Ronadex}) (\text{Toludex}) (\text{Veocote}) Dow ET-14 Dow ET-57</td>
<td>(\text{H}^\text{P}) [746]</td>
<td></td>
<td>(\text{cattle (fattening cow)}) (\text{H}^\text{P}) [746] (\text{meat}) (\text{H}^\text{P}) [758] (\text{milk}) (\text{H}^\text{P}) [746, 758]</td>
</tr>
<tr>
<td>PC. 9</td>
<td>(\text{O,O-dichloro-2,5 dichlorophenyl}) (\text{O,O-dimethyl}) phosphorothioate (\text{O,O-dimethyl-O-2,5-dichloro-4-bromophenyl}) chlorophosphate (\text{O,O-dimethyl-O-2,5-dichloro-4-bromophenyl}) phosphorothioate</td>
<td>bromophos (\text{ Nexon}) S-1942 Cela S-2228</td>
<td></td>
<td>(\text{H}^\text{P}) [706]</td>
<td></td>
</tr>
<tr>
<td>PC. 10</td>
<td>(\text{O,O-4-nitro-butyly-2-chlorophenyl O-methyl}) methylphosphoramide</td>
<td>Dowex 132 Icaral (\text{H}^\text{P})</td>
<td></td>
<td>(\text{meat}) (\text{H}^\text{P}) [758] (\text{milk}) (\text{H}^\text{P}) [758]</td>
<td></td>
</tr>
<tr>
<td>PC. 11</td>
<td>(\text{O,O-dimethyl O-[4-(methylthio)-m-tolyl]}) phosphorothioate (\text{O,O-dimethyl (\text{O-[3-methyl-4-methylmercapto-phenyl]}) phosphorothioate (\text{O,O-dimethyl 4-(methylmercapto)-3-methylphenyl thiophosphate})</td>
<td>Fasation BAYTEX ENTEX Lebassyid TIGUVON Bayer 96482 ENT 25540 S 1702</td>
<td></td>
<td>Climek Lociotus (\text{H}^\text{S}) [801] absorption (\text{H}^\text{S}) [801] Coleus falcatiss (f) absorption (\text{H}^\text{S}) [795] resistance</td>
<td></td>
</tr>
</tbody>
</table>
| PC. 10 | *O*-4-tert-buty1-2-chlorophenyl O-methyl methylphosphonamidate | Downy* 132 | Resistance* | Most milk
| PC. 11 | *O,O*-dimethyl O-[3-(methylthio)-m-coty1] phosphorothioate + O,O*-dimethyl O-(5-methyl-4-methylmercapto-phenoxy) phosphorothioate + O,O*-dimethyl O-(4-methylmercapto-5-methyl)phenyl phosphorothioate | foundation | RATTEX® ENTEX Lebaculid TIQUANON Bayer 29693 ENT 25540 S 2753 | Cimex lectularius
| PC. 12 | *O,O*-diethyl O-[m-(methylsulfony1)phenyl phosphorothioate | Dately | TERRACID®-9® fensulfothion Bayer 25141 ENT 24945 | cotton plant
<p>| PC. 13 | O,O-diethyl O-[2-(methylsulfony1)phenyl O,O*-dimethyl phosphorothioate | fampburs WARDEX® Fampheos CL 38923 | Oncopeltus fasciatus uptake (c) 1h [615] cattle (olf) 1h [727] polymer/insecticide as feed additive 4h [783] |</p>
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC, 12</td>
<td>ethyl mercaptophenylacetate, O,O-dimethyl phosphorodithioate</td>
<td></td>
<td></td>
<td>sheep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ethyl ester of O,O-dimethylthiophosphoryl o-phenyl acetic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC, 14</td>
<td>α-ethyl mercaptophenylacetate, O,O-dimethyl phosphorodithioate</td>
<td>PAPTHERON®, Cidar®, Phenthoate BAY 5021 EMT 27268 L 56X</td>
<td></td>
<td>apples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ethyl ester of O,O-dimethylthiophosphoryl o-phenyl acetic acid</td>
<td></td>
<td></td>
<td>olive oil</td>
<td></td>
</tr>
<tr>
<td>PC, 15</td>
<td>α-methylbenzyl 3-hydroxyacetone, dimethyl phosphate</td>
<td>Criorin®, SD-3894</td>
<td></td>
<td>meat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dimethyl phosphate of α-methylbenzyl 3-hydroxyacetone</td>
<td></td>
<td></td>
<td>milk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α-methylbenzyl 3-hydroxyacetone, dimethyl phosphate</td>
<td></td>
<td></td>
<td>milk</td>
<td></td>
</tr>
<tr>
<td>PC, 16</td>
<td>2-chloro-2-(2,4-dichlorophenyl)vinyl diethyl phosphate</td>
<td>compound 472 SD-7859</td>
<td>8-tracer:</td>
<td>Musca domestica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14C [898]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Musca domestica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>after spraying</td>
<td>14C [898]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dog</td>
<td>14C [727]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mammals (blood)</td>
<td>14C [727]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rat 14C [727]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC, 17</td>
<td>2-chloro-1-(2,3,5-trichlorophenyl)vinyl dimethyl phosphate</td>
<td>SD 9447</td>
<td>8-tracer of</td>
<td>Musca domestica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14C-SD 9447 [898]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Musca domestica</td>
<td>14C [798]</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Description</td>
<td>Isotopes of 1,2-13C-SD 8447</td>
<td>Heliotris zea toxicity</td>
<td>Macrothylax pli toxicity</td>
<td>Musca domestica toxicity</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>PC.17</td>
<td>2-chloro-1-(2,3,5-trichlorophenyl)vinyl dimethyl phosphate</td>
<td>13C [737]</td>
<td>2-13C-SD 8447 [509]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC.19</td>
<td>2-chloro-1(2',4'-dichlorophenyl)vinyl diethyl phosphate</td>
<td>13C [697]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PC. 19</td>
<td>O-methyl O-p-methylthiophenyl methyl-phosphonothioate</td>
<td></td>
<td></td>
<td>cotton plant</td>
<td>soil [697]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[705, 774]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uptake and translocated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC. 20</td>
<td>O-Q-diethyl O-(S-4-(methylthio)-3,5-xyl) phosphonothioate</td>
<td></td>
<td></td>
<td>cattle (dairy calves)</td>
<td>[801]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[801]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cattle (dairy calves)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHOSPHORUS HETEROCYCLIC DERIVATIVES

<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH. 1</td>
<td>9-O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-y) O-Q-diethyl phosphonothioate</td>
<td>cosaplatin, ASORYL, CO-RAIL, MUSCATOX, Resitorox</td>
<td></td>
<td>Boophilus microplus(f)</td>
<td>meat [780]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayer 21/179, ENT 1986</td>
<td></td>
<td></td>
<td>[768]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH. 2</td>
<td>S,S'-2-dioxane-3,3-diy O-Q-diethyl phosphonodithioate (cis and trans isomers)</td>
<td></td>
<td></td>
<td>dioxidation DeBarr</td>
<td>meat [768]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navadael ENT 22897</td>
<td>milk [768]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hercules 528</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH. 3</td>
<td>8-(2-methoxy-5-oxo-2'-3,4-thiadiazol-4'-y)methyl O-Q dimethylphosphonothioate</td>
<td></td>
<td></td>
<td>analysis separation of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>components</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[782]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH. 4</td>
<td>O-Q-dimethyl 5-phthalimidomethyl phosphonothioate</td>
<td></td>
<td></td>
<td>bean plant foliage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[780]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rat [722]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rat [722]</td>
</tr>
<tr>
<td>PH. 2</td>
<td>8-oxo-7,8-dihydro-4H-1,2-dioxane-3,3-diy 4,4-dimethyl 4,4-dimethyl phosphorodithioate (cis and trans isomers) 2,3,3-trimethyl-1,3,3-trimethyl phosphorodithioate 3-oxo-3-bis (4,4-dimethyl phosphorodithioate) 3-oxo-3-bis (4,4-dimethyl phosphorodithioate)</td>
<td>Diazomethane Delavir * Navadel ENT 22297 Hercules AC-628</td>
<td>Analysis separation of components (^{31}P) [768]</td>
<td>Meat (^{31}P) [768] milk (^{31}P) [768]</td>
<td></td>
</tr>
<tr>
<td>PH. 3</td>
<td>8-oxo-7,8-dihydro-4H-1,2-dioxane-3,3-diy 4,4-dimethyl phosphorodithioate 4,4-dimethyl 4,4-dimethyl phosphorodithioate 4,4-dimethyl 4,4-dimethyl phosphorodithioate</td>
<td>GS-50005</td>
<td></td>
<td>Bean plant foliage (^{14}C) [790]</td>
<td></td>
</tr>
<tr>
<td>PH. 4</td>
<td>4,4-dimethyl 4,4-dimethyl 4,4-dimethyl phosphorodithioate 4,4-dimethyl 4,4-dimethyl phosphorodithioate 4,4-dimethyl 4,4-dimethyl phosphorodithioate</td>
<td>Imidan® Prolate® R-1504 Straffer R-1504</td>
<td></td>
<td>Rat (^{14}C) [792]</td>
<td></td>
</tr>
<tr>
<td>PH. 5</td>
<td>4,4-dimethyl 4,4-dimethyl 4,4-dimethyl phosphorodithioate</td>
<td>Durban® Dowco® 379</td>
<td></td>
<td>Fish (^{14}C) [789, 790] (^{31}P) [790] (^{14}C) [792]</td>
<td>Rat (^{14}C) [789] (^{31}P) [790] (^{14}C) [792] Bean plants uptake and translocation (^{14}C) [793] (^{31}P) [793] Corn plants uptake and translocation (^{14}C) [793] (^{31}P) [793] Plants absorption, translocation, metabolism (^{14}C) [789, 792] (^{31}P) [792]</td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical Name</td>
<td>Other Designations for chemical and its composition</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>PH.5 (cont.)</td>
<td></td>
<td></td>
<td></td>
<td>soil ^14_C [700]</td>
<td></td>
</tr>
<tr>
<td>PH.6</td>
<td>O_2C_2-diethyl O_2C-2-pyrazyl phosphorothioate</td>
<td>Nematox® NEMAPHOS® ZINOPHOS® Cyanam SC 18336</td>
<td>soil ^14_C [729]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH.7</td>
<td>O_2C_2-diethyl O_2C-2-isopropyl-6-methyl-4-pyrimidyl phosphorothioate</td>
<td>O_2C_2-diethyl O_2C-2-isopropyl-4-methyl-6-pyrimidyl phosphorothioate</td>
<td>O_2C_2-diethyl O_2C-2-isopropyl-6-methyl-4-pyrimidyl thio phosphate</td>
<td>Diazinon</td>
<td>Boophillus microplus (4) distribution ^14_C [785]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>melophthora</td>
<td>(apple maggot)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>inducible</td>
<td>synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[784]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bean plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[730, 744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[728, 730]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wheat grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[720]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14C</td>
<td>[744]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH		arsinophenyl	
		Guatillon®	
		Cohon®	
		AZINPh®(methyl)	
		Bayer 900®	
		Bayer 1714®	
		17/147	

<p>| | | cattle | |
| | | tissue | |
| | | from treated forage | |
| | | 32P | [721] |
| | | milk | |
| | | 32P | [723] |</p>
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH. 9</td>
<td>5-(4,6-diamino-5-triazino-2-ydimethyl) dimethyl phosphorothioate</td>
<td>mazon
Saphir®
Saphiron
PP 178</td>
<td></td>
<td>rat
14C [703, 728]
32P [703]
toxicity
14C [792]
32P [793]
plants
14C [793]
32P [793]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-(4,6-diamino-1,3,5-triazino-2-ydimethyl) dimethyl phosphorothioate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. 1</td>
<td>32-2,2,4,4,6,6-hexakis (2-aminodihydropyrimidin-4-yl) phosphonic acid</td>
<td>apholite
ENT 20316
CM 3174
SQ 9889</td>
<td></td>
<td>Musca domestica
effect on NA metabolism (8)
14C [897]
chromosome
aberrations (species not specified)
14C [883]
32P [882]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2,4,4,6,6-hexahyde-1,3,5,2,4,6-triazanipyrimidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2,4,4,6,6-hexahyde-1,3,5,2,4,6-triazanipyrimidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2,4,4,6,6-hexahyde-1,3,5,2,4,6-triazanipyrimidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hexakis (2-aminodihydropyrimidin-4-yl)phosphonitrile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. 2</td>
<td>32-(3-aminodihydropyrimidin-4-yl)phosphonic acid</td>
<td>tepa
apholoxide
AFO
ENT 24015</td>
<td></td>
<td>Antabonwestern gravidia
absorption and translocation
14C [881]
turnover
14C [882]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-(3-aminodihydropyrimidin-4-yl)phosphonic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2,4,4,6,6-hexahyde-1,3,5,2,4,6-triazanipyrimidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hexakis (2-aminodihydropyrimidin-4-yl)phosphonitrile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.2</td>
<td>1,2-aziridinyl)phosphine oxide</td>
<td>tepa auroxide</td>
<td>APO</td>
<td>ENT 24935</td>
<td>Anomalous grandis absorption and translocation ¹⁴C [881] turnover ¹⁴C [882]</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>-----</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>R.3</td>
<td>2,3-aziridinyl)phosphine oxide</td>
<td>thiopurpa</td>
<td></td>
<td></td>
<td>Musca domestica effect on NA metabolism (v) ¹⁴C, ²²P [887] rat leukemia, concentration in tissue ¹⁴C [886] chromosome aberrations (species not specified) ¹⁴C [880] ²²P [883]</td>
</tr>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its composition</td>
<td>Synthesis</td>
<td>Metabolism</td>
<td>Residues</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>R.4</td>
<td>hexamethylphosphoric triamide</td>
<td>hemipa</td>
<td>analysis, purification 14C [690]</td>
<td>Trichophtha ni (69) 14C [886]</td>
<td>Musca domestica 14C [874, 877] sterilization 14C [874, 877]</td>
</tr>
<tr>
<td>R.6</td>
<td>triphenyltin</td>
<td></td>
<td></td>
<td>rat 113Sn [659]</td>
<td>guinea pig 113Sn [659]</td>
</tr>
<tr>
<td>R.6</td>
<td>2-imidazolidinone</td>
<td></td>
<td></td>
<td>Musca domestica biochemical effects (various) 14C [691]</td>
<td></td>
</tr>
<tr>
<td>R.7</td>
<td>3-fluoropropionitrile</td>
<td></td>
<td></td>
<td>Musca domestica sterilization 14C [885]</td>
<td></td>
</tr>
</tbody>
</table>

Carbamates

<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its composition</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.1</td>
<td>6-Isopropoxyphenyl-methylcarbamate</td>
<td>Baygon®</td>
<td>14C [627] carbonyl-labelled 14C [857]</td>
<td>Musca domestica 14C [871]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-Isopropoxyphenyl-methylcarbamate</td>
<td>UNDEN®</td>
<td></td>
<td>NADPH cytochrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of oxidative metabolite</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARBAMATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Index Code</td>
</tr>
<tr>
<td>------------</td>
</tr>
</tbody>
</table>
| X.2 (cont.) | *4-dimethylamino-*m-tyli methylcarbamate | MATACH® aminocarb arvocarb Bayer 44946 ENT2-5704 | | NADPH₂ system
^{14}C [944, 944]
arat
^{14}C [927, 829]
| bean plant
^{14}C [829, 829]
persistent glucoside metabolites
^{14}C [829]
foliage
^{14}C [844] | rat persistence in
^{14}C [827] |
| X.2 (cont.) | *4-dimethylamino-*m-tyli methylcarbamate | MATACH® aminocarb arvocarb Bayer 44946 ENT2-5704 | | Culex pipiens quinquefasciatus resistance
^{14}C [829]
Musca domestica
^{14}C [837]
abletted taxate of oxidative metabolism
^{14}C [844]
NADPH₂ system
^{14}C [844, 944]
arat
^{14}C [927, 829, 839] | rat persistence in
^{14}C [827] |
| X.3 (cont.) | | bean plant
\(^{14}C \) [805, 823]
persistent glucoside
metabolites
\(^{14}C \) [830]
foliage
\(^{14}C \) [804, 805] |
|---|---|---|
| X.4 | 4-dimethylamino-5,5-xylyl methylcarbamate
Zectran[®]
Dowco 159[®]
ENT 25968
carbonyl-labelled
\(^{14}C \) [827, 830]
methyl-labelled
\(^{14}C \) [827] |
Moxa domestica
NADPH₄ system
\(^{14}C \) [845]
rat
\(^{14}C \) [823, 828]
liver microsomes
\(^{14}C \) [839]
bean plant
\(^{14}C \) [805, 829]
persistent glucoside
metabolites
\(^{14}C \) [835]
foliage
\(^{14}C \) [804, 805] |
| X.5 | 4-1-naphthyl methylcarbamate
1-naphthyl 2-methylcarbamate
\(\alpha \)-napthyl 2-methylcarbamate
carbaryl
Sevin[®]
7744
carbonyl-labelled
\(^{14}C \) [827]
methyl-labelled
\(^{14}C \) [827] |
aethylchloristerone
inhibition
\(^{14}C \) [840]
Anthosoma granatii
\(^{14}C \) [807, 815]
absorption
\(^{14}C \) [815]
Helobdella cer (F, A)
\(^{14}C \) [807] |
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle (lactating cow)</td>
<td>^{14}C [941]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>With synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep, ^{14}C [840]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, ^{14}C [827, 828, 832]</td>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice, ^{14}C [852]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeast</td>
<td>^{14}C [883]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytosterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytosterol glucoide metabolites ^{14}C [883]</td>
<td>Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton plant</td>
<td>^{14}C [864]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco plant</td>
<td>^{14}C [891]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial species ^{14}C [848]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X. 6 1-dimethylcarbamoyl-3-methyl-9-pyrazolyl dimethylcarbamate
<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical Name</th>
<th>Other designations for chemical and its compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-dimethylcarbamoyl-9-methylpyrazolyl-(6)-dimethylcarbamate</td>
<td>Dimethiline G6-10202</td>
<td></td>
<td>Mutra domestica 14C (945) Augmenta americana 14C (946)</td>
<td>cattle polyure/pesticide as feed additive 14C (955) rat 14C (927, 938) liver microsomes 14C (939) bean plant 14C (929), persistent glucoside metabolites 14C (939)</td>
</tr>
<tr>
<td>X, 7</td>
<td>2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate</td>
<td>ENT 20164 NIA 10242</td>
<td></td>
<td>cattle (lactating cow) 14C (941)</td>
<td></td>
</tr>
</tbody>
</table>
| X, 8 | 2-methyl-2-(methylthio) propionic acid
2-(methylcarbamoyl) oxime | Tomil® ENT 20000 IUC 21149 | 2-methyl-labelled 14C (812) 3-methyl-labelled 14C (828) | Anthocarpus spinosus 14C (809, 813, 814) | Holothrix vittata (f) 14C (814) 21S (814) 31S (814) |
<p>| | | | lact-labelled 14C (812) | Musa domestica 14C (759, 806, 814) | Mutra domestica 14C (857) 806, 814, 857 |
| | | | stable mix 14C (814) | cattle (lactating cow) 14C (814) | milk |</p>
<table>
<thead>
<tr>
<th>X: 9</th>
<th>2-methyl-2-(methylthio) propionaldehyde</th>
<th>Tomlin®
EC 1.1.4</th>
<th>3-methyl-labelled
(^{13}\text{C}) [912]</th>
<th>Anticodon genetic
(^{13}\text{C}) [886, 823, 814]
(^{35}\text{S}) [886, 823, 814]
Heliothis virescens (F)
(^{13}\text{C}) [914]
(^{35}\text{S}) [814]</th>
</tr>
</thead>
</table>

| X: 9 | 3-(1-isopropyl-3-methyl-5-pyrazolyl)
dimethylcarbamate
3-(1-isopropyl-3-methylpyrazolyl)-
carbamate | IslaM®
EC 2.2.11 | acetylsulphate-labelled
\(^{13}\text{C}\) [909] | Mascota domesticus
NADPH₄ system
\(^{13}\text{C}\) [943]
rat
\(^{13}\text{C}\) [827, 825]
liver mitochondria
\(^{13}\text{C}\) [829]
bean plant
\(^{13}\text{C}\) [829]
peripheral glucoside
\(^{13}\text{C}\) [909] |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Index Code</td>
<td>Chemical Name</td>
<td>Other Designations for Chemical and its Compositions</td>
<td>Synthesis</td>
<td>Metabolism</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>X.10</td>
<td>6-chloro-3,4-xylyl methylcarbamate (1)</td>
<td>Banul®</td>
<td>carbonyl-labelled 13C [800, 805]</td>
<td>Malus domestica</td>
</tr>
<tr>
<td></td>
<td>6-chloro-4,6-xylyl methylcarbamate (2)</td>
<td>Sek</td>
<td>13C [802]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-chloro-4,6-xylyl methylcarbamate (3)</td>
<td>Upjohn U-13927</td>
<td>13C [800, 805]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) as cited in various publications

<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical Name</th>
<th>Other Designations for Chemical and its Compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Tendence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.11</td>
<td>4-benzothienyl-1-methylcarbamate</td>
<td>amulan</td>
<td>carbonyl-labelled 13C [800, 805]</td>
<td>Malus domestica</td>
<td>Carcass, edible portion, non-leaf</td>
</tr>
<tr>
<td></td>
<td>benzal [b] thio-4-yl methylcarbamate</td>
<td>MCA-100</td>
<td>13C [841]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moban®</td>
<td>13C [841]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobil MCA-A-500</td>
<td>13C [841]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index Code</th>
<th>Chemical Name</th>
<th>Other Designations for Chemical and its Compositions</th>
<th>Synthesis</th>
<th>Metabolism</th>
<th>Tendence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.12</td>
<td>3-isopropylphenyl methylcarbamate</td>
<td>GC 19864</td>
<td>carbonyl-labelled 13C [800, 805]</td>
<td>Malus domestica</td>
<td>Carcass, edible portion, non-leaf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) as cited in various publications
<table>
<thead>
<tr>
<th>X. 12</th>
<th>O-isopropylphenyl methylcarbamate</th>
<th>DC 30504</th>
<th>carbonyl-labelled ^{14}C [227, 236]</th>
<th>Musca domestica albumin enhancement of oxidative metabolism ^{14}C [244] NADPH system ^{14}C [244], [244] rat ^{14}C [247, 240] liver microsomes ^{14}C [242] bean plant ^{14}C [249, 249] persistent glucoside metabolites ^{14}C [249] foliage ^{14}C [244]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index Code</td>
<td>Chemical name</td>
<td>Other designations for chemical and its composition</td>
<td>Synonyms</td>
<td>Metabolism</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>X-14</td>
<td>3,4,5-triisopropylphenyl N-methyl carbamate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-15</td>
<td>3,4,5-triisopropylphenyl N-methyl carbamate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.1. Cor
5. INDEXES

5.1. INSECTICIDE INDEXES

5.1.1. Common and Manufacturers' Names Index

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Category</th>
<th>Insecticide</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>C. 6</td>
<td>Dasanit</td>
<td>P. 22</td>
</tr>
<tr>
<td>Alion</td>
<td>PC. 2</td>
<td>DDT</td>
<td>D. 1</td>
</tr>
<tr>
<td>Allethrin</td>
<td>E. 3</td>
<td>Delnav</td>
<td>F. 2</td>
</tr>
<tr>
<td>aliphatic homologue of cinerin</td>
<td>B. 3</td>
<td>dentic</td>
<td>B. 1</td>
</tr>
<tr>
<td>amino carb</td>
<td>E. 3</td>
<td>disazin</td>
<td>F. 7</td>
</tr>
<tr>
<td>aspholate</td>
<td>R. 1</td>
<td>Diarmin</td>
<td>F. 7</td>
</tr>
<tr>
<td>asphoxide</td>
<td>R. 2</td>
<td>Dichlorvos</td>
<td>P. 3</td>
</tr>
<tr>
<td>ascocarb</td>
<td>X. 3</td>
<td>Dihydrochloride</td>
<td>A. 8</td>
</tr>
<tr>
<td>azulan</td>
<td>X. 12</td>
<td>Diisocarb</td>
<td>C. 7</td>
</tr>
<tr>
<td>AZINPHOS-methyl</td>
<td>P. 1</td>
<td>Diuron</td>
<td>P. 8</td>
</tr>
<tr>
<td>azinphosmethyl</td>
<td>P. 8</td>
<td>Dimethox</td>
<td>P. 12</td>
</tr>
<tr>
<td>Asductron</td>
<td>F. A. 4</td>
<td>Dimethythionate</td>
<td>P. 12</td>
</tr>
<tr>
<td>Benetil</td>
<td>X. 10</td>
<td>Dimethyl sulfoxide</td>
<td>A. 5</td>
</tr>
<tr>
<td>Basalin</td>
<td>P. H. 7</td>
<td>Dimethylan</td>
<td>X. 5</td>
</tr>
<tr>
<td>Baygon</td>
<td>X. 1</td>
<td>Dimetilan</td>
<td>X. 5</td>
</tr>
<tr>
<td>BAYTEX</td>
<td>F. C. 11</td>
<td>Dimetizone</td>
<td>P. H. 2</td>
</tr>
<tr>
<td>Bezin</td>
<td>F. A. 5</td>
<td>Diethyl</td>
<td>F. A. 1</td>
</tr>
<tr>
<td>Britane</td>
<td>F. C. 18</td>
<td>Dipetex</td>
<td>P. A. 8</td>
</tr>
<tr>
<td>Black Leaf 40®</td>
<td>F. 4</td>
<td>Disulfoton</td>
<td>P. A. 8</td>
</tr>
<tr>
<td>bromophos</td>
<td>F. C. 9</td>
<td>Di-Syston</td>
<td>P. C. 20</td>
</tr>
<tr>
<td>Butacarb</td>
<td>F. C. 15</td>
<td>Dithiobenzone</td>
<td>X. 5</td>
</tr>
<tr>
<td>Butoxide</td>
<td>A. 1</td>
<td>Duxon® 13E</td>
<td>P. C. 17</td>
</tr>
<tr>
<td>Butylate</td>
<td>F. A. 11</td>
<td>179</td>
<td>P. H. 5</td>
</tr>
<tr>
<td>capheryl</td>
<td>X. 5</td>
<td>Duxban</td>
<td>F. I. 5</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>F. 7</td>
<td>Dylox</td>
<td>F. A. 7</td>
</tr>
<tr>
<td>chlorfene</td>
<td>C. 3</td>
<td>DINP</td>
<td>F. C. 6</td>
</tr>
<tr>
<td>chlorfencarbos</td>
<td>PC. 18</td>
<td>Dithiobutyl</td>
<td>C. 9</td>
</tr>
<tr>
<td>Chloroherbicide</td>
<td>D. 1</td>
<td>endosulphan</td>
<td>C. 8</td>
</tr>
<tr>
<td>Chlorophos</td>
<td>F. A. 1</td>
<td>endrin</td>
<td>P. C. 12</td>
</tr>
<tr>
<td>Chloropropylate®</td>
<td>D. 3</td>
<td>ENTEX</td>
<td>P. A. 13</td>
</tr>
<tr>
<td>Cela S-1042</td>
<td>F. C. 9</td>
<td>ethion</td>
<td>P. C. 8</td>
</tr>
<tr>
<td>Cidran</td>
<td>F. C. 14</td>
<td>Ethion®</td>
<td>P. C. 12</td>
</tr>
<tr>
<td>clodiak</td>
<td>F. 4</td>
<td>Ethion</td>
<td>P. C. 8</td>
</tr>
<tr>
<td>clodiak®</td>
<td>B. 2</td>
<td>Ethion®</td>
<td>P. C. 12</td>
</tr>
<tr>
<td>Co-Kal®</td>
<td>F. C. 15</td>
<td>Emetofos</td>
<td>P. C. 8</td>
</tr>
<tr>
<td>coumadin®</td>
<td>F. H. 1</td>
<td>Emetofos®</td>
<td>P. C. 7</td>
</tr>
<tr>
<td>CuCl₂</td>
<td>B. 1</td>
<td>Emulsion</td>
<td>P. C. 12</td>
</tr>
<tr>
<td>Cygon</td>
<td>F. A. 12</td>
<td>Ethenon</td>
<td>P. 7</td>
</tr>
<tr>
<td>Curan</td>
<td>F. H. 6</td>
<td>Ethenon</td>
<td>P. 7</td>
</tr>
<tr>
<td>Insecticide</td>
<td>Category</td>
<td>Insecticide</td>
<td>Category</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Parathion</td>
<td>X. 7</td>
<td>Piperonyl butoxide</td>
<td>A. 1</td>
</tr>
<tr>
<td>gamma BHC</td>
<td>C. 2</td>
<td>Proflora</td>
<td>PH. 4</td>
</tr>
<tr>
<td>gamma xanthate</td>
<td>C. 1</td>
<td>pyrethrin</td>
<td>X. 1</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>PH. 8</td>
<td>pyrethrin I</td>
<td>B. 2</td>
</tr>
<tr>
<td>Odellos</td>
<td>PH. 6</td>
<td>pyrethrin II</td>
<td>B. 2</td>
</tr>
<tr>
<td>Hexane</td>
<td>PA. 13</td>
<td>Resinex</td>
<td>D. 2</td>
</tr>
<tr>
<td>b remed</td>
<td>R. 4</td>
<td>Rhofame</td>
<td>PA. 12</td>
</tr>
<tr>
<td>methadine AC-228</td>
<td>PH. 2</td>
<td>Rine 8</td>
<td>PA. 18</td>
</tr>
<tr>
<td>Herbol</td>
<td>PA. 5</td>
<td>ronael</td>
<td>PC. 8</td>
</tr>
<tr>
<td>Iridan</td>
<td>PH. 4</td>
<td>ronael</td>
<td>PC. 8</td>
</tr>
<tr>
<td>2, 5-Dimethyldiamine</td>
<td>R. 6</td>
<td>Rotenone powder and resins</td>
<td>B. 1</td>
</tr>
<tr>
<td>Bayolan</td>
<td>X. 9</td>
<td>Ruston</td>
<td>PA. 10</td>
</tr>
<tr>
<td>Korban</td>
<td>PC. 8</td>
<td>saflavole</td>
<td>A. 7</td>
</tr>
<tr>
<td>Lebacicyc</td>
<td>PC. 11</td>
<td>Saphiton</td>
<td>PH. 9</td>
</tr>
<tr>
<td>Iridain</td>
<td>C. 2</td>
<td>Saphos</td>
<td>PH. 8</td>
</tr>
<tr>
<td>malathion</td>
<td>PA. 9</td>
<td>resinaex</td>
<td>A. 3</td>
</tr>
<tr>
<td>Malathion</td>
<td>PA. 9</td>
<td>Resinox</td>
<td>A. 3</td>
</tr>
<tr>
<td>Malathion</td>
<td>PA. 9</td>
<td>Sevin</td>
<td>X. 5</td>
</tr>
<tr>
<td>Malathion</td>
<td>PA. 9</td>
<td>Sevin</td>
<td>X. 5</td>
</tr>
<tr>
<td>MATAACL ®</td>
<td>X. 3</td>
<td>Slick</td>
<td>X. 10</td>
</tr>
<tr>
<td>Melipax</td>
<td>C. 5</td>
<td>Smithe</td>
<td>PA. 8</td>
</tr>
<tr>
<td>menazoon</td>
<td>PH. 9</td>
<td>Sulfomet-S-1564</td>
<td>PH. 4</td>
</tr>
<tr>
<td>metacaprolodioctoic</td>
<td>X. 2</td>
<td>Sumitrate A</td>
<td>A. 4</td>
</tr>
<tr>
<td>MESUROL ®</td>
<td>X. 2</td>
<td>Sumitrate S-1125A</td>
<td>A. 4</td>
</tr>
<tr>
<td>metaxydrone</td>
<td>PH. 10</td>
<td>Tefluno-Cide</td>
<td>A. 4</td>
</tr>
<tr>
<td>methylaldionbenzimidazoles</td>
<td>PH. 10</td>
<td>methylfluorexide</td>
<td>M. 4</td>
</tr>
<tr>
<td>methylparathion</td>
<td>PC. 1</td>
<td>Sumitrate A</td>
<td>B. 3</td>
</tr>
<tr>
<td>methylparathion</td>
<td>PC. 1</td>
<td>TDE</td>
<td>D. 5</td>
</tr>
<tr>
<td>Mepix ACTOX ®</td>
<td>PC. 2</td>
<td>Tedolox</td>
<td>C. 13</td>
</tr>
<tr>
<td>Nolicon®</td>
<td>X. 12</td>
<td>Tetron</td>
<td>X. 6</td>
</tr>
<tr>
<td>Nolicon®</td>
<td>X. 12</td>
<td>Telpas</td>
<td>R. 2</td>
</tr>
<tr>
<td>Nolicon®</td>
<td>X. 12</td>
<td>Telpas</td>
<td>R. 2</td>
</tr>
<tr>
<td>Nolicon®</td>
<td>X. 12</td>
<td>Telpas</td>
<td>R. 2</td>
</tr>
<tr>
<td>Nolicon® (sulfate)</td>
<td>PC. 0</td>
<td>Tighvion</td>
<td>PC. 11</td>
</tr>
<tr>
<td>Nitrocarb®</td>
<td>PC. 2</td>
<td>Loxol</td>
<td>PA. 2</td>
</tr>
<tr>
<td>Nitrocarb®</td>
<td>PC. 2</td>
<td>lindane</td>
<td>C. 5</td>
</tr>
<tr>
<td>Octachlor®</td>
<td>C. 3</td>
<td>Tribromford</td>
<td>PA. 1</td>
</tr>
<tr>
<td>Octec®</td>
<td>C. 3</td>
<td>Tribromford</td>
<td>PA. 1</td>
</tr>
<tr>
<td>Octec®</td>
<td>C. 6</td>
<td>Tribromford</td>
<td>PA. 1</td>
</tr>
<tr>
<td>Octezal®</td>
<td>C. 6</td>
<td>Tribromford</td>
<td>PA. 1</td>
</tr>
<tr>
<td>octelox</td>
<td>C. 7</td>
<td>Tribromford</td>
<td>PA. 1</td>
</tr>
<tr>
<td>OPA®</td>
<td>PC. 14</td>
<td>Tognol</td>
<td>PA. 1</td>
</tr>
</tbody>
</table>
5.1.2. Letter and Number Index

<table>
<thead>
<tr>
<th>Letter/Number</th>
<th>Chemical classification code</th>
<th>Letter/Number</th>
<th>Chemical classification code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>0211</td>
<td>DDV</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>12085</td>
<td>PA. 7</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>18183</td>
<td>PA. 12</td>
<td>D. 1</td>
</tr>
<tr>
<td>Am. Cyan.</td>
<td>5432</td>
<td>DDM</td>
<td>D. 1</td>
</tr>
<tr>
<td>APO</td>
<td>R. 2</td>
<td>Dowco</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>65551</td>
<td>PA. 14</td>
<td>D. 1</td>
</tr>
<tr>
<td>Bayer</td>
<td>123/69</td>
<td>DOW</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>23/129</td>
<td>ET-24</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>9010</td>
<td>ET-57</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>9017</td>
<td>C. 4</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>12147</td>
<td>ENT</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>19639</td>
<td>3730</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>25414</td>
<td>19793</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>26852</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>38009</td>
<td>9081</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>41582</td>
<td>21370</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>C. 16</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>PA. 7</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>E-600</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>E-601</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>E-602</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>H-582</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>C. 9</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>C. 3</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>S-1822</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>36-53</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>Compound</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>50952</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>28611</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>407</td>
<td>54103</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>C. 19</td>
<td>94189</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>D. 2</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>DDF</td>
<td>D. 1</td>
<td>D. 1</td>
</tr>
<tr>
<td></td>
<td>286</td>
<td>54103</td>
<td>D. 1</td>
</tr>
</tbody>
</table>

585
<table>
<thead>
<tr>
<th>Letter/Number</th>
<th>Chemical classification code</th>
<th>Letter/Number</th>
<th>Chemical classification code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3 -13055</td>
<td>PH 9</td>
<td>BP-9900</td>
<td>PA 30</td>
</tr>
<tr>
<td></td>
<td>X 8</td>
<td>S</td>
<td>PC 11</td>
</tr>
<tr>
<td>gamma BHG</td>
<td>C 2</td>
<td>-3752</td>
<td>PC 9</td>
</tr>
<tr>
<td>HCN</td>
<td>C 1</td>
<td>-3942</td>
<td>PA 5</td>
</tr>
<tr>
<td>HNO3</td>
<td>C 7</td>
<td>SD 2592</td>
<td>PC 23</td>
</tr>
<tr>
<td>Hercules AC-026</td>
<td>PH 5</td>
<td>-4254</td>
<td>C 10</td>
</tr>
<tr>
<td>HN3N</td>
<td>G 6</td>
<td>-4402</td>
<td>PC 39</td>
</tr>
<tr>
<td>MPA</td>
<td>R 4</td>
<td>-5889</td>
<td>PC 37</td>
</tr>
<tr>
<td>Hso 2871</td>
<td>C 9</td>
<td>8447</td>
<td>PA 4</td>
</tr>
<tr>
<td>BRS-1422</td>
<td>X 15</td>
<td>8139</td>
<td></td>
</tr>
<tr>
<td>L 11/6</td>
<td>PA 7</td>
<td>SP-1208</td>
<td></td>
</tr>
<tr>
<td></td>
<td>561</td>
<td>SQ</td>
<td>R 5</td>
</tr>
<tr>
<td>MCA-640</td>
<td>X 11</td>
<td>8308</td>
<td>R 1</td>
</tr>
<tr>
<td>ME-97</td>
<td>UC 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobil MC-A-630</td>
<td>X 11</td>
<td>18054</td>
<td>X 10</td>
</tr>
<tr>
<td>NO-282</td>
<td>PA 32</td>
<td>21149</td>
<td>X 8</td>
</tr>
<tr>
<td>NHA 10542</td>
<td>X 7</td>
<td>Upjohn</td>
<td>X 10</td>
</tr>
<tr>
<td>Niagara 5662</td>
<td>C 9</td>
<td>Velascoli</td>
<td>C 4</td>
</tr>
<tr>
<td>OM 2174</td>
<td>R 1</td>
<td>Velascoli 104%</td>
<td>C 3</td>
</tr>
<tr>
<td>OR-1191</td>
<td>PA 6</td>
<td>171/47</td>
<td>C 7</td>
</tr>
<tr>
<td>PP 175</td>
<td>PH 9</td>
<td>606</td>
<td>C 1</td>
</tr>
<tr>
<td>Prestico 74</td>
<td>PA 33</td>
<td>1088</td>
<td>C 3</td>
</tr>
<tr>
<td>E-1594</td>
<td>PH 4</td>
<td>5040</td>
<td>C 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7744</td>
<td>PA 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X 5</td>
</tr>
</tbody>
</table>

588
5.2. AUTHOR INDEX

5.2.1. Corporate Author Index

The Author is single or first author where references are underlined.

Batelle-Northwest, Richland, Wash. Pacific Northwest Lab.: 498, 499

California Univ., Los Angeles Lab. of Nuclear Medicine and Radiation Biology: 511

European Atomic Energy Community: 994

Food and Agricultural Organisation of the United Nations, Rome (Italy): 1537, 1728

International Lab. of Genetics and Biophysics, Naples (Italy): 999

Israel Atomic Energy Commission, Yavne, Soreq Nuclear Research Center: 1665

Leiden Rijksuniversiteit (Netherlands): 856, 950

Michigan State Univ., East Lansing: 904

Middle Eastern Regional Radiophosphate Centre for the Arab Countries, Cairo (Egypt): 1544, 1600

National Inst. of Genetics, Mishima (Japan): 967, 1944

National Inst. of Radiological Sciences, Chiba (Japan): 955, 1093, 1598

Nederlandse Organisatie voor Toegepaste Naturwetenschappen Onderzoek, Bijnwijk: 2010

Norish Hydro’s Inst. for Cancer Research, Oslo: 909

Oak Ridge National Lab., Tenn.: 929, 1093, 1816, 1917

Organismo Internacional Regional de Sanidad Agropecuaria, San Salvador (El Salvador): 1692

Quartermaster Research and Engineering Center, Nash, Mass.: 1854

5.2.2. Personal Author and Affiliation Index

Abdel-Malek, A.A. (1967) Department of Entomology, Faculty of Science, Cairo University, Giza, UAR.

Abdel-Malek, A.S. 90

Abdel-Wahhab, A.M. (1967) University of Assiut, Assiut, UAR.
Abel, E. A. (1966) Institute of Biological Physics, Academy of Sciences of the USSR, 35 Leninsky Prospekt, Moscow, USSR
Abrahamson, S. F. (1966) Department of Zoology, University of Wisconsin, Madison 6, Wis. 53706, USA
Abdel, Y. F. (1966) University of California, Davis, Calif. 95616, USA
Adler, A. (1966)
Affetsrandger, C. E. (1966) Department of Botany, West Virginia University, Morgantown, Va., USA
Aggarwal, S. K. (1964) Northwestern University, Evanston, Ill., USA
Agoitia, M. (1967) University of Chile, Santiago, Chile
Agnén, G. (1966) Institute of Medical Chemistry, University of Uppsala, Uppsala, Sweden
Ahmed, H. (1966) Radioisotope and Radiation Laboratory, Department of Locust Warning and Plant Quarantine, Karachi, Pakistan
Alday, D. J. (1965) Oxford University, Oxford, England
Ali, G. (1966) Israel Institute for Biological Research, Ness-Ziona, Israel
Ahzi, H. (1967) Botanical Experiment Station, Wada, Sugashima-ku, Tokyo, Japan
Akinwumi, D. A. (1967) University of Agriculture, Abeokuta, Nigeria
Aliev, E. S. (1966)
Almoh, E. J. (1966)
Allford, C. F. (1966)
Albert, L. (1966)
Allen, J. R. (1966)
Allen, R. R. (1966)
Alexander, D. A. (1966)
Altrinburg, R. (1966)

588
Albarus, L. 1964

Alston, T. 1949

Alexander, J. 1949

Alexe, G. 1919

Alfred, C.F. 1969

Allart, J. 469

Allan, J.R. 1969

Alley, D.A. 1968

Alsberg, B. 1951. 1956

Amaducci, L. 1967

Amann, N.M. 1954. 1936

Amity, R.L. 1966

Anderson, H.N. 1970

Anderson, C.A. 1968

Anderson, V.L. 1967

Andrew, N.R. 1967. 1968. 1965

Andrew, J.V. 1964. 1978. 1978

(1963) Research Institute of National Defense, Sandberg, Sweden

(1968) Cambridge University, Cambridge, England

(1968) Department of Zoology, University of Texas, Austin 12, Tex. 78712, USA

(1967) Genetics Foundation, University of Texas, Austin 12, Tex. 78712, USA

(1967) University of Texas, Austin 12, Tex. 78712, USA

(1965) Laboratoire d'Evolution des Euxinides, Paris 5e, France

(1965) Faculté des Sciences, Corbeil, France

(1966) Department of Micnobiology, College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada

(1966) Oregon State University, Corvallis, Oreg., USA

(1966) Entomology Research Division, ARS, USDA, Mission, Tex., USA

(1966) University of St. Thomas, 3015 Montrose Blvd., Houston, Tex., USA

(1967) Department of Neurology and Psychiatry, University of Florence, Florence, Italy

(1966) Department of Neurology and Psychiatry, University of California, Berkeley, Calif. 94720, USA

(1966) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1967) Biology Department, University of Oregon, Eugene, Oreg., USA

(1967) Chemagro Corporation, Kansas City, Mo., USA

(1967) Population Genetics Institute, Purdue University, Lafayette, Ind., USA

(1967) Department of Entomology, Texas A and M University, College Station, Tex., USA

(1967) All-Union Scientific-Research Institute for Plant Protection, Leningrad, USSR

589
(1963) Department of Zoology, University of Adelaide, Adelaide, Australia

(1965) Fish-Pesticide Research Laboratory, Denver Federal Center, Denver 25, Colo., USA

(1962) Purdue University, Lafayette, Ind., USA

(1964) University of Istanbul, Bayezit, Istanbul, Turkey

Anonymous
1, 29, 1052, 1533,
1555, 1555, 1348,
1817, 1828, 1838,
1839, 1940, 1841,
1942, 1943, 1944,
1945, 1946

Anonymous
540

Anthony, D.S.
1799

Antipov, V.V.
1501, 1512, 1529, 1533
1541, 1542, 1543, 1544

Apitzsch, U.
1398

Aravena, L.
110, 111

Armstrong, D.E.
749

Armstrong, J.F.
1295

Amsel, N., Jr.
898, 1099

Arnold, D.G.
237

Arnold, G.
328

Arroyo, M.
2, 3, 27, 1139, 2120

Arroyo Varela, M.
1520

Asenova, M.A.
1199

(1964) International Atomic Energy Agency, 71 Känner Ring, A-1030 Vienna, Austria

(1964) Botany Department, University of Florida, Gainesville, Fla., USA

(1964) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR

(1964) Forschungszentrum, Karlsruhe, Federal Republic of Germany

(1966) Department of Parasitology, School of Medicine, University of Chile, Santiago, Chile

(1966) University of Wisconsin, Madison 6, Wis., 53706, USA

(1966) Department of Biological Sciences, Northern Illinois University, DeKalb, Ill., 60115, USA

(1966) Lawrence Radiation Laboratory, Department of Zoology and Department of Genetics, University of California, Berkeley, Calif. 94720, USA

(1963) Columbia University, Morningside Heights, New York 27, N.Y., USA

(1964) Department of Zoology, Columbia University, Morningside Heights, New York 27, N.Y., USA

(1965) Estació Central de Fitopatologia, Instituto Nacional de Investigaciones Agronómicas, Madrid, Spain

(1966) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR
Arthur, S. M.
746, 747, 915

Asch, K. E.
1960

Asman, M.
895, 1133

Asman, S. M.
1161

Atallah, Y. M.
114

Auten, A. W., Jr.
595

Axe, K. C.
16, 245, 296, 350

Aubele, A. M.
1352

Aubele, S. M.
1097

Auerbach, S. I.
No. 507, 508, 1934

Avivi, A.
1052

Awan, T. M.
1908

Ayala, F. J.
1404, 1405

Ayer, R. F.
1907

Azaryan, G. K.
3510

Baarli, J.
101

Babayan, V. V.
101a

Baccetti, B.
504, 1836

Bachler, K. B.
1932

Babig, M. R. E.
393

(1967) Department of Zoology-Entomology, Agricultural Experiment Station, Auburn University, Auburn, Ala., USA

(1964) Department of Textile Chemistry, University of California, Berkeley, Calif., USA

(1959) University of Notre Dame, Notre Dame, Ind., USA

(1957) Mount Holyoke College, Northampton, Mass., USA

(1957) Department of Entomology and Nuclear Science Center, Louisiana State University, Baton Rouge, La., USA

(1953) Institute for Nuclear Research, Amsterdam, The Netherlands

(1952) Department of Microbiology, University of Illinois, Urbana, Ill., USA

(1950) Ohio State University, Columbus 10, Ohio, USA

(1949) Ohio State University, Columbus 10, Ohio, USA

(1948) Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1947) Israel Institute for Biological Research, Ness-Ziona, Israel

(1967) Department of Entomology, Mississippi Agricultural Experiment Station, State College, Miss., USA

(1967) Rockefeller University, New York, N.Y., USA

(1964) Hudson Institute, Groton-on-Hudson, N.Y., USA

(1959) Armenian Agricultural Research Institute, Yerevan, Armenian SSR

(1967) CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland

(1965) Armenian Agricultural Research Institute, Yerevan, Armenian SSR

(1965) University of Sienna, Sienna, Italy

(1965) University of Allahabad, Allahabad, U.P., India

(1960) Department of Radiobiology, Atomic Energy Establishment, National Research Centre, Dokki, Cairo, E.A.R.

591
BAILIE, D.
1960

(1967) Department of Zoology, University of British Columbia, Vancouver, B.C., Canada

BAUMER, E.D.
1971

BAKER, M.W.
1967

(1967) Boots Pure Drug Co., Ltd., Chemical Sciences Building, Research Department, Station Street, Nottingham, England

BAKER, W.K.
1967

(1967) University of Chicago, Chicago 37, Ill., USA

BAKKER, J.E.
1975

(1967) Metabolism and Radiation Research Laboratory, USDA, Fargo, N. Dak., USA

BALAZS, T.
1977

(1966) Department of Pharmacological Research, Experimental Therapy Research Section, Federola Laboratories Division, American Cyanamid Co., Pearl River, N.Y., USA

BALBONI, E.E.
1975

(1967) Department of Biological Sciences, Hunter College, New York City University, New York 3, N.Y., USA

Baker, J.
1966

(1966) Institute of Experimental Botany, Czech Academy of Science, Prague-Velvocize, CSSR

Baldwin, W.F.

(1966) Chalk River Nuclear Laboratories, Atomic Energy of Canada Ltd., Chalk River, Ont., Canada

Ball, H.I.
1971

(1967) University of Nebraska, Lincoln, Nebr., USA

Ball, R.C.
1965

(1965) Department of Fisheries and Wildlife, Michigan State University, East Lansing, Mich., USA

Ballock, J.W.
1967

(1966) Entomology Research Division, ARS, USDA, Hilo, Island, Hawaii

Banerjee, D.
1967

(1967) Saha Institute of Nuclear Physics, Calcutta, India

Barnabé, R.
1969

(1967) Disciplina de Chimic Fizica, Tirog Muzei, Roumania

Barabáš, C.
1975

(1973) Centre Universitario di Ricerca ed Applicazione di Medicina Nucleare, Ospedale di Circulo, Venezia, Italy

Baradzis, J.
1966

(1966) Department of Biochemistry, M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszaw, Poland

Barletta, M.
1969, 1969

(1969) Centro National de la Recherche Scientifique (C.N.R.S.), Gif-sur-Yvette, France

Barigouzli, C.
1966

(1966) University of Milan, Milan, Italy

Barlow, P.S.
1966

(1966) Department of Entomology, MacDonald College, McGill University, Montreal 2, P.Q., Canada

Baruch, C.
1960

(1960) Baruch, R.I.
410, 833

Barrow-Humphreys, H.
1969

Barr, M.I.
1969

Barney, B.D.
1964

Bart, C.A.
34

Barthol, W.P.
1959

Barlow, A.C.

Barlow, T.J.
1975

Basilie, E.
1953

Basko
70

Bateman, A.I.
1951, 1952

Baster, H.
1959

Baumhover, A.H.
1969, 1973

Baumiller, R.C.
1964

Baxter, R.C.

Bazzini, E.
1958

Beilby, R.H.
1961

Beard, R.I.
1962, 1966

Beard, W.E.
1958
Barbeau, C. 1979

Baron, R.I. 311, 411

Bartholomew, H. 1986

Barr, H.J. 549

Barry, B.D. 134

Bartholomew, W.F. 549

Barrett, A.C. 252, 1058, 1407

Barclay, W.J. 472

Barilla, R. 983

Busa, T. 70

Bateman, A.J. 969, 993

Bauer, H. 993

Baumhover, A.H. 1494, 1703

Baumhauer, R. C. 1504

Baxier, R.C. 1340, 1352, 1408, 1495, 1407

Bezzi, E. 699, 709

Beal, R.H. 1421

Beard, R.L. 1692, 2700

Beard, W.E. 692

(1943) Institut du Radium, 12 Rue Pierre-Curie, Paris, France

(1957) Division of Food Chemistry, Bureau of Science, Food and Drug Administration, Washington, D.C. 20244, USA

(1965) Department of Zoology, University of Wisconsin, Madison 6, Wis. 53706, USA

(1967) Entomology Research Division, ARS, USDA, Wooster, Ohio, USA

(1966) University of Texas, Austin 12, Tex. 78712, USA

(1967) Entomology Research Division, ARS, USDA, State College, Miss., USA

(1966) Union Carbide Corporation, South Charleston, Va., USA

(1968) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1967) Saha Institute of Nuclear Physics, Calcutta, India

(1968) Battelle Laboratories, Christian Hospital and Holt Radium Institute, Winthorpe, Manchester 20, England

(1967) Max-Planck-Institut für Meeresbiologie, Tübingen, Federal Republic of Germany

(1965) Fruit and Vegetable Insect Research Branch, Entomology Research Division, ARS, USDA, Oxford, M.C., USA

(1967) Johns Hopkins School of Medicine, Moore Clinic, Baltimore, Md., USA

(1965) Department of Radiation Biology and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, N.Y., USA

(1965) Istituto di Ricerca Agenzia, Società Montecatini, Milan, Italy

(1966) U.S. Forest Service, Gulfport, Miss., USA

(1966) Connecticut Agricultural Experiment Station, New Haven, Conn., USA

(1967) Soil and Water Conservation Research Division, ARS, USDA, Fort Collins, Colo., USA
Barker, G.
1923

Bar, M.
1999

Berman, W.
254, 994

(Berliner, D.E.
1985

Bell, A.E.
150, 2467

Belokozovskii, A.N.
287

Bejanyans, C.Y.
1068

Bens-Szez, N.
1277, 1068

Bender, H.A.
1955

Bennett, A.F.
1106, 1137, 1139

Bennett, S.E.
1130

Bennet, S.
1478

Bennett, M.S.
1478

Bess, G.
248

Bejtik, C.C.
1189

Berend, H.D.
315, 318, 241, 249

Berendayev, E.L.
548

Bergdor, H.D.
4462

Bergmaaqomov, E.
248

Berry, S.J.
248, 254, 549, 547

Bersyran, A.A.
1231, 1232, 1237, 1236

Beynon, W.B.
497

Bhat, R.S.
1372

Bhat, R.M.
1372

Bhaskar, G.
1372

Bedanyev, A.M.
254, 258, 548

Bischoff, N.
117

Bischoff, M.
117

Bischoff, M.
117

Bischoff, M.
117

Bioksi, N.
117

Bisok, N.Y.
257

Bisok, N.Y.
257
Bentz, A. A.
1941, 1955, 1957, 1966

Beynon, K. H.
1966

Shambhobani, G.
1966

Shamburkar, M. W.
1966

Shamsuddin, G.
1972

Shat, J. V.
1981, 1987

Shatnager, P. L.

Shinuya, A. D.

Biberali, A. V.
1964

Bibow, W. H.
1969

Blatt, K.

Bleiva, D. S.

Brogelli, M. H.
1966

Binnard, R.
1966

Binnard, R. M.
1966

Binning, A.
1966

Birnbaum, N.
1966

Birnbaum, M. L.
1966

Birt, L. M.
1966, 1967

Biryukova, N. V.
1966

(1967) Department of Entomology, Washington State University, Pullman, Wash., USA
(1964) Woodstock Agricultural Research Centre, Stoll Research Ltd., Sissinghurme, Kent, England
(1966) Indian Agricultural Research Institute, New Delhi, India
(1967) Biology Division, Atomic Energy Establishment, Trombay, Bombay, India
(1956) Fermentation Technology Laboratory, Indian Institute of Science, Bangalore 2, India
(1967) Department of Physiology, School of Medicine, University of Miami, Coral Gables, Fla., USA
(1967) Atomic Energy Centre, Dacca, Pakistan
(1966) Entomology Research Division, ARS, USDA, Fargo, N. Dak., USA
(1966) Zoologisches Institut, Westfälische Wilhelms-Universität, 2 Scharnplatz, Münster, Federal Republic of Germany
(1967) Moscow State Medical Institute, Moscow, USSR
(1966) National Aeronautics and Space Administration, Ames Research Center, Moffett Field, Calif., USA
(1966) Department of Chemistry, Victoria University, Wellington, New Zealand
(1969) Stored-Products Research Laboratory, Department of Plant Protection, Ministry of Agriculture, 6 Dvor St., Jaffa, Israel
(1966) Institute of Animal Genetics, West Main Road, Edinburgh, Scotland
(1967) Department of Biochemistry, University of Sheffield, Sheffield 10, England
(1966) A. N. Severson Institute of Animal Morphology, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR
Bache, K. 598
Baeke, A.B. 872, 875, 877
Beets, R.C. von 916, 919, 982, 995, 1121, 1122, 1136, 1142
Beve, B.G. van den 598
Bourn, G.C. 1146, 1458
Bosman, T. 294
Bosshuis, G. 1350
Bourgeois, F. 512
Bouke, J.B. 1720, 1738
Boush, G.M. 660, 664, 757
Bowman, E.R. 564
Bowman, J.T., N. 1693
Bowman, M.C. 879
Boyd, J.B. 118, 119, 727
Boyd, J.E. 727
Boyter, A.C. 636
Braida, P. 610
Brak, J.A.W. 261
Brassel, J.R. 895, 896, 1541

Bachofen, R. 1594
Blackwell, J.L. 1581
Blair, H.A. 1495, 1496, 1497
Blaylock, B.G. 598, 1464, 1465, 1492, 1493, 1494
Blazek, J. 5189
Bloom, D.P. 222
Blinn, M.R. 1397
Bockhop, C.W. 1699
Boech, J. 1787
Boldy, J.L. 1549
Bogner, R.L. 509, 1222, 1730, 1737
Bogulaceanu, G. 1308
Boisot, M.H. 1649
Boldyshev, M.I. 1776
Bohnkara, E.K. 1429
Bond, V.P. 23
Bonfig, D. 1493
Bonser, G. 917
Boontiam Dityarsarn 1490
Boose, R.R. 596

(1969) Zoologisches Institut, Humboldt-Universität, Berlin, Federal Republic of Germany
(1969) Washington State University, Pullman, Wash., USA
(1967) Department of Radiation Biology and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, N.Y., USA
(1987) Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1967) Department of Botany and Cell Research Institute, University of Texas, Austin 25, Tex. 78712, USA
(1967) Laboratoire de Zoologie, Faculté des Sciences, Orsay (R.O.), France
(1966) Agricultural Engineering Department, Iowa State University, Ames, Iowa, USA
(1967) Department of Entomology, Louisiana State University, Baton Rouge, La., USA
(1958) Nuclear Science and Engineering Corporation, Pittsburgh, Pa., USA
(1964) Association for the Development of Industrial Applications of Radiation, Paris, France
(1985) Cemshce Nuclear Research Centre, Isbnzul, Turkey
(1986) Brookhaven National Laboratory, Upton, N.Y., USA
(1964) Institut für Biophysik, Universität Bonn, 1 A der Immensburg, 53 Bonn, Federal Republic of Germany
(1959) University of Stockholm, 136 Drottninggatan, Stockholm, Sweden
(1959) Biological Science Division, Office of the Atomic Energy for Peace, Bangkok, Thailand
(1987) Department of Entomology, Oregon State University, Corvallis, Or., USA
Borck, K., 382
Böck, A.B., 873, 875, 877
Borret, R.C. von, 218, 219, 862, 888, 1201, 1129, 2450, 2192, 1139
Bro, D.G. van den, 385
Broms, G.C., 1964, 1904
Brunn, T., 204
Bourgu, G., 1950
Boudoux, P., 516
Bourdier, J.B., 1900, 1206
Bouth, G.M., 660, 664, 757
Bowman, E.R., 654
Bowman, J.T., Jr., 1609
Bowman, M.C., 879
Boyd, J.B., 318, 319, 797
Boyd, J.E., 727
Bosler, A.C., 698
Bracha, P., 610
Birk, J.A.W., 201
Brannen, J.R., 636, 640, 1142
(1966) Department of Entomology, University of California, Riverside, Calif., USA
(1966) Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA
(1967) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1967) Laboratory of Organic Chemistry, State University of Leyden, 67-69 Rijnsburg, Leyden, The Netherlands
(1967) Department of Physiology and Biophysics, University of Illinois, Urbana, Ill., USA
(1965) Entomology Department, University of Natal, King George V Avenue, Durban P.O. R. 875, Pietermaritzburg, South Africa
(1960) Mount Sinai Hospital, New York, N.Y., USA
(1962) Biology Service, Joint Research Centre, EURATOM, Caselle Postale 1, Ispra, Italy
(1967) New York State Agricultural Experiment Station, Geneva, N.Y., USA
(1967) Department of Entomology, University of Wisconsin, Madison 5, Wis. 53706, USA
(1956) Utah State University, Logan, Utah, USA
(1967) Entomology Research Division, ARS, USDA, Tifton, Ga., USA
(1967) Agricultural Division, American Cyanamid Co., Princeton, N.J.
(1967) Agricultural Division, American Cyanamid Co., Princeton, N.J., USA
(1967) "Shell" Development Company, Modesto, Calif., USA
(1966) Section of Neurobiology and Behaviour, Cornell University, Ithaca, N.Y., USA
(1965) State University, 29 Kromme Nieuwe Gracht, Utrecht, The Netherlands
(1966) Department of Entomology, Mississippi Agricultural Station, State College, Miss., USA
Siewbaker, J.L. 1636, 1659, 1696, 1697

Ente-Grégoire, S. 58, 105

Bredero, T.A. 925

Sato da Costa, A. 925

Broadbent, L. 580

Bruce, A.B. 1574

Brooker, V.J. 1581, 466

Brooks, G.T. 411, 1374

Brooker, C.R. 512

Byer, J.H. 1468, 1469, 1530

Brown, A.W.A. 527, 606

Brown, C.A. 1468

Brown, R.W. 615

Brownell, L. 1636

Browning, L.S. 1631, 1256

Brunel, C. 105

Burt, R.A. 78

Buchanan, J.D. 1729

Buchhold, M. 1598

Budikiniasen, I. 1636

(1966) College of Tropical Agriculture, University of Hawaii, Honolulu, Hawaii

(1986) Institut Léon Frédéricq, Biochimie, Université de Liège, 7 Place de XX-Août, Liège, Belgium

(1966) Entomology Research Division, ARS, USDA, Ames, Iowa, USA

(1916) Departamento de Biologia General, Universidade de São Paulo, Cidade Universitária Annando de Salles Oliveira, Caixa Postal 8191, São Paulo, Brazil

(1966) University of Bath, Bath, England

(1967) Department of Entomology and Radiology, University of Florida, Gainesville, Fla., USA

(1967) Department of Entomology, Oregon State University, Corvallis, Oreg., USA

(1967) Ohio State University, Columbus 10, Ohio, USA

(1967) Washington University, Saint Louis 30, Mo., USA

(1966) Stored-Products Insect Laboratory, 5401 Edwin Avenue, Savannah, Ga., USA

(1967) Department of Zoology, University of Western Ontario, London, Ont., Canada

(1967) Department of Entomology, University of Georgia, Athens, Ga., USA

(1997) Carver Research Foundation, Tuskegee Institute, Ala. 36128, USA

(1907) Department of Chemical and Metallurgy Engineering, University of Michigan, Ann Arbor, Mich., USA

(1960) University of St. Thomas, 3932 Montrose Blvd., Houston, Tex., USA

(1965) Faculty of Science, University of Science, University of Lyon, Lyon, France

(1966) Department of Entomology, University of Manitoba, Winnipeg, Man., Canada

(1963) Harwell Nuclear Corporation of Palo Alto, Palo Alto, Calif., USA

(1967) Lawrence Radiation Laboratory, University of California, Berkeley, Calif. 94720, USA

(1966) College of Tropical Agriculture, University of Hawaii, Honolulu, Hawaii

Baginski, V.I. 1175

Ball, D.L. 1918, 206, 701, 706, 715, 813, 914, 818, 824, 979

Ball, W.M. 757

Bemberger, J.B. 1188

Beach, L.E. 465, 477

Barker, G.S. 1763

Baskett, A.K., Jr. 1791

Bardene, W.C. 1628

Baudet, A., Jr. 1347

Budde, W.J. 1504

Burgess, E.E. 1324

Burk, J. 836

Burkholder, W.E. 1332, 1346, 1380, 1391, 1477

Burks, M.I. 371

Butler, L. 1504, 1535, 155

Butland, R.C. 1541, 1558

Butt, R.A. 1560

Bussani-Traverso, A.A. 1465

Bychkovskaya, I.B. 1429, 1435, 1454
Bulgigos, V. I. 1150

Bull, D. L.
289, 290, 701, 902, 701, 314, 314, 314, 384, 1791

Bullock, M. W. 727

Bumpener, J. E. 1138

Burch, G. E.
465, 477

Burden, G. S. 1388

Burdu, A. K., Jr. 1791

Burderer, W. C.
138

Burdett, A. K., Jr. 1647

Burdett, W. J. 1148

Burges, E. E.
1124

Burt, J.
380

Burchholder, W. E.
1380, 1346, 1396, 1391, 1477

Burt, M. L.
371

Burnell, E. 324, 521, 1508

Bushland, R. C. 1941, 1989

Burtt, B. A. 1560

Buseck, J. R., A.A. 1465

Bychkovskys, I. B.
1465, 1465, 1464

(1967) Common Research Branch, Entomology Research Division, ARS, USDA, College Station, Tex. 77841, USA

(1967) Agricultural Division, American Cynad Co., Princeton, N.J., USA

(1966) Louisiana State University, Baton Rouge, La., USA

(1966) Charity Hospital of Louisiana, New Orleans, La., USA

(1965) ARS, USDA, Beltsville, Md., 20705, USA

(1968) Laboratory of Clinical Biology, Department of Biology, College of Medicine, University of Utah, Salt Lake City, Utah, Mich., USA

(1966) Entomology Research Division, ARS, USDA, Honolulu, Hawaii

(1967) University of Texas, M.D. Anderson Hospital and Tumour Institute, Houston, Tex., USA

(1966) Department of Agricultural Biology, Agricultural Experiment Station, University of Tennessee, Knoxville, Tenn., USA

(1965) Department of Entomology, University of California, Riverside, Calif., USA

(1968) Maine Quality Research Division, Stored-Product Insects Research Branch, ARS, USDA, Fresno, Calif., USA

(1965) Entomology Research Division, ARS, USDA, 4315 Gourier Avenue, Baton Rouge, La., USA

(1967) Department of Biological Sciences, University College of Rhodesia and Nyasaland, Salisbury, Rhodesia

(1967) Entomology Research Division, ARS, USDA, Beltsville, Md., USA

(1965) Instituto di Genetica, University of Padua, Padua, Italy

(1965) Central Scientific Research Institute of Roentgen Radiology, Leningrad, USSR

599
Byrum, R.B. 555 (1966) Michigan State University, East Lansing, Mich., USA

Cáhalles, F. 566, 1182, 1183, 1186 (1965) Estación Central de Fitopatología, Instituto Nacional de Investigaciones Agropecuarias, Madrid, Spain

Cahallos, D. 615 1756

Caino, K.T. 1130 (1966) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Caldern, A. 703 (1980) Imperial Chemical Industries Ltd., Agricultural Division, Beckett's Hill Research Station, Bracknell, Berks., England

Calden, M. 1798 (1980) Stored-Product Research Laboratory, Department of Plant Protection, Ministry of Agriculture, 6 Dorot St., Haifa, Israel

Call, F. 601 (1967) Imperial College Field Station, Sunninghill, Berks., England

Camargo E. Bleiermann 247 (1967) Department of Zoology, University of Wisconsin, Madison 3, Wis. 53706, USA

Camp, A.S. 1741, 1748 (1957) Doore Laboratory, Lawrence Radiation Laboratory, and Electronics Research Laboratory, University of California, Berkeley, Calif. 94720, USA

Camp, H.B. 315 (1957) Department of Zoology-Entomology, Agricultural Experiment Station, Auburn University, Auburn, Ala., USA

Campion, D.G. 3137

Campos, M. 507 (1960) Laboratório de Radioquímica do Instituto de Pesquisas Radioativas da Escala de Engenharia da UFMG, Brazil

Candy, D.J. 389, 385 (1967) Department of Biochemistry, Birmingham University, Edgbaston, Birmingham 16, England

Cantin, M. 1712 (1967) Faculty of Medicine, Laval University, Quebec, Canada

Cantwell, C.E. 1110 (1968) Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA

Capretti, M. 1125 (1968) University of Padua, Padua, Italy

Caprì, R. 466 (1968) Department of Parasitology, Faculty of Medicine, Universidade do Mato Grosso, Belo Horizonte, Mato Grosso, Brazil

Carden, J.E. 1653

Cardoso, M. 1481 (1962) Istituto di Genetica, University of Naples, Naples, Italy

Carillo, J.L. 934

Carleton, W.M. 3773

Carlson, J.G. 308, 306, 666, 677, 1138

Carré, G.C. 465

Cartee, J.E. 930, 930, 286, 850, 933, 899, 843, 844, 889, 897, 892, 909, 906

Caspari, E.W. 39, 249, 246

Castady, J.D. 247

Castro, T.F. 658

Catter, A. 1158

Caste, R. 1318

Caswell, R. 49, 48, 51, 53, 55, 54, 55, 479, 471, 616, 1346, 1553, 1772

Chadwick, R.W. 676

Chambres, D.I. 446

Chang, S.K. 198

Challis, A.C. 447, 429

Chang, S.C. 874, 875, 876, 877

Chang, T.H. 548

Chapman, R.A. 56
Castron, W. M.
3773
(1967) Institute of Radiation Biology, University of Tennessee, Knoxville, Tenn., USA

Carlson, I. G.
306, 396, 986, 997, 1016

(1967) Department of Biology, Bowling Green University, Bowling Green, Ohio, USA

Carney, G. G.
447

(1967) Division of Entomology, University of California, Berkeley 94720, Calif., USA

Cassida, J. E.
839, 836, 828, 830, 838, 839, 845, 846, 852, 870, 895, 938, 899

(1966) University of Rochester, Rochester, N.Y., USA

Caspari, E. W.
29, 244, 249

(1967) Department of Biology, Providence College, Providence, R.I., and Marine Biological Laboratory, Woods Hole, Mass., USA

Cassidy, J. D.
147

(1967) Department of Soil Microbiology, International Rice Research Institute, Manila Hotel, Manila, Philippines

Castillo, T. P.
652

(1965) Instituto de Química, Madrid, Spain

Chalas, R.
1318

(1967) Laboratoire d'Hydrologie, Faculté des Sciences, 118, Route de Narbonne, Toulouse, Haute-Garonne, France

Cavallo, R.
46, 69, 53, 58, 59, 54, 55, 279, 271, 510, 1340, 1633, 1722

(1958) Biology Service, Joint Research Centre, EURATOM, Casella Postale 1, Ispra, Italy

Chadwick, R. W.
678

(1967) Utah State University, Logan, Utah, USA

Chambers, D. L.
442

(1967) Entomology Research Division, ARS, USDA, Riverside, Calif., USA

Chan, W. K.
126

(1967) Department of Biochemistry, Medical Center, University of Kentucky, Lexington, Ky., USA

Chandler, A. C.
447, 1529

(1966) Cytogenetics Department, Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester 20, England

Chang, C. C.
874, 976, 876, 977

(1967) Entomological Research Division, ARS, USDA, Beltsville, Md. 20705, USA

Chang, T. H.
448

(1977) Research Institute, St. Joseph's Hospital, Lancaster, Pa., USA

Chaplak, R. A.
38

(1967) Department of Zoology, Oxford University, Oxford, England

...
Chang, A.J. 791
(1966) University of Massachusetts, Easthampton, Mass., USA

Chaudhary, K.D. 789, 850
(1967) Department of Biochemistry, Faculty of Medicine, Laval University, Quebec, P.Q., Canada

Chazottes, R. 476, 491
(1965) Laboratoire de Psychophysiology, Faculte des Sciences, Strasbourg, France

Chen, W. 27, 38, 350, 235
(1967) Department of Zoology, University of Western Ontario and Canada, Department of Agriculture, London, Ont., Canada

Chellman, F.M. 24
(1961) Oregon State University, Corvallis, Ore., USA

Chen, P.S. 231, 242, 238
(1968) Institute of Zoology and Comparative Anatomy, Universität Zürich, Zürich, Switzerland

Chester, G. 349
(1967) University of Wisconsin, Madison 6, Wis. 53706, USA

Chertov, V.S. 1341
(1968) Biological Science Division, Office of the Atomic Energy for Peace, Bangkok, Thailand

Chiang, J.I.H. 308
(1967) Canada Agriculture Research Station, Vieland, Ont., Canada

Chiba, M. 302
(1967) Japan Agriculture Research Station, Tokyo, Japan

Chigovsky, G.A. 9
(1966) School of Hygiene and Public Health, Johns Hopkins University, Baltimore 18, Md., USA

Childress, C.C. 453
(1967) Biological Institute, College of General Education, University of Tokyo, Kansai, Japan

Chitnis, H. 353
(1967) Biological Institute, College of General Education, University of Tokyo, Kansai, Japan

Chitravati, W. 183
(1965) Biochemistry Department, M. Nericoli Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Cho, W.K. 1311
(1964) Department of Zoology, Seoul National University, Seoul, Korea

Choi, C.C. 1275
(1962) University of Hawaii, Honolulu, Hawaii

Choi, S.Y. 1442
(1962) University of Hawaii, Honolulu, Hawaii

Choudhury, S.U. 1252
(1969) Atomic Energy Centre, Daega, Pakistan

Christian, J.E. 1725
(1962) Purdue University, Lafayette, Ind., USA

Chumakina, L.V. 155, 178
(1954) Academy of Sciences, Siberian Branch, Novosibirsk, Russia

Chung, K.A. 672
(1967) Department of Biochemistry, Faculty of Medicine, Laval University, Quebec, P.Q., Canada

Chung, S.L. 1978
(1967) Department of Zoology, University of Western Ontario and Canada, Department of Agriculture, London, Ont., Canada

Clife, U. 48, 50, 51, 53, 54, 1540
(1961) Oregon State University, Corvallis, Ore., USA

Claborn, H.V. 240
(1961) Oregon State University, Corvallis, Ore., USA

Clark, A.G. 514
(1949, 1956)

Clark, A.M. 1499, 2406
(1968)

Clark, J. 731
(1968)

Clark, W.J. 1294
(1968)

Clarke, J.M. 128
(1968)

Claypool, C.J. 452
(1968)

Clayton, R.B. 364, 383
(1968)

Clements, A.N. 56
(1968)

Clements, G.P. 704
(1968)

Clements, R.D. 56
(1968)

Clavar, U. 223, 224, 225, 226, 227, 449, 410
(1968)

Chiff, W.J. 721
(1968)

Chinc, E.K. 153, 373
(1968)
Charnikov, L.V. 165, 176
Chung, R.A. 613
Chung, S.L. 1578
Citro, U. 49, 50, 55, 32, 34, 1340
Claborn, H.V. 740
Clark, A.G. 614
Clark, A.M. 1408, 1409
Clark, J. 793
Clark, W.J. 1394
Clarke, J.M. 330
Clarke, K. U. 187, 231
Claypool, C.J. 269
Clayton, R.B. 654, 663
Clements, A.N. 90
Clements, G.P. 704
Clements, R.D. 36
Clever, U. 244, 294, 295, 296, 387, 649, 650
Cliff, W.J. 731
Cline, R.E. 322, 515
(1965) A.N. Bahch Biochemical Institute, USSR Academy of Sciences, Moscow, USSR
(1967) Carver Research Foundation, Tuskegee Institute, Ala., 36088, USA
(1967) New York State Agricultural Experiment Station, Geneva, N.Y., USA
(1965) EURATOM, I, Casella Postale, Ispra, Italy
(1965) Entomology Research Division, ARS, USDA, Kerrville, Tex., USA
(1966) Department of Chemistry, Victoria University, Wellington, New Zealand
(1987) University of Delaware, Newark, Del., USA
(1966) Department of Biology, Texas A and M University, College Station, Tex., USA
(1968) Medical Research Council Gerontology Group, Department of Zoology, University College, London, England
(1966) Department of Zoology, University of Nottingham, University Park, Nottingham, England
(1967) Department of Botany and Cell Research Institute, University of Texas, Austin 12, Tex., 78712, USA
(1968) Harvard University, Cambridge 38, Mass., USA
(1967) Millward Laboratory of Chemical Enzymology, 'Shell' Research Ltd., Sittingbourne, Kent, England
(1967) Department of Entomology, University of Maryland, College Park, Md., USA
(1967) Department of Biological Sciences, Purdue University, Lafayette, Ind., USA
(1966) Biochemistry Branch, Medical Research Laboratory, U.S. Army, Edgewood Arsenal, Md. 21010, USA
(1966) Biology and Chemistry Section, Technology Branch, National Communicable Disease Center, Public Health Service, U.S. Department of Health, Education, and Welfare, Atlanta, Ga., USA
Clay, M.A. 1165

Cline, P. 1310

Cochran, D.G. 1100

Cockrell, R.C. 1791

Coles, R.L. 728

Cogbert, R.R. 1555, 1546, 1590, 1291, 1477

Cohen, J. 1889

Cole, K.W. 1448

Cole, L.J. 1269, 1138

Coley, A.W.P. 754

Coleman, D.C. 57, 58, 512, 518

Coates, G.C. 139

Collier, C.W. 878

Collins, C. 838

Collins, J.V. 140, 142, 187

Collins, P. 1548

Comar, G.I. 20

Condon, W.V. 519

Cook, E.E. 592

Coomer, C.W. 1090

Cook, B.J. 462

Cope, O.S. 616

Coppage, J.R. 812, 814, 816, 834

Corbel, J.C. 526

Costell, P.B. 59, 1654, 1664, 1656, 1658, 1657

Cotter, A. 710

Cox, J.J. 530

Cowen, R.C. 656

Coulson, M. 1399, 1400

Courrier, J.E. 91

Cox, H.C. 879

Craig, G.S., Jr. 1111, 1442

Craigm, R. 482

Crampton, E.L. 800

Cramble, L. 843

Crampton, H.L. 1168, 1364, 1781

Creme, M.D. 366, 360, 627, 760, 477

Coombs, S.T. 422

Crosby, D.G. 817
Conner, G.W.
2069

Cook, B.J.
408

Cope, O.B.
618

Coppendge, R.L.
813, 814, 818, 884

Cochel, J.C.
658

Cornwell, P.B.
58, 1033, 1654, 1655, 1656, 1658, 1659

Cortes, A.
779

Costa, J.F.
329

Cooper, E.C.
868

Corliss, M.
1769, 1400

Courtois, J.E.
94

Cox, H.C.
879

Craig, G.R., Jr.
3111, 1348

Craig, R.
402

Champleon, E.L.
899

Croome, E.L.
810

Curnow, H.L.
319, 1854, 1791

Curnow, H.D.
365, 366, 367, 368, 491

Custen, B.T.
409

Crosby, D.G.
627

(1965) Department of Zoology, State University of South Dakota, Vermillion, S.Dak., USA

(1967) Metabolism and Radiation Research Laboratory, Environmenal Research Division, A.R.C., USDA, Fargo, N. Dak., USA

(1964) Fish-Pesticide Research Laboratory, U.S. Bureau of Sport Fisheries and Wildlife, Denver, Colo., USA

(1967) Entomology Research Division, A.R.C., USDA, College Station, Tex., 77843, USA

(1965) Laboratoire de Biologie Animale du S.P.C.N., 12, Rue Cuvier, Paris 6e, France

(1966) Research Foundation, National Cancer Association, Berkeley, Calif., USA

(1967) Pesticide Research Laboratory, Pennsylvania State University, University Park, Pa., USA

(1968) Section de Biologie Générale et Appliquée de la Faculté des Sciences de Lyon, Laboratoire de Biologie, Lyon, France

(1967) Laboratoire de Chimie Biologique, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 6e, France

(1967) Entomology Research Division, A.R.C., USDA, Tifton, Ga., USA

(1954) University of Notre Dame, Notre Dame, Ind., USA

(1967) University of California, Berkeley, Calif., 94720, USA

(1967) Boots Pure Drug Co. Ltd., Chemical Sciences Building, Research Department, Station Street, Nottingham, England

(1967) Department of Entomology and Radiology, University of Florida, Gainesville, Fla., USA

(1968) Biochemistry Department, A.R.C. Pest Insecticide Laboratory, London Road, Slough, Bucks., England

(1956) Fordham University, East Fordham Road, New York 88, N.Y., USA
Cress, W. G. 1055
Cromley, D. A., Jr. 48, 314, 315, 335, 336, 336, 344, 544, 546, 1506, 1525
Crouse, H. V. 15
Cruz, A. A. de la 317
Curcopp, L. K. 1533
Czapliński, E. 489, 533
D'Ascoli, A. 497
D'Couto, M. 369
Daget, J. 1627
Dalim, P. A. 966, 766, 767
Daley, E. F., Jr. 584
Dallaire, J. 246, 265, 266, 281, 359, 423, 424, 425, 426, 427
Dale, P. S. 1596
Daluege, M. A. 1488, 1496
Darwin, D. A. 1712
Datheholt, B. 526
Daniel, G. 922
Danieli, G. A. 202
Daniels, P. J. A. 301
Danevel, J. 473, 474
Darby, F. J. 583, 585
Darsenskaya, N. G. 1449
Darziano, G. P. 1138
Dassch, F. 1136
Dassier, M. 1351, 1422
Daumer, W. C. 246
Davis, D. M. 547
Davis, D. P. 1063
Davis, J. J. 526
Davydov, B. I. 1199
Dawkins, C. 2978
Day, J. W. 999, 999, 3065
Dee, M. N. 1832
De Capoa, A. 1481
Debney, C. W. 34, 1083
Deckers, K. 253, 553, 555
Deckers, W. 795
Danneel, L.
478, 479

Daszy, P. J.
363, 508

Dekterovskaya, N. G.
1669

D barrenov, C. P.
1226

Daucli, P.
1866

Dauver, M.
1361, 1422

Dawson, M. D.
547

Dawson, D. H.
1882

Dawson, J. J.
504

Day, J. W.
596, 692, 1065

De, H. N.
1682

De Capua, A.
2481

Debney, C. W.
34, 1082

Decker, K.
880, 884, 895

Decker, W.
735

Dedekte, W.
571, 575, 705, 707, 708, 709, 711, 713, 715, 716, 717, 724, 725, 728, 747, 7757

(1967) Institut für Angewandte Zoologie, Universität Bonn, I Am der Immenburg, 55 Bonn, Federal Republic of Germany
(1966) Department of Chemistry, Victoria University, Wellington, New Zealand
(1966) Ministry of Public Health of the USSR, Moscow, USSR
(1957) Department of Physiology, School of Medicine, University of Miami, Coral Gables, Fl., 33124, USA
(1966) Department of Entomology, North Carolina State University, Raleigh, N. C., USA
(1966) McMaster University, Hamilton, Ont., Canada
(1966) Market Quality Research Division, ARS, USDA, Hyattsville, Md., USA
(1966) Division of Biology and Medicine, U.S. Atomic Energy Commission, Washington, D.C., USA
(1980) Institute of Biological Physics, Academy of Sciences of the USSR, 38 Leningrad Prospect, Moscow, USSR
(1966) ARS, USDA, Fargo, N. Dak., USA
(1966) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1965) Atomic Energy Centre, Decca, Pakistan
(1965) Istituto di Genetica, University of Naples, Naples, Italy
(1967) University of Texas, Austin 12, Tex., 78712, USA
(1966) Institute for Biochemistry, Faculty of Medicine, Albert-Ludwigs-Universität, 11 Bielefelderstrasse, Freiburg i. Br., Federal Republic of Germany
(1967) Department of Biochemistry, C. H. Boehringer Sohn, Ingelheim, Federal Republic of Germany
(1967) Institut für Biophysik der Deutschen Akademie der Wissenschaften zu Berlin, Aassennelle Leipzig, Abteilung Toxikologie, 701 Leipzig, 20 Johannisklee, German Democratic Republic
Deeksh, P. 618

(1964) Pesticide Residue Laboratory, Plant Industry Division, Central Experiment Station, Bangkok, Thailand

Degasperi, P. 458

(1964) Institute of Zoology, Comparative Anatomy and Genetics, University of Padua, Padua, Italy

Delahaye, R.P. 1107

(1984) Centre d'Etudes et de Recherches de Medicine Aeronautique, Paris, France

Delone, N.L. 1119, 1180, 1465, 1458

(1966) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR

Denise, D.L. 889

(1962) Department of Surgery, Medical School, University of Oregon, Portland, Ore., USA

Depoot, M. 1544

n.d. Centre d'Etude de l'Energie Nucleaire, Mol, Belgium

Desai, C.N. 741

(1968) Atomic Energy Establishment, Trombay, Bombay, India

Descamps, M. 1524

(1966) Laboratoire d'Entomologie Générale et Appliquée, Station d'Entomologie, Musée National d'Histoire Naturelle, Paris, France

Deshais, K.H. 759

(1966) Institute of Agricultural and Industrial Microbiology, Amherst, Mass., USA and Cranberry Experiment Station, University of Massachusetts, East Wareham, Mass., USA

Devine, R.L. 923

(1968) Argonne National Laboratory, Argonne, Ill., USA

Devlin, R.M. 892

(1969) Cranberry Experiment Station, University of Massachusetts, East Wareham, Mass., USA

Diallo, T.S. 1000

Dicker, H.C. 1129, 1188

(1967) Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Ill., USA

Dickerman, B.L. 547

Dietz, G.R. 264, 2559

Diniz Jr., M.L. 146

(1966) Department of Parasitology, Biochemistry Section, School of Medicine, University of Chile, Santiago, Chile

Dinkin, B.L. 820

(1967) Ohio University, Athens, Ohio, USA

Dinn, M. 1001

(1967) University of New Hampshire, Durham, N.H., USA

Dion, A.S. 264

(1967) Central Research Institute for Plant Production, 597 Prague Buzzy, CSSR

Dobbs, B.M. 561

(1964) Dobzhansky, T. 1367, 1480

Dockal, J. 850, 551, 554, 1620

Doe, F., S.F. 149

Dobson, J.D. 311

Delfini, S. 258

Dellinger, K.J. 926

Domanski, H.S. 1727

Domanski, H. 409

Domanski, M. 1086

Donchian, I.P. 597

Donoug, H.W. 184, 907, 828, 416, 817, 412, 484, 384

Dostal, Z. 2019

Douglas, P. 499, 515, 518
Dinsley, R.W. 375, 389 1967 (Biochemistry Department, A.R.C. Pest Infection Laboratory, London Road, Slough, Bucks., England)

Dita, P. 409

Dixey, S.E. 188 1967 (Department of Zoology, University of Guelph, Guelph, Ont., Canada)

Dikobola, J. 256, 504 1965 (Central Research Institute for Plant Production, 507 Prague Rezny, CSSR)

Dockum, W.J. 268 1967 (Department of Microbiology, North Carolina State University, Raleigh, N.C., USA)

Dockovsky, T.M. 1982

Dobyns, B.M. 591

Dobzhansky, T. 1491, 1498 1966 (Rockefeller University, New York, N.Y., USA)

Dockal, J. 550, 551, 554, 1959

Doe, P., S.J. 163 1964 (Department of Biology, Brandeis University, Waltham, Mass., USA)

Doherty, T.D. 811 1967 (Division of Food Chemistry, Food and Drug Administration, Washington, D.C., 20204, USA)

Dolphin, S. 128 1966 (University of Milan, Milan, Italy)

Dollinger, E.J. 984 1967 (Agriculture Department, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA)

Dorn, N.S. 1972 1965 (Pittsburgh Science and Engineering Corporation, Pittsburgh, Pa., USA)

Domkins, H. 409 1967 (Department of Biochemistry, M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland)

Donat, M. 1986

Donallan, T.F. 587 1967 ("Shell" Recherche Ltd., Woodstock Agricultural Research Centre, Stirling, Kent, England)

Dorhout, H.W. 814, 816, 818, 819, 823, 834 1967 (Department of Entomology, Texas A and M University, College Station, Tex., USA)

Doucet, E. 1515 1966 (University of Vienna, A-1014 Vienna, Austria)

Douaud, P. 492, 519 1968 (Station de Recherches sur l'Abeille et les Insectes Sociaux, 91 Bure-sur-Yvette, France)
Dow, R.P. (1967) Entomological Research Center, Vero Beach, Fla., USA
Dowling, J.S. 1670
Doyle, D. (1964) Department of Zoology and Institute of Cellular Biology, University of Connecticut, Storrs, Conn., USA
Dobbs, A.M. 2177
Drummond, R.O. 7697
Drygas, M. 849
Dubina, N.P. 607
Dubrova, G. 684
Ducoff, H.S. 1998, 1345, 1346, 1434
Duffus, J.E. 475
Duffy, J.F. 244
Duffy, J.E.H. 201
Dunsmoor, N. 1001
Dunaway, P.B. 46
Dunn, R. 727
Dundee, M. 598
Dubovsky, T. 912, 1297
Duniva, F. 501
Duman, G.G. 30
Duninowski, A. 599

Ducly, R.C. 376
Duxbury, G. 683
Dyk, W. van A021
Dyer, K.F. 918
Dzhangosypyan, R.V. 2797, 1710
Dzhalilov, A.A. 1088
Eagle, N.W. 371
Early, R.C. 566
Enslen, E. 622, 623
Enslen, W. 1061
Edgington, E.C. 420
Edigaryan, S.E. 1569
Edmonds, E. 9, 10
Edwards, A.M. 304, 385
Egan, H. 410
Ehriavid, P. 63, 249, 470, 482, 499
Ehrenberg, S. 1856, 1869, 1666
Elmaleh, T. 190, 308
El-Minaawi, S.F. 544, 3547
El Baski, S. 824
Dohlby, R.C. 370

(1967) Entomology Research Division, ARS, USDA, Beltsville, Md., 20705, USA

Dix, W. van AEKX3

(1965) Catholic University of Louvain, 4 Rue Kraeken, Louvain, Belgium

Dyer, K.F. 1476

(1966) Medical Research Council, Radiobiological Research Unit, Harwell, Didcot, Berks., England

Dabigunjayan, R.V. 1714, 2718

(1967) Leningrad 'A.A. Zhidanov' State University, 79 Universitetskaya Nab., Leningrad, USSR

Earle, N.W. 2771

(1966) Entomology Research Division, ARS, USDA, 4715 Courtyard Avenue, Baton Rouge, La., USA

Eady, R.C. 828

(1965) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Eaton, J.R. 626, 629

(1967) Department of Biology, Galtasveno College, Galtasveno, Mich., USA

Ebing, W. 1092

(1967) Technische Hochschule Darmstadt, Hochschulsrain, Darmstadt, Federal Republic of Germany

Edgington, J.C. 429

(1967) Entomology Department, North Dakota State University, Fargo, N. Dak., USA

Edigayyan, S.R. 1893

(1965) Orange County Health Department, Anaheim, Calif., USA

Edmonst, E. 9, 16

(1962) Concert Chemical Laboratory, Harvard University, Cambridge 38, Mass., USA

Edwards, A.M. 984, 985

(1967) Laboratory of the Government Chemist, Cornwell House, Stanfeld St., London S.E.1, England

Eisenbud, P. 69, 228, 476, 492, 649

(1967) Institut für Angewandte Zoologie der Universität Bonn, 1 An der Immenburg, 53 Bonn, Federal Republic of Germany

Eisenberg, E. 1893, 1896, 4888

(1966) Soreq Nuclear Research Centre, Yavne, Israel

Evrard, T. 190, 388

(1966) Department of Chemistry, Cornell University, Ithaca, N.Y., USA

El-Mikati, S.F. 556, 2447

(1964) Plant Protection Department, Ministry of Agriculture, Beir, Cairo, USA

El Bartel, S. 854

(1967) Faculty of Agriculture, University of Khartoum, Khartoum, North Sudan, Africa
Eldridge, I. M.
(1967) Mellon Institute, Pittsburgh, Pa., USA
862

Emam, S.
(1965) Nuclear Science and Engineering Cooperaton, Pittsburgh, Pa., USA
1737

Elmstain, F. T.
(1966) University of Texas, Austin 12, Tex. 78712, USA
1956, 3111

Higgs, E. G.
(1967) Department of Zoology, University of Iowa, Iowa City, Iowa, USA
146

Elliot, M.
950

Emmertich, H.
453

Engel, J. L.
(1966) Division of Entomology, University of California, Berkeley, Calif. 94720, USA
892

Engels, W.
(1967) Westfälische Wilhelms-Universität Münster, D-Schloßplatz, Münster, Federal Republic of Germany
247

Esport, R.
710, 711

Emmer, A. H.
204

Enns, T.
652

Eno, C. F.
1791

Erazmus, U.
1930

Eadmer, H. E.
1864, 1160, 1209, 1210, 1300, 1301, 1342, 1553, 1555, 1559, 1560, 1581, 1585

Erdos, J. E.
526

Emmohino, T. M.
(1956) Moscow M. V. Lomonosov State University, Leningrad Gory, Moscow 5, USSR
247

Eschrich, W.
456

Ergil, M.
(1966) Institute of Parasitology, Tropical Medicine and Hygiene, Tehran, Iran
561, 562

Espinoza, H. N.
7, 494

Esrar, E. G.
392, 502

Esen, C.
720

Eudy, W. W.
268

Everett, L. J.
721

Faghri, M. A.
561, 562

Fahmy, M. J.
1960, 1961

Fahmy, O. G.
1960, 1961

Farber, L. D.
462, 477

Falk, H. L.
894

Falk, R.

Fanning, T.
321

Farr, G. J.
3474

Farkas, J.

Farrer, W. L. J.
723

Fassett, M.
3760

Fawcett, C.
265

Fawwaz, J.
894

Fazio, C.
525, 1060
University, Alexandria, UAR

Institution, Pittsburgh, Pa., USA

2712, USA

Hew, Iowa City, Iowa, USA

Erasm, Berlin-Dahlem,

California, Berkeley,

Wagen, 2 Schloßplatz, Meinez,

Democratic Republic

4, Canberra, A.C.T.,

Uda, Gainesville, Fla., USA

British Columbia, Vancouver,

4, P.O.B. 600, Richland,

et, Stockholm 60,

University, Leuven, Gory,

Nuclear and Hygiene,

Esphota, H.N.

7, 464

Esac, F.G.

692, 894

Eker, C.

760

Evady, W.W.

764

Everett, L.J.

792

Faglitt, M.A.

501, 602

Fahmy, M.I.

1,021

Fahmy, O.G.

1,020, 1,021

Fairbocl, L.D.

664, 677

Fall, H.L.

894

Fall, H.

1,957, 1,945, 1,964, 1,965,

1,929, 1,950

Fanning, T.

387

Farras, G.J.

1,474

Farhan, 1.

1,952, 1,953, 1,954, 1,955,

1,937, 1,938, 1,954, 1,955

Farron, W.L., Jr.

760

Feust, M.

1,780

Pavadi-Sereco, C.

263

Fawors, J.

894

Pazno, C.

520, 1,680

(1969) Department of Parasitology, Faculty of Medicine, University of

Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

(1965) Division on Entomology, University of California, Berkeley,

Calif. 94720, USA

(1968) Abteilung für Forschung und Schädlingsbekämpfung, J.R. Geigy AG,

Basel, Switzerland

(1967) Department of Microbiology, North Carolina State University,

Raleigh, N.C., USA

(1966) Chemigro Corporation, Kansas City, Mo., USA

(1969) Institute of Parasitology, Tropical Medicine and Hygiene, Teheran,

Iran

(1966) Chester Beatty Research Institute of Cancer Research, Royal Cancer

Hospital, London S.W.3, England

(1966) Chester Beatty Research Institute of Cancer Research, Royal Cancer

Hospital, London S.W.3, England

(1966) Department of Medicine, Tulane University of Louisiana, New Orleans,

La., USA

(1967) Biogenetics Research Laboratory, Falls Church, Va., USA

(1957) Laboratory of Genetics, The Hebrew University, Jerusalem, Israel

(1969) University of Wisconsin, Madison 6, Wis. 53705, USA

(1969) Entomological Research Division, ARS, USDA, Honolulu, Hawaii

(1966) Central Food Research Institute, Budapest, Hungary

(1961) Toxicology Section, Technology Branch, Communicable Disease

Center, Public Health Service, US Department of Health, Education, and

Welfare, Atlanta, Ga., USA

(1967) Cornell University, Ithaca, N.Y., USA

(1966) Collège de France, Paris, France

(1967) Biogenetics Research Laboratory, Falls Church, Va., USA

613
<table>
<thead>
<tr>
<th>Name</th>
<th>Year(s)</th>
<th>Institution/University/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federbusch, M.</td>
<td>1964</td>
<td>Department of Biology, Brandeis University, Waltham, Mass., USA</td>
</tr>
<tr>
<td>Feinendegen, L.E.</td>
<td>1968</td>
<td>Brookhaven National Laboratory, Upton, N.Y., USA</td>
</tr>
<tr>
<td>Feist, D.</td>
<td>1963</td>
<td>Biology Department, Saint Louis University, Saint Louis, Mo., USA</td>
</tr>
<tr>
<td>Fenn, W.O.</td>
<td>1960, 1962</td>
<td>Department of Physiology and Radiation Biology, Medical Center, University of Rochester, Rochester, N.Y., USA</td>
</tr>
<tr>
<td>Ferguson, W.W.</td>
<td>1967</td>
<td>San José State College, San José, Calif., USA</td>
</tr>
<tr>
<td>Ferrer, M.</td>
<td>1954</td>
<td>Directeur de la Station de Zoologie Agricole, Centre de Recherches Agronomiques du Sud-Est, Montfavet (Vaucluse), France</td>
</tr>
<tr>
<td>Fidler, F.</td>
<td>1959</td>
<td>Inter-American Institute of Agricultural Sciences, Tropical Centre for Research and Graduate Training, Tumala, Costa Rica</td>
</tr>
<tr>
<td>Fics, A.</td>
<td>1960</td>
<td>Inter-American Institute of Agricultural Sciences, Tropical Centre for Research and Graduate Training, Tumala, Costa Rica</td>
</tr>
<tr>
<td>Fisch, L.R.</td>
<td>1963</td>
<td>Russell Grinnell School of Biochemistry, University of Melbourne, Parkville N.S.W, Melbourne, Australia</td>
</tr>
<tr>
<td>Fink, B.C.</td>
<td>1967</td>
<td>London School of Hygiene and Tropical Medicine, Tropical Products Institute, Grays Inn Road, London, W.C.1, England</td>
</tr>
<tr>
<td>Finlayson, D.G.</td>
<td>1965</td>
<td>Canada Agriculture Research Station, 6000 W. Marine Drive, Vancouver 8, B.C., Canada</td>
</tr>
<tr>
<td>Flassiger, F.X.</td>
<td>1964</td>
<td>Schweizerisches Seminar und Forschungsinstitut, Bern, Switzerland</td>
</tr>
<tr>
<td>Fischbach, W.</td>
<td>1967</td>
<td>Department of Biology, Wesleyan University, Middletown, Conn., USA</td>
</tr>
<tr>
<td>Fiecher, F.S.</td>
<td>1966</td>
<td>Biochemistry Group, E.C. Britton Laboratory, The Dow Chemical Company, Midland, Mich., USA</td>
</tr>
<tr>
<td>Fishbien, L.</td>
<td>1967</td>
<td>Biogenetics Research Laboratory, Falls Church, Va., USA</td>
</tr>
<tr>
<td>Fleischer, J.R.</td>
<td>1966</td>
<td>Michigan State University, East Lansing, Mich., USA</td>
</tr>
<tr>
<td>Fletcher, J.H.</td>
<td>1969</td>
<td>Biochemistry Branch, Medical Research Laboratory, U.S. Army, Edgewood Arsenal, Md., 21610, USA</td>
</tr>
<tr>
<td>Fletcher, T.E.</td>
<td>1952</td>
<td>Department of Surgery, Medical School, University of Oregon, Portland, Ore., USA</td>
</tr>
<tr>
<td>Flint, H.M.</td>
<td>1967, 1951, 1953</td>
<td>Radiation Biology and Insect Genetics Section, Metabolism and Radiation Research Laboratory, Entomology Research Division, ARS, USDA, Fargo, N. Dak., USA</td>
</tr>
<tr>
<td>Florea, M.</td>
<td>1965</td>
<td>Institut Léo Frobenius, Bioclinique, Université de Liège, 7 Place du XX Août, Liège, Belgium</td>
</tr>
<tr>
<td>Fox, E.</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>Ford, L.M.</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>Ford, I.B.</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Forrest, S.E.</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Forrest, H.S.</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Forecy, A.</td>
<td>1727, 1728</td>
<td></td>
</tr>
<tr>
<td>Fowler, E.E.</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Fowler, G.</td>
<td>1965, 1968</td>
<td></td>
</tr>
<tr>
<td>Fowler, K.F.</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Fox, A.S.</td>
<td>1969, 1968</td>
<td></td>
</tr>
<tr>
<td>Francesco, M.</td>
<td>1968, 1969</td>
<td></td>
</tr>
<tr>
<td>Franklin, B.A.</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td>France, J.M.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>Fredrickson, T.</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>Freeman, C.G.</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>Pretto, J.</td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>Fridenstain, Y.F.</td>
<td>1970, 1970</td>
<td></td>
</tr>
<tr>
<td>Pretto, J.R.</td>
<td>1968, 1972</td>
<td></td>
</tr>
</tbody>
</table>
Foa, E. 1702
Ford, L.M. 702
Ford, J.B. 565
Frenneman, S.E. 500
Forrest, H.S. 149, 162, 167, 282
Fourcroy, A. 1728, 1730
Fowler, E.E. 1533
Fowler, G. 901, 1049
Fowler, K.S. 846
Fox, A.S. 150, 358, 357, 358
Fox, D.P. 988, 1003, 1009, 1026
Fraccaro, M. 228, 282
Franklin, B.A. 1716
Frantz, J.M. 1778
Frew, D.R.H. 564, 665
Fredricsson, T. 728
Freedman, C.C. 1794
Friedman, J. 1909
Frumia, Y.P. 1210, 1270
Freitas, J.R. 865, 869

(1966) Soreq Nuclear Research Center, Yavne, Israel
(1966) Stauffer Chemical Corporation, Agricultural Research Center, Mountain View, Calif., USA
(1967) Department of Agricultural and Forest Zoology, University of College of North Wales, Bangor, Caernarvonshire, Wales
(1964) N.C. Corporation, Central Research and Development Center, Princeton, N.J., USA
(1967) Genetics Foundation, University of Texas, Austin, Tex. 78712, USA
(1965) Laboratoire de Biologie Végétale du Centre d'Etudes Nucléaires, Grenoble, France
(1968) Brown University, Providence, R.I., USA
(1968) Biochemistry Department, A.R.C. Pest Insectation Laboratory, London Road, Slough, Bucks., England
(1967) Department of Genetics, University of Wisconsin, Madison S., Wis. 53705, USA
(1967) Department of Genetics, Marischal College, Aberdeen University, Aberdeen, Scotland
(1969) University of Milan, Milan, Italy
(1968) c/o Cottrell, G.C., Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA
(1967) Institut für Biologische Schädlingbekämpfung, CS Kaiserslautern, Darmstadt, Federal Republic of Germany
(1987) Pesticide Research Laboratory, Pennsylvania State University, University Park, Pa., USA
(1983) Department of Dermatology, Karolinska Institute, Stockholm 69, Sweden
(1965) Food and Drug Administration, 220 Canal Street, New Orleans, La. 70122, USA
(1968) Institute of Organic Chemistry, Riga, USSR
(1968) Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
French, N.R. (1968) University of California, Los Angeles, Calif., USA
French, W.L. (1969) Department of Zoology, University of Illinois, Urbana, Ill., USA
Friedman, A.R. (1968) The Upjohn Co., Kalamazoo, Mich., USA
Friedman, L.D. (1968) Hiram College, Hiram, Ohio, USA
Frohman, J.W. (1967) Department of Genetics, University of California, Berkeley, Calif., 94720, USA
Fritzsche, H. (1968) Universitat Muenchen, Muenchen, Germany
Fukumi, J. (1968) First Laboratory of Pesticides, Institute of Physical and Chemical Research, Komagome, Tokyo, Japan
Fukuzumi, M. (1968) Kyoto University, Kyoto, Japan
Fukuto, T.R. (1969) Department of Entomology, University of California, Riverside, Calif., USA
Fumaglini, D. (1967) Department of Genetics, School of Medicine, University of Bari, Bari, Italy
Fürer-Szeisz, S. (1969) Laboratoire de Zoologie, Faculte des Sciences, Cray (S.O.), France
Fytaas, E. (1968) "Democritus" Nuclear Research Centre of the Greek Atomic Energy Commission, Athens, Greece
Gamsewasser-Garcia, N. (1968) Upstate Medical Center, State University of New York, Syracuse, N.Y., USA
Gallmayer, J.H. (1969) University of North Carolina, Chapel Hill, N.C., USA
Galindo, E. (1967) Israel Institute for Biological Research, Ness-Ziona, Israel
Gambeil, F.L. (1968) New York State Agricultural Experiment Station, Geneva, N.Y., USA
Gardner, H.J. (1967) New York State Agricultural Experiment Station, Geneva, N.Y., USA
Garcia, E.G. (1969) 821
Garcia-Bellido, A. (1967) 821
Garnes, R. Jr. (1966) 821
Garside, L.P. (1966) 821
Garski, R. (1966) 821
Gartes, J. (1966) 821
Gartner, P.F. (1966) 821
Gast, B. von (1966) 821
Gast, W.S. (1966) 821
Gaucho, M.E. (1966) 821
Gaukler, G. (1966) 821
Gawatz, M. (1966) 821
Gelberth, A. (1966) 821
Gemreich, E.G. (1966) 821
Geoge, J.A. (1966) 821
Georgiou, G.P. (1966) 821
Gerard, C. (1966) 821
Gerard, M. (1966) 821
García, B.G.
1968
(1967) Universidad Nacional Autónoma de México, Escuela Nacional de Medicina Veterinaria y Zootecnia, México, D.F., Mexico

Garfink, F.J.T.
279
(1968) Centro Invest. Biol., Madrid, Spain

García-Beallido, A.
1967
(1967) Department of Horticulture, Oregon State University, Corvallis, Ore., USA

Garr, R.
279
(1967) Rutgers University, New Brunswick, N.J., USA

Gates, R.
1964
(1964) Orange County Health Department, Anaheim, Calif., USA

Gatterdam, F.E.
1967
(1967) Agricultural Division, American Cyanamid Co., Princeton, N.J., USA

Gauderer, B. von
279
(1967) Harvard Medical School, Harvard University, Cambridge, Mass., USA

Gauden, M.E.
274
(1967) Radiology Department, Southwestern Medical School, University of Texas, Dallas, Tex., USA

Gauzit, G.
378
(1967) Biology Department, University of Oregon, Eugene, Ore., USA

Gauzit, M.
1964
(1964) Association for the Development of Industrial Applications of Radiaton, Paris, France

Gavrilina, V.
1710
(1969) University of Michigan, Ann Arbor, Mich., USA

Gay, H.
278
(1968) Department of Biology, University of Pennsylvania, Philadelphia, Pa., USA

Geiger, R.
54
(1967) The Upjohn Co., Kalamazoo, Mich., USA

Geiger, J.A.
1949
(1967) Research Station, Canada Department of Agriculture, Vineland Station, Ont., Canada

Georgiou, G.P.
488
(1965) University of California, Riverside, Calif., USA

Gerard, C.
288
(1967)
(1965) Institute of Microbiology and Virology, Kiev, USSR

Gemba, S.M.

1129

Gershomberg, V.

1190

(1965) University of Texas, Austin, Tex., 78712, USA

Getuwa, A.B.

72, 82, 922

(1967) Institute of Zoology, Academy of Sciences of the USSR,
1 Universitetskaya Nab., Leningrad, USSR

Getzin, W.W.

758, 769

(1966) Western Washington Research and Extension Center, Puymall, Wash., USA

Ghebrekoff, S.

31

(1969) Laboratoire Pasteur de l'Institut du Radium, 26 Rue d'Ulm, Paris 5e, France

Ghoth, D.

152

(1967) Genetics Foundation, University of Texas, Austin, Tex., 78712, USA

Gibson, N.H.E.

361

(1967) Laboratoire d’Histologie de la Faculté de Médecine, 378 Allée
Jules-Guesde, Toulouse, Haute-Garonne, France

Gilbert, H.W.

48, 106, 107, 372,
703, 463, 468

(1967) Department of Biological Sciences, Northwestern University,
Evanston, Ill., USA

Gill, A.R.

55

(1967) Division of Entomology, Commonwealth Scientific and Research
Organization, Canberra, Australia

Gilliland, P.E., Jr.

1529

n.d. Mississippi State University, State College, Miss., USA

Gillott, S.

308

(1967) Section de Biologie Générale et Appliquée, Faculté des Sciences,
Lyon, France

Gillott, C.

157, 593

(1966) Department of Biology, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada

Gilmore, D.R.

776

(1966) Research Foundation, National Cancer Association, Berkeley,
Calif., USA

Giovanine, D.

627, 628

(1964) Department of Genetics, School of Medicine, University of Bari,
Bari, Italy

Glancey, B.M.

1701

(1965) Insects Affecting Man and Animals Investigations, Entomology
Research Division, ARS, USDA, Gainesville, Fla., USA

Glass, H.B.

1163

(1966) Johns Hopkins University, Baltimore, Md., 21218, USA

Glasmann, E.

166

(1967) University of North Carolina, Chapel Hill, N.C., USA

Glenbow, J.I.

1063, 1069

(1967) Institute of General Genetics, Moscow, USSR

Glogowski, K.

292, 535

Glory, S.

1972

Glory, H.

1130

Glory, N.V.

1601

Glory, S.J.

1293

Glynn, M.R.

365

Gosse, M.A.

1524

Gottlieb, P.J.

853

Govia, D.J.

1199

Gold, A.H.

475

Goldblith, S.A.

1920

Goldin, H.

2022

Goldstein, L.J.

1129, 1324

Goldstein, C.

1683

Gómez-Núñez, I.C.

457

Gonzalez, J.M.

216, 217

Goodfellow, R.D.

275

Goodman, L.J.

1147

Gorenerg, H.J.

1681

Gopal-Aryengar, A.R.

31
Glogowski, K., 483, 488 (1986) Institute of Plant Protection, Poznan, Poland

Gloe, H. 1072 (1964) Laboratory of Genetics, State University of Leyden, 97-73 Rapenburg, Leyden, The Netherlands

Gloe, H. 1130 (1966) State University of Leyden, 97-73 Rapenburg, Leyden, The Netherlands

Gloe, H.V. 1054 (1967) Institute of Medical Radiology, Obninsk, USSR

Glover, S.J. 1983 (1987) Department of Entomology, University of Georgia, Athens, Ga., USA

Glynn, J.P. 804 (1966) Department of Biochemistry, University of Leeds, England

Goates, M.A. 1924 (1983) Brigham Young University, Provo, Utah, USA

Godin, P.J. 855 (1986) London School of Hygiene and Tropical Medicine, Tropical Products Institute, Grays Inn Road, London, w.c.1, England

Goins, D.J. 1136 (1966) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Goldblith, S.A. 1959 (1987) University of Oregon, Eugene, Ore., USA

Goldman, L.J. 1102, 1384 (1965) Department of Entomology and Radiology, University of Florida, Gainesville, Fla., USA

Golumbic, C. 3802 (1966) Market Quality Research Division, ARS, USDA, Hyattsville, Md., USA

Gómez-Núñez, J.C. 497 (1966) División de Estudios Rurales, Dirección de Medicina y Salud Ambiental, M.S.A.S., Venezuela

Gonzalo, J.M. 316, 317 (1967) Medical School of Rio de Janeiro, University of São Paulo, São Paulo, Brazil

Goodhew, R.D. 976 (1966) Northwestern University, Evanston, Ill., USA

Goodman, L.J. 3147 (1967) Radiological Research Laboratory, Columbia University, Morningside Heights, New York 27, N.Y., USA

Gopal-Aiyenger, A.R. 41
Groesch, D.G.
(1968) Genetics Department, University of North Carolina, Raleigh, N.C., USA

Gromova, T.Y.
(1968) Institute of General Genetics, Moscow, USSR

Gruzova, M.N.
(1967) Institute of Cytology, Leningrad, USSR

Gruzieva, K.
(1966) Institute of Biochemistry and Biophysics, Warsaw, Poland

Gubicea, A.
(1964) Research Institute of the Textile Industry, Budapest, Hungary

Guthrie, A.W.
(1967) Plant Pest Control, ARS, USDA, Columbus, Ohio 43210, USA

Gut, J.
(1967) Soil and Water Conservation Research Division, ARS, USDA, Fort Collins, Colo., USA

Gutman, A.
(1966) City of Hope Medical Center, Duarte, Calif., USA

Guilborn, E.
(1967) Laboratoire de Chimie Biologique, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 6e, France

Guillemont, Y.
(1967) John Hay Hopkins Laboratory for Pure and Applied Science, General Atomic Division of General Dynamics Corporation, San Diego, Calif., USA

Gunn, V.P.
(1967) A.N. Bak, Biochemical Institute, USSR Academy of Sciences, Moscow, USSR

Gunther, F.A.
(1966) Department of Entomology, University of California, Riverside, Calif., USA

Gusain, A.K.
(1965) Department of Biology, Yale University, New Haven, Conn., USA

Guthrie, W.D.
(1997) Entomology Research Division, ARS, USDA, Ames, Iowa, USA

Habegger, T.
(1967) C.S.I.R.O. Division of Entomology, Canberra, Australia

Hackett, R.H.
(1966) Institute für Ernährung, Potsdam, German Democratic Republic

Haefliger, M.
(1963) Bayerische Landesanstalt für Bodenkultur, Munich, Federal Republic of Germany
Harvey, J.M. 604
Harvey, W.R. 68, 69, 58, 56
Hascout, M. 604
Hathoda, I. 686, 1981
Hashim-Ahmed, M.S. 544
Hassell, J.A. 44, 45, 56
Hassell, P.T. 1441
Hassan, A. 386, 298, 830, 647
Hassanein, M.E. 538
Hatziska, A. 555
Hattonway, D.O. 1297, 1605
Hatnway, D.E. 689, 737
Havin, K. 2106
Hawkins, C.S. 1674
Hayakawa, A. 1234
Hayashi, M. 551, 509, 566, 567
Hayashi, S. 1550
Hayashi, Y. 228
Haye, M.L. 1165
Hayes, T.L. 1741, 1748
(Harvard) Zoology Department, University of Massachusetts, Amherst, Mass., USA
(Harvard) Institute of National Research and Agonomy, Laboratory of Phytopharmacology, Versailles, France
(Harvard) Zoology Department, University of Massachusetts, Amherst, Mass., USA
(Harvard) Leningrad 'A.A. Zhadanov' State University, 7/9 Universitetskaya Nab., Leningrad, USSR
(Harvard) Zoology Department, University of Massachusetts, Amherst, Mass., USA
(Harvard) Department of Radiobiology, Atomic Energy Establishment, National Research Centre, Delhi, Cairo, UAR
(1967) Section of Neurropsychology and Behavior, Cornell University, Ithaca, N.Y., USA
(1966) Entomology Research Division, ARS USDA, Yakima, Wash., USA
(1967) Tussell Laboratory 'Shell' Research Ltd., Sittingborne, Kent, England
(1965) North Hydro's Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
(1964) Fruit and Good Technology Research Institute, Stellenbosch, South Africa
(1956) Ministry of Agriculture and Forestry, Tokyo, Japan
(1967) Department of Entomology, University of Wisconsin, Madison 6, Wis. 53706, USA
(1977) Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
(1967) Insect Pathology Laboratory, Sauls Sm. Marie, Ont., Canada
(1968) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1967) Donner Laboratory, Lawrence Radiation Laboratory and Electronics Research Laboratory, University of California, Berkeley, Calif. 94720, USA

623
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heath, D.F.</td>
<td>Medical Research Council Laboratories, Casablanca, Surrey, England</td>
<td>1965</td>
</tr>
<tr>
<td>Heidbrink, J.A.</td>
<td>Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA</td>
<td>1966</td>
</tr>
<tr>
<td>Heidbrink, P.A.</td>
<td>Entomology Research Division, ARS, USDA, State College, Miss., USA</td>
<td>1967</td>
</tr>
<tr>
<td>Heeman, M.P.</td>
<td>Department of Chemistry, Victoria University, Wellington, New Zealand</td>
<td>1956</td>
</tr>
<tr>
<td>Heilborn, E.</td>
<td>Research Institute of National Defense, Sandberg, Sweden</td>
<td>1955</td>
</tr>
<tr>
<td>Heijne, W.</td>
<td>Department of Botany, Roman Catholic University of Nijmegen, Nijmegen, The Netherlands</td>
<td>1965</td>
</tr>
<tr>
<td>Helsonen, L.</td>
<td>Department of Genetics, University of Helsinki, Helsinki, Finland</td>
<td>1967</td>
</tr>
<tr>
<td>Helbig, W.</td>
<td>Research Institute of Plant Protection, Magdeburg, Federal Republic of Germany</td>
<td>1966</td>
</tr>
<tr>
<td>Held, P.</td>
<td>Laboratory for Organic Chemistry, University of Amsterdam, 21 Spui, Amsterdam, The Netherlands</td>
<td>1964</td>
</tr>
<tr>
<td>Heinrichs, H.</td>
<td>Laboratory for Organic Chemistry, University of Amsterdam, 21 Spui, Amsterdam, The Netherlands</td>
<td>1964</td>
</tr>
<tr>
<td>Herholz, H.</td>
<td>Strahlensphysik, Universitaet Hamburg, 2 Edmond-Siemens-Allee, Hamburg 11, Federal Republic of Germany</td>
<td>1944</td>
</tr>
<tr>
<td>Herrnberger, T.L.</td>
<td>Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA</td>
<td>1967</td>
</tr>
<tr>
<td>Herronetti, B.J.</td>
<td>Department of Chemistry, Footham University, New York 58, N.Y. USA</td>
<td>1967</td>
</tr>
<tr>
<td>Herrmann, E.</td>
<td>Instiut für Pflanzen für der Deutschen Academie der Landwirtschaftswissenschaften zu Berlin, Entomologische Abteilung, West-Berlin, Democratic Republic of Germany</td>
<td>1965</td>
</tr>
<tr>
<td>Herrnig, W.</td>
<td>Max Planck Institute für Biologie, 34, Spemann-Gutacht, 74 Tübingen, Federal Republic of Germany</td>
<td>1987</td>
</tr>
<tr>
<td>Herbst, E.J.</td>
<td>University of New Hampshire, Durham, N.H., USA</td>
<td>1967</td>
</tr>
<tr>
<td>Heitsch, P.</td>
<td>Philipps-Universität, 10 Heidelberg, Marburg, Federal Republic of Germany</td>
<td>1967</td>
</tr>
<tr>
<td>Hespel, J.P.</td>
<td>Department of Biochemistry, A.P.C. Pest Infestation Laboratory, London Road, Sloag, Bucks., England</td>
<td>1967</td>
</tr>
</tbody>
</table>
Heywood, D.I.
612
(1966) Union Carbide Corporation, South Charleston, Va., USA

Hicklin, J.R.
304
(1962) University of Zurich, Zurich, Switzerland

Hickman, C.
9, 10
(1968) Orange County Health Department, Anaheim, Calif., USA

Hightower, B.G.
1195
(1966) Entomology Research Division, ARS, USDA, Mission, Tex., USA

Hildreth, P.E.
1978

Hiller, D.
1986
(1968) College of Tropical Agriculture, University of Hawaii, Honolulu, Hawaii

Hill, S.O.
593
(1967) Plant Pest Control Division, ARS, USDA, Gulfport, Miss., USA

Hilton, B.D.
835
(1967) Section of Neurobiology and Behavior, Cornell University, Ithaca, N.Y., USA

Hinnoe, E.
636
(1966) Department of Zoology, University of Wisconsin, Madison 6, Wis., 53706, USA

Hinshle, P.C.
864
(1963) Comast Chemical Laboratory, Harvard University, Cambridge 38, Mass., USA

Hinton, C.N.
1209
(1959) Biology Division, California Institute of Technology, Pasadena, Calif., USA

Hitchcock, M.
514
(1966) Department of Biochemistry, Medical School, St. Mary's Hospital, London, England

Hochman, R.
1072, 2294
(1964) Department of Zoology and Entomology, University of Tennessee, Knoxville, Tenn., USA

Hodge, L.D.
168, 169
(1966) University of North Carolina, Chapel Hill, N.C., USA

Hodgson, F.
869, 866
(1967) Physiology Laboratory, Department of Entomology, University of North Carolina, Raleigh, N.C., USA

Hoffman, C.H.
1774
(1968) Entomological Research Division, ARS, USDA, Kerrville, Tex., USA

Hoffman, W.A.
940, 1091
(1966) Northern Illinois University, DeKalb, Ill., USA

Hogan, G.R.
1434

Hollerca, J.
1793
(1966) Universidade de São Paulo, Ciudad Universitaria 'Armando de Salles Oliveira', Caixa Postal 8191, São Paulo, Brasil

Hollander, F.M.
306
(1966)
Hollingworth, R. M.
(1987) Department of Entomology, Purdue University, Lafayette, Ind., USA

Hoffmeir, U.
1966

Holt, G. G.
928

Hooper, F. F.
689

Hooper, G.
1072, 1594

Hopkins, D. E.
1985 North Dakota State University, Fargo, N. D., USA

Hopkins, T. L.
486

Hoover, E.
1593, 1594

Hugget, D. J.
872, 872

Horie, Y.
87

Horikawa, M.
99

Hoome, T.
1896

Hosain, M.
1469

Hosain, M. M.
1990, 1792, 1440, 1092, 1799

Hotchkiss, D. K.
1379

House, H. L.
44

Howard, E. F.
987

Howard, M. G. A.
1940

Howells, A. J.
183, 182

Hoyer, R. P.
1931

(1987) Laboratory for Organic Chemistry, University of Amsterdam, 21 Spui, Amsterdam, The Netherlands

(1987) Entomology Research Division, ARS, USDA, Fargo, N. Dak., USA

(1988) Institute for Fisheries Research, Ann Arbor, Mich., USA

(1987) Michigan State University, East Lansing, Mich., USA

(1987) Department of Entomology, Kansas State University, Manhattan, Kans., USA

(1986) Eidgenössische Landwirtschaftliche Versuchsanstalt, Zürich-Gäbelstock, Switzerland

(1987) Department of Biochemistry, School of Medicine, University of California, San Francisco, Calif. 94121, USA

(1985) Agricultural Experiment Station, Wada, Saginami-ku, Tokyo, Japan

n. d. - Department of Experimental Radiology, Faculty of Medicine, University of Kyoto, Japan

(1985) Curtiss-Wright Corporation, Princeton, N. J., USA

(1987) Radiobiology Division, Atomic Energy Centre, Dacca, Pakistan

(1987) Statistical Laboratory, Iowa State University, Ames, Iowa, USA

(1987) Department of Zoology, University of Wisconsin, Madison 6, Wis. 53796, USA

(1984) Research Station, Canada Department of Agriculture, Vineland Station, Ont., Canada

(1987) Department of Biology, Yale University, New Haven, Conn., USA

(1966) Entomology Research Division, ARS, USDA, Corvallis, Oreg., USA

Huang, L.L.
613

Hughes, A. M.
1072

Huang, F. P.
67, 1986, 1411

Huss, G. L., Jr.
489

Hunter Jones, P.
1441

Hussey, H.
1505, 1592, 1982

Huspin, P.
1591

Husman, C. N.
1791

Husman, T. M.
947

Hutchinson, P. H.
1144, 1146

Husson, D. H.
654, 397

Hylin, J. W.
533

Hyza, I. S.
1886, 1644

Ideda, H.
1026

Ishikawa, N.
575, 395

Isotzaki, T.
609

It'in, G. S.
857

Itoh, J.
288

Ivan, Judith
288

Hirvonen, J.
511, 132, 103

626
Huang, LL.
113
(1968) Carver Research Foundation, Tuskegee Institute, Ala., USA

Hughes, A.M.
1078
(1967) University of California, Berkeley, Calif., USA

Hungate, R.P.
87, 1286, 1413
(1966) General Electric Co., Hanford Atomic Products Operation, Richland, Wash., USA

Hunt, G.L., Jr.
400
(1966) Biological Laboratories, Harvard University, Cambridge, Mass., USA

Hunter-Jones, P.
1441
(1967) Radiocopy and Radiation Laboratory, Department of Livestock Warming and Plant Quarantine, Karachi, Pakistan

Ishizaki, H.
1588, 1592, 1593
(1968) Institute National de la Recherche Agronomique, Station de la Montfer, Versailles (Yvelines), France

Isman, C.N.
1791
(1968) Administrative Services, ARS, USDA, Gainesville, Fla., USA

Huston, T.M.
847
(1966) Department of Radiology, Atomic Energy Establishment, National Research Centre, Dokki, Cairo, UAR

Hutchinson, R.B.
1544, 1149
(1966) C.S.H. Rosench Laboratory, Roseville, N.S.W., Australia

Hutson, D.H.
904, 231
(1967) Tennall Laboratory 'Shell' Research Ltd., Sittingbourne, Kent, England

Hylin, J.W.
639
(1966) Department of Entomology, University of California, Riverside, Calif., USA

Hyton, J.A.
1385, 1462
(1967) Tokyo Metropolitan University, Tokyo, Japan

Ibbsa, H.
1090
(1966) University of Tokyo, Motoofuyi-cho, Bunkyo-Ku, Tokyo, Japan

Ikematsu, H.
477, 585
(1969) McGill University, Montreal 2, P.Q., Canada

Ikeshoji, T.
500
(1969) McGill University, Montreal 2, P.Q., Canada

Igra, R.S.
837
(1967) Department of Parasitology, School of Medicine, University of Chile, Santiago, Chile

Izumi, J.
111, 138, 163
(1967) Tokyo Metropolitan University, Tokyo, Japan
Immel, R.
1566

Ishii, I.
184

Ishikawa, T.
255

Ito, T.
1986

Janszczak, T.M.
352, 558

Javid, S., C.
173

Jenkins, D.W.
556, 557, 1715

Jenkins, J.B.
209

Jenner, E.
160

Jenner, T.
1842

Jenner, S.
252

Jenner, V.
743

Jeszewska, M.M.
503

Jinéns, A.
2, 3, 79, 138, 1150, 1556

Johansen, B.C.
2045, 1556

Johnston, E.R.
569, 561

Johnson, N.C.
510

Jones, G.A. III
274

Jones, L.P.
1032

Jones, R.H.
1556

Jones, T.H.
255

Jumar, A.
540, 547

Jumbe, V.
1719

Kadom, A.M.
AF24
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jander, S.C.</td>
<td>Saha Institute of Nuclear Physics, Calcutta, India</td>
</tr>
<tr>
<td>James, H.G.</td>
<td>Research Institute, Research Branch, Department of Agriculture, Belleville, Ont., Canada</td>
</tr>
<tr>
<td>Jenkins, D.W.</td>
<td>(1987) University of California, Los Angeles, Calif., USA</td>
</tr>
<tr>
<td>Jenkins, J.B.</td>
<td>(1986) University of California, Los Angeles, Calif., USA</td>
</tr>
<tr>
<td>Jenney, E.</td>
<td>(1987) Interuniversity, University of Zürich, Zürich, Switzerland</td>
</tr>
<tr>
<td>Jenius, C.</td>
<td>(1985) Institute of Zoology, University of Liège, 7 Place du XX-Aout, Liège, Belgium</td>
</tr>
<tr>
<td>Jezdic, V.</td>
<td>(1966) Boris Kidric Institute of Nuclear Sciences, Belgrade, Yugoslavia</td>
</tr>
<tr>
<td>Jezierska, M.M.</td>
<td>(1966) Medical School, Warsaw, Poland</td>
</tr>
<tr>
<td>Jiménez, A.</td>
<td>(1965) Instituto Central de Patología, Instituto Nacional de Investigaciones Agropecuarias, Madrid, Spain</td>
</tr>
<tr>
<td>Johnson, R.C.</td>
<td>(1965) Brown University, Providence, R.I., USA</td>
</tr>
<tr>
<td>Johnson, R.L.</td>
<td>(1965) Agricultural Research Division, 'Shell' Development Company, Modesto, Calif., USA</td>
</tr>
<tr>
<td>Johnston, N.C.</td>
<td>(1965) University of Saskatchewan, Saskatoon, Saskatchewan, Canada</td>
</tr>
<tr>
<td>Jones, G.A. III</td>
<td>(1966) Duke University, Durham, N.C., USA</td>
</tr>
<tr>
<td>Jones, L.H.</td>
<td>(1966) Department of Animal Husbandry, University of Sydney, Sydney, Australia</td>
</tr>
<tr>
<td>Jummar, A.</td>
<td>(1967) University of Nebraska, Lincoln, Nebr., USA</td>
</tr>
<tr>
<td>Jumbras, V.</td>
<td>(1967) University of Nebraska, Lincoln, Nebr., USA</td>
</tr>
<tr>
<td>Kadoma, A.M.</td>
<td>(1967) University of Nebraska, Lincoln, Nebr., USA</td>
</tr>
</tbody>
</table>

629
Kadour, A. M. A. A. G.
AFSSA, 1977

Kaban, R. S.

Kalnirnay, P. S.
1960

Kane, P. G.
1966, 1974, 1979

Kalay, N.
69

Kallman, B. J.
542

Kalingarow, P. G.
1919

Kamienik, P. X.
892

Kamra, S. K.
1946

Kan, J.
1950

Kang, S. H.
150

Kang, T. S.

Kamouh, A. S. M.
744

Kamra, A.
66

Kamra, I. A.
1967

Kapral, W.
188

Kaplan, W. D.
1974, 1980, 1982

Kaplan, J. N.
390, 394

Katsyrov, A. D.
248

Katsyrov, A. L.
947

1968 University of Nebraska, Lincoln, Nebr., USA
1968 Sotech Nuclear Research Centre, Yavne, Israel
(1968) Department of Zoology, Banaras Hindu University, Varanasi 6, India
1967 University of Pécs, Pécs, 48-AS Ter 1, Hungary
1969 Wadsworth Veteran Administration Hospital, Los Angeles 95, Calif., USA
1969 Division of Entomology, University of California, Berkeley, Calif. 94720, USA
1967 Foret Genetics, Royal College of Forestry, Stockholm 69, Sweden
1965 Department of Genetics, University of Wisconsin, Madison 6, Wis. 53706, USA
1965 Department of Zoology, Seoul National University, Seoul, Korea
1967 Kansas State University of Agriculture and Applied Science, Manhattan, Kan., USA
1967 Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
1967 Technische Universitat Dresden, 12 Mommenstrasse, Dresden 69, German Democratic Republic
1967 City of Hope Medical Center, Duarte, Calif., USA
1967 Insect Physiology Laboratory, Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA
1965 Pavlov Institute of Physiology, Leningrad, USSR
1966 Pavlov Institute of Physiology, Leningrad, USSR

Katsika, A.
1967

Katsuo, F.
269, 392, 394, 1272, 1273, 254, 258, 260, 1216

Kavpov, A. E.
1965

Karatashov, F. A.
683

Karatashova, V. M.
482

Kasting, E.
174, 175

Katsunaga, D. B.
480

Katirir, K. P.

Kato, H.
924

Kaye, S. V.
4727

Keaycoy, P. C.
480

Keegan, M. L.
843

Keith, A. D.
278, 379

Keller, J. C.
1791

Kemagab, R. P.
260

Kendall, W. E.
1313

Kevan, N. R.
528

Koisy, H. G.
245, 292, 294

Khakimova, R. K.
1412
Kaltik, A. 1027
Karhun, P. 1028
Karpov, A. S. 1029
Kassieb, R. 174, 175
Katake, D. B. 745
Katiyar, K. P. 1163, 1499, 1563, 1920, 1960
Kato, H. 934
Kay, S. V. 1927
Kim, C. H. 825
Kern, A. D. 379, 379
Keister, F. C. 1981
Kemagata, R. P. 920
Kennah, W. E. 1317
Kever, M. B. 828
Kezir, H. G. 520, 582, 584
Khaskimova, R. K. 1412

(1969) Institut für Allgemeine Biologie, Universität Wien, A-1010 Vienna, Austria
(1968) Physiologisch-Chemisches Institut, Philipps-Universität, 34 Braunschweig, Federal Republic of Germany
(1966) Canada Agricultural Research Station, Lethbridge, Canada
(1967) Chemagog Corporation, Kansas City, Mo., USA
(1967) Inter-American Institute of Agricultural Sciences, Tropical Center for Research and Graduate Training, Tumala, Costa Rica
(1967) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1965) Corps Research Division, ARO, USGA, Beltsville, Md., 20705, USA
(1967) Department of Preventive Medicine, Medical Field Service School, Brooke Army Medical Center, Fort Sam, Houston, Tex., USA
(1967) Biology Department, University of Oregon, Eugene, Oreg., USA
(1965) Entomology Research Division, 4207 East Broadway, Phoenix, Ariz., USA
(1963) University of Connecticut, Storrs, Conn., USA
(1963) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1960) Max-Planck-Institut für Biologie, 74 Tübingen, Federal Republic of Germany
Khan, A. H.
(1966) Cambridge University, Cambridge, England
2382, 1966

Khan, M.A.Q.
380

(1967) Physiology Laboratory, Department of Entomology, University of North Carolina, Raleigh, N.C., USA

Khan, Z.A.
1117, 1961

(1966) Atomic Energy Centre, Dacca, Pakistan

Khan, Z.H.
500

Khasim-Ahmed, M. S.
971

Khakrez, L.F.
639

Khidrach, L.
1132

(1965) Laboratory of Plant Protection, Kostroma Test Station, Kostroma, USSR

Kidd, K.K.
33

(1968) City of Hope Medical Center, Duarte, Calif., USA

Kilby, R.A.
387

(1967) Department of Biochemistry, University of Leeds, Leeds 2, England

Kilgo, W.W.
864, 866, 867

(1966) Agricultural Toxicology and Residue Research Laboratory, University of California, Davis, Calif. 95616, USA

Killebrew, R.
114

(1967) Department of Entomology and Nuclear Science Center, Louisiana State University, Baton Rouge, La., USA

Kim, S.E.
899

(1966) University of Illinois, Chicago, Ill., USA

Kim, Y.J.
1075, 1911

(1964) Department of Zoology, Seoul National University, Seoul, Korea

Kikuchi, S.
96, 89

(1965) Agricultural Experiment Station, Wada, Sugiari-kou, Tokyo, Japan

Kumara, T.
340

(1967) Department of Entomology, 48th Medical Laboratory, United States Army Medical Command, Japan, APO San Francisco 96345, Calif., USA

Kling, J.J.
1076

(1963) University of California, Berkeley, Calif., 94720, USA

Kling, K.W.
519

(1967) V.P.I., Blacksburg, Va., USA

Kling, R.C.
453

(1964) Northwestern University, Evanston, Ill., USA

Kinkella, J.E.
363

(1965) Pennsylvania State University, University Park, Pa., USA

Kisbo, C.J.
1083

(1967) University of Texas, Austin 15, Tex. 78722, USA

Kita, W.C.
2982

Knecht, W.F.
1077

Kisaki, T.
863

Kito, I.
711

Kitagawa, O.
1075, 1090, 1503

Kitano, S.
1247

Kittmiller, J.B.
1068

Kisam, W.
1248

Klein, W.
544

Kleinfeld, R.G.
278

Klement, A.W., Jr.
1761, 1762

Klimotya, A.Y.
919

Klimotya, A.L.
846

Klimotya, A.Y.
916

Klopf, W.
83, 854, 470, 468, 562, 1538, 1654, 1778, 1791

Khim, J.A.
268

Knaak, J.B.
826, 842

Knippling, E.F.
1538, 1654, 1586, 1567, 1568

Knowles, B.B.
251
Kitamura, W. C.
1969

Kimberlin, R. F.
1973

Kim, J.
1968

Kinosawa, O.

Kitagawa, S.
1990

Kitzmiller, J. W.
1963

Klaassen, W.
1958

Klein, W.
644

Kleinschmidt, R. G.
279

Klement, A. W., Jr.
1781, 1782

Klimpinin, A.
911

Klimpinin, A. E.
2365

Klimpinin, A. Y.
948

Kloft, W.
28, 454, 479, 488, 552

Kluza, J. A.
460

Knaak, J. H.
865, 885

Knippling, E. F.
1238, 1253, 1286, 1307, 1288

Knowler, B. B.
181

(1968) Kitam College, Hirosh, Ohio, USA

(1969) Department of Radiobiology, Argentine Atomic Energy Commiss, Buenos Aires, Argentina

(1964) Central Research Institute, Japan Monopoly Corporation, Tokyo, Japan

(1965) Institut für Biophysik der Deutschen Akademie der Wissenschaften zu Berlin, Augenstrasse Leipzig, Abteilung Toxikologie, 28 Johannisallee, 701 Leipzig, German Democratic Republic

(1967) Tokyo Metropolitan University, Tokyo, Japan

(1963) Department of Zoology, University of Illinois, Urbana, Ill., USA

(1967) Metabolism and Radiation Research Laboratory, Fargo, N. Dak., USA

(1967) Organisch-Chemisches Institut, Universität Bonn, 1969 Meckenheimer Allee, Bonn, Federal Republic of Germany

(1966) Upstate Medical Center, State University of New York, Syracuse, N.Y., USA

(1964) Direktor, Institut für Angewandte Zoologie, Universität Bonn, I An der Brunsburg, 81 Bonn, Federal Republic of Germany

(1966) Entomology Research Division, ARS, USDA, Ames, Iowa, USA

(1967) Mellon Institute, Pittsburgh, Pa., USA

(1966) Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA

(1968) Department of Genetics, University of California, Berkeley, Calif. 94720, USA
Krasnov, E.B.
155, 178

(1967) A.N. Bahash Biochemical Institute, USSR Academy of Sciences, Moscow, USSR

Kuwatsuka, S.
90, 90

(1966) Division of Entomology, University of California, Berkeley, Calif. 94720, USA

Kuzin, A.M.
1266

(1987) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Lembensy Prospect, Moscow, USSR

Kvinnland, I.
1975, 2195, 1536

(1965) Institute of General Genetics, University of Oslo, Oslo, Norway

L'Heureux, C.
305, 305

(1965) Centre National de la Recherche Scientifique (C.N.R.S.), GIF-sur-Yvette, France

Labadi, R.M.
758

(1967) Cornell University, Ithaca, N.Y., USA

Labows, T.
396

(1966) Department of Chemistry, Cornell University, Ithaca, N.Y., USA

Labo, J.R.
1777

(1965) Insect Affecting Man and Animal Research Branch, Entomology Research Division, ARS, USDA, Gatheville, Fla., USA

Lacassine, L.R.
1975, 2193, 1134, 1536, 1564, 1589, 1701

(1987) Metabolism and Radiation Research Laboratory, North Dakota State University, Fargo, N. Dak., USA

Lacroix, N.
253

Lafferty, E.H., Jr.
1668

Lage, C.L.
611

(1987) Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA

Lagom, H.L.
1546

(1965) Department of Biochemistry, M. Unsei Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Lahiri, S.K.
70

(1967) Saha Institute of Nuclear Physics, Calcutta, India

Lahmiri, C.N.
1439

(1969) Entomology Research Division, ARS, USDA, Fargo, N. Dak., USA

Lai, N.
921, 922

(1967) University of Papua and New Guinea, Port Moresby, New Guinea

Lamb, M.J.
942, 1590, 1961, 1415, 1424, 1510

Lamb, M.
854

Lambert, E.N.
1126, 1137, 1337

Lambert, Z.
932, 1987

Lambert, W.
831

Landa, V.
437, 550

Landa, Z.
1299

Lang, E.
483

Lange, H.
483

Lapidoth, M.
1644, 1700

Lars, R.J.S.
352, 366

Larsen, W.
1966

Lassett, M.L.
382, 383

Lassota, Z.
925, 1590, 1568, 1401

Laudani, H.
1677

Lauer, H.
382, 383

Lauer, W.
192

Lavern, M.
384

Law, J.H.
410

Lawley, P.D.
638

636
Lamb, M. J., 929, 1030, 1081, 1413, 1424, 1448

Lamborn, N. 104

Lambourn, E. N., 1936, 2187, 3336

Lambrov, Z. 912, 2287

Lambourn, G. L. 581

Landa, V. 497, 1070

Landa, Z. 1288

Lango, H. 489

Lango, R. 486

Lapidoth, M. 1080, 1792

Lata, F. L. 309, 304

Larson, V. 1928

Lassner, N. L. 386, 382

Lassner, Z. 602, 1350, 1562, 1601

Landau, H. 1077

Laufer, N. 161, 181

Laufer, W. 159

Laven, H. 1642

Law, J. M. 410

Lawler, P. D. 606

(1967) Department of Zoology, Bishopsgate College, Maidstone Street, London, W.C.1, England

(1967) Catholic University of Louvain, Rue Kraepelin, Louvain, Belgium

(1965) Louisiana State University, Baton Rouge, La., USA

(1967) Metabolism and Radiation Research Laboratory, ARS, USDA, State University Station, Fargo, N. Dak., USA

(1968) Institute of Entomology, Czechoslovak Academy of Sciences, Prague, CSR

(1967) Forensiches Institut, Albert-Ludwigs-Universität, 11 Reihenstraße, Freiburg i. Br., Federal Republic of Germany

(1966) Sreeq Nuclear Research Centre, Yavne, Israel

(1966) Universidade de São Paulo, Cidade Universitária Armando de Salles Oliveira, Caixa Postal 1181, São Paulo, Brazil

(1965) College of Southern Utah, Cedar City, Utah, USA

(1966) Harvard University, Cambridge 38, Mass., USA

(1966) Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Palace of Culture and Sciences, Warsaw, Poland

(1966) ARS, USDA, Savannah, Ga., USA

(1966) Department of Zoology and Institute of Cellular Biology, University of Connecticut, Storrs, Conn., USA

(1966) Ludwig-Maximilians-Universität München, Munich, Federal Republic of Germany

(1966) Johannes-Gutenberg-Universität, Mainz, Federal Republic of Germany

(1967) Department of Biochemistry and Agricultural Biochemistry, University College of Wales, Aberystwyth, Wales
Laws, E.S., Jr.
(1966) Communicable Disease Center, U.S. Department of Health, Education and Welfare, Atlanta, Ga., USA

Lawson, F.R.
1971, 1972
(1967) Entomology Research Division, ARS, USDA, Box A, Columbia, Minn. 55001, USA

Leach, W.M.
(1967) Lovelace Foundation, Plasma Protein Inhalation Program, Albuquerque, N. Mex., USA

Leach, A.
1996

Leckenby, J.
472, 491, 492
1963
(1963) Faculté des Sciences de Strasbourg, Laboratoire de Psychophysiology et Station de Recherches sur l’Abeille et les Insectes Sociaux, Bures-sur-Yvette, Seine-et-Oise, France

Lee, C.C.
1613, 1614, 1975, 1976
(1960) Department of Zoology, Seoul National University, Seoul, Korea

Lee, W.R.
12, 24, 25, 34, 1982, 1983
(1967) University of Texas, Austin 12, Tex. 78712, USA

Lee, N.C.
432, 459
1966
(1966) Department of Entomology, Michigan State University, East Lansing, Mich., USA

LeFever, H.M.
1084
(1966) University of Texas, Austin, Tex. 78712, USA

LeFevere, G., Jr.
1078, 1109
1966
(1966) Department of Biology, San Fernando Valley State College, Northridge, Calif., USA

Lehovich, L.P.
78
(1966) Department of Entomology, University of Manitoba, Winnipeg, Man., Canada

Legay, J.M.
319
(1961) Laboratoire de Zoologie Expérimental, Faculté des Sciences de Lyon, Lyon, France

Leheta, M.F.
1247
(1964) Ministry of Agriculture, Dakar, Senegal

Lemml, A.J.
890

Lemmon, A.
122, 250
(1967) Department of Biochemistry, Faculty of Medicine, Laval University, P.O. Box 499, Quebec, P.Q., Canada

Lettiau, M.E.
165
(1965) F. U. N. U. T. E., Brussels, Belgium

Leuthardt, F.
188
1962
(1962) Universitit Zürich, Zurich, Switzerland

Leuthold, U.
1526
1968
(1968) Eidgenössische Technische Hochschule, Zurich, Switzerland

Levenson, L.
122, 133, 142, 413

Levi, G.
597

Levallien, L.L.
759

Lewis, L.
1979

Levemson, A.C.
548

Lezzi, M.
71, 72, 288, 309

Letou, L.
185

Liebmam, A.A.
561

Lifshitz, N.N.
1179

Limare-de-Feria, M.
312

Lindquist, A.W.
505

Lindquist, D.A.
693, 709, 702, 721, 775, 809, 813, 834, 834

Lindley, B.L.
1109, 1316

Lins, L.L.
284

Lindsey, H.P.
275

Lioten, D.
184, 185, 186

Lissay, H.
499

Lippold, F.C.
1255, 1258, 1729, 1744, 1746

Lisk, D.J.
979
Levi, G. 597
Levallien, L.L. 769
Levall, L.C. 1879
Levantino, R.C. 1499
Lew, M. 72, 72, 296, 300
Lew, L. 130
Leibman, A.A. 972
Leifert, N.N. 1179
Lima-de-Faria, A. 310
Lindquist, A.W. 800
Lindquist, D.A. 599, 700, 709, 751, 755, 808, 833, 814, 816, 826
Lindley, D.L. 1146, 1518
Ling, L.L. 289
Link, H. 878
Lipman, H. 294, 295, 296
Lippay, H. 499
Lippold, P.C. 1865, 1878, 1770, 1784, 1745
Link, D.L. 579

(1967) Department of Biology and Chemistry, Istituto Superiore di Sanita, Rome, Italy
(1968) California State Department of Public Health, Bureau of Vector Control, Fresno, Calif., USA
(1967) Entomology Research Division, ARS, USDA, Ames, Iowa, USA
(1967) University of Chicago, Chicago 37, Ill., USA
(1966) Zoologisches Institut, Eidgenoessische Technische Hochschule, Zurich, Switzerland
(1965) University of Paris, 1 Place Monceau, Paris, France
(1967) Lawrence Radiation Laboratory, Department of Chemistry, University of California, Berkeley, Calif., USA
(1968) Institute of Biological Physics, Academy of Sciences of the USSR, Leninsky Prospekt, Moscow, USSR
(1965) Institute of Genetics, University of Lund, Lund, Sweden
(1967) Bridgesport, Kana, 07324, USA
(1968) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1967) Laboratory of Genetics, University of Wisconsin, Madison, Wis. 53706, USA
(1965) Department of Botany, Raman College of Education, University of Nijmegen, 13 Wilhelminalaan, Nijmegen, The Netherlands
(1967) Max-Planck-Institut für Biochemie und Zoologisches Institut, Ludwig-Maximilians-Universität München, München, Federal Republic of Germany
(1966) Universitäts-Forschungsinstitut Würzburg, Institut für Genetik, Tierlagerplatz, A-1130 Vienna, Austria
(1967) New York State Agricultural Experiment Station, Geneva, N.Y., USA
(1969) Pesticide Resistance Laboratory, Department of Entomology, Cornell University, Ithaca, N.Y., USA

639
Little, R.F. 1977
Litvak, S. 112
Lloyd, L. 192
Lloyd, J.E. 192
Locke, M. 460, 387, 419
Lockman, R.A. 311
Lofgren, C.S. 76
Logan, D.M. 1665, 1668
Lohn, K. 707, 712
Longley, R.E. 708
Lourie, L. 1842
Lovellette, E.J. 1420
Lovinska, M.T. 88
Lucchesi, J.C. 1218
Lecker, G.W. 732
Ludwig, G. 654
Lut, P.F. 188
Lusing, K.G. 861
Lupac, V. 608
(1967) Division of Natural Sciences, University of Hawaii, Hilo Campus, Hawaii, USA
(1967) University of Chile, Santiago, Chile
(1967) Waste Agricultural Research Institute, University of Adelaide, Adelaide, Australia
(1966) Entomology Department, Cornell University, Ithaca, N.Y., USA
(1966) Western Reserve University, Cleveland 6, Ohio, USA
(1966) Department of Physiology, University of Rochester, Rochester, N.Y., USA
(1967) Entomological Research Division, ANS, USDA, Gainesville, Fla., USA
(1967) Research Station, Canada Department of Agriculture, Summerland, B.C., Canada
(1966) Institute of Agricultural and Industrial Microbiology, Ambra, Matt., USA and Cranberry Experiment Station, East Wareham, Matt., USA
(1967) Oficina Regional de la Organización Mundial de la Salud, Washington, D.C., USA
(1967) Arizona State University, Tempe, Ariz., USA
Lauer, L.E. 1669
Lisbon, M. 235
Maas Geerzen, H.F. 139, 514
MacBarnard, A.G. 591
MacDougall, D. 78
MacFadyen, A. 512
MacFarlane, J.F. 1629
Machida, I. 1626, 1630
MacQueen, W.F. 1671
MacRae, J.C. 655
Madsen, H.F. 1629, 1620
Magalhães, L.E. de 905
Magden, E. 1991
Makowski, A.F. 355
Malik, F. 1018
Making, S. 758, 1020
Makky, A.M.M. 865
Makram, J.K. 719
Malchamova, V.A. 1118
Malden, C.W. 1921, 1410, 1748
Lueke, L. G., 1969
Luce, M., 336

Maas, G. F., 598, 140
MacDermid, A. G., 598
MacDougall, D., 122
MacFarlane, H. J., 1670

Mucha, L., 1092, 1093
Mason, K. F., 1671
MacClaine, E. C., 658

Madsen, M. F., 1613, 1620
Magallanes, E., de 908
Magdalen, E., 1961
Mahowald, A. P., 335

Malin, F., 1019
Mahiko, S., 922, 1920

Malek, A. M. M., 863
Maisky, J. K., 1373

Malians, V. A., 1118
Malina, C. W., 1922, 1976, 1982

(1969) Department of Zoology, University of British Columbia, Vancouver, Canada
(1955) Department of Chemistry, University of Wisconsin, Madison, Wis., 53706, USA
(1956) Savannah River Ecology Laboratory, Aiken, S. C., USA

(1965) G.S.I.R.O., Division of Food Preservation, Ryde, N. S. W., Australia
(1965) National Institute of Radiological Sciences, Chiba, Japan
(1967) Commercial Products Division, Atomic Energy of Canada Ltd., Ottawa, Ont., Canada
(1965) Department of Microbiology, University of Queensland, St. Lucia, Brisbane, Australia
(1967) Research Station, Summerland, B. C., Canada

(1964) Departamento de Biologia General, Universidad de Sao Paulo, Caixa Postal 8101, Sao Paulo, Brazil
(1957) Institut fiir Krebsforschung, Berlin, Federal Republic of Germany
(1966) Johns Hopkins University, Baltimore, Md., 21218, USA
(1967) University of Vienna, A-1010 Vienna, Austria
(1961) Hokkaido University, Nishi 8, Kitas, Sapporo, Japan
(1966) University of Minnesota, Minneapolis, Minn., USA
(1965) Eidgenossische Forschungsanstalt, Blumenau, Switzerland
(1966) National Aeronautics and Space Administration, Ames Research Center, Moffett Field, Calif., USA

641
Malik, G. R.,
1966

Malinovsky, O. V.
946, 947

Malik, M. U.
1186, 1196, 1209

Mallya Surath, G.
946

Mamediyev, O. N.
177, 299, 300

Mandel, A. M.
263

Mard, R. S.
741

Manowitz, B.
1945, 1676, 1678

Manning, A.
196

Mannour Neto, E.
588

Marafield, P. C.
1944, 1978

Marcuzzi, G.
263

Margolish, E.
126

Marcon, A.
2675

Marin, T. B.
583

Marpion, T. G.
295, 595

Marsiglio, E. K.
1959

Mattess, B. K.
1116, 1777, 1785

Martin, R. F.
528, 54

Martin, E. F.
64

(1967) Radiotelectro and Radiation Laboratory, Department of Plant Radiation and Plant Quarantine, Karachi, Pakistan

(1959) Pavlov Institute of Physiology, Leningrad, USSR

(1957) Radiobiology Division, Atomic Energy Centre, Dacca, Pakistan

(1957) Department of Entomology, University of Wisconsin, Madison 6, Wis, 53706, USA

(1965) A.N. Severtsov Institute of Animal Morphology, Academy of Sciences of the USSR, 38 Leninsky Prospect, Moscow, USSR

(1954) University of Birmingham, P.O. 563, Birmingham 15, England

(1956) Atomic Energy Establishment, Trombay, Bombay, India

(1956) Brookhaven National Laboratory, Upton, N. Y., USA

(1958) Department of Entomology, University of Alberta, Edmonton, Canada

(1960) Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

(1964) Fruit and Good Technology Research Institute, Stellenbosch, South Africa

(1964) Institute of Zoology, Comparative Anatomy and Genetics, University of Padua, Padua, Italy

(1966) Biochemical Research Department, Abbott Laboratories, Chicago, III, 60004, USA

(1966) London School of Hygiene and Tropical Medicine, Tropical Products Institute, Grays Inn Road, London, W.C.I, England

(1967) Biology Department, Brookhaven National Laboratory, Upton, N. Y., 11973, USA

(1955) Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 1588, Porto Alegre, Rio Grande do Sul, Brazil

(1967) All-Union Scientific-Research Institute for Plant Protection, Leningrad, USSR

(1966) University of Texas, Austin 12, Tex. 78722, USA

Martinsongh, C.
733, 966

Martoja, N.
438

Mason, H. C.
1508

Mansay, L. M.
1729

Mansay, L. M., Jr.
1728

Matthyssen, J. G.
762

Martin, A. S. M. A.
1561

Matsumura, Y.
1986, 1986

Matsumura, P.
627, 629, 638, 637, 638, 659, 660, 754,
727, 730

Matuyama, A.
1976

Matter, B.
1962

Master, J. J.
1961

Mattingly, E.
312

Mattingly, E. M.
312

Mastron, I. K.
518

Mayer, E. L.
3175

Mayer, M. S.
3141

Mayer, R. J.
585

* Clearly the same author, e
Martinsen, C.
(1965) Centro Universitario di Ricerca ed Applicazione di Medicina Nucleare, Ospedale di Cipro, Varese, Italy

Mantola, R.
(1964) Laboratoire Biologie Animal, S.P.C.N., Paris, France

Marou, H.C.
(1967) Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA

Massey, L.M.
(1967) New York State Agricultural Experiment Station, Geneva, N.Y., USA

Massey, L.M., Jr.
(1967) Cornell University, Ithaca, N.Y., USA

Mathure, J.G.
(1969) Entomology Department, Cornell University, Ithaca, N.Y., USA

Mautin, A.S.M.A.
(1967) Atomic Energy Centre, Dacca, Pakistan

Matuda, Y.
(1967) Rikkyo University, Tokyo, Japan

Maumura, F.
(1967) Department of Entomology, University of Wisconsin, Madison 6, Wis. 53706, USA

Matsuyama, A.
(1966) Laboratory of Radiation Biology, Institute of Physical and Chemical Research, Oho- kumami, Ushiku, Tokyo, Japan

Matzer, B.
(1969) Eidgenosische Technische Hochschule, Zurich, Switzerland

Matzer, J.J.
(1969) Entomological Research Division, ARS, USDA, Knerville, Tex., USA

Matticeley, E.K.
(1966) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Mauk, L.K.
(1966) Entomology Research Division, ARS, USDA, State College, Miss., USA

Mayo, E.L.
(1969) Climate Quality Research Division, Stored Products Insects Research Branch, USDA, Ariz., Savannah, Ga., USA

Mayo, M.S.
(1969) Entomology Research Division, ARS, USDA, Gainesville, Fla., USA

Mayo, R.J.
(1997) University of Birmingham, Edgbaston, Birmingham 15, England

* Clearly the same author, although initials are not always cited in full.

643
Maynard-Smith, J.
136, 1415

Mayrink, W.
565

Mayrsky, I.N.
1248

McCance, D.L.
805

McCarty, H.R.
572

McClanahan, R.I.
2568

McCulloch, W.C.
187, 1753

McCloy, W.D.
521

McConnahe, W.
412, 413

McConnahe, A.J.
174, 176

McGavin, W.L.
3088

McGavin, R., Jr.
284

McKean, A.E.M.
858

McMahan, F.A.
495

McKenzie, T.W.
590, 1599, 1631

McLey, J.T.
425

McLey, J.C.
1997

Mech, R.L.
591, 569

Mechadale, H.M.
386

Mechotra, R.N.
387, 3554

Meffert, D.W.
1782

Mellor, B. de
503

Meinwald, J.
190, 376, 385

Mekhanik, M.L.
267

Melker, M.E., Jr.
191

Mellado, L.
2, 3, 27, 1118, 1220, 1936

Mentzer, M.
749

Menangle, D.C.
753

Menchikov, E.T.
227

Menzel, J.J.
722

Meehan, F.E.
784, 785

Mercer, W.A., Ed.
863

Mettali, R.L.
285, 724, 755, 774, 814, 857, 897

Meyering, G.D.
722

Meyer, H.U.
502

Meyer-Düring, H.
426

Mezel, C.
359, 402

Mia, M.M.
1799

Michael, B.
1228

Michalska, O.S.
260
McLaren, L. 1966, 9, 9, 27, 1119, 1125, 1556
Meeker, M. 140
Mengle, D.C. 769
Menchinsk, R.S. 207
Munn, L.J. 702
Meuser, R.E. 784, 788
Meuser, W.A., 862
Metcalfe, R.L. 203, 724, 733, 774, 835, 857, 897
Meyers, G.D. 723
Meyer, H.U. 922
Meyer-Birg, H. 2027
Metz, C. 999, 421
Miao, M.M. 2172
Michalova, O.S. 780
Michailova, O.S. 780
(1966) Insect Affecting Man and Animals Investigations, Entomology Research Division, ARS, USDA, Gainesville, FL, USA
(1966) Department of Chemistry, Cornell University, Ithaca, N.Y., USA
(1966) Moscow M.V. Lomonosov State University, Leninskoe Gory, Moscow 5, USSR
(1968) University of Pennsylvania, Philadelphia, Pa., USA
(1966) Escuela Central de Fitopatologia, Instituto Nacional de Investigaciones Agropecuarias, Madrid, Spain
(1966) Department of Zoology, University of Texas, Austin 12, Tex. 78712, USA
(1965) State of California, Department of Public Health, Community Study of Pestisdes, Bakersfield, Calif., USA
(1965) Laboratory of Radiation Ecology, Building 172-G, Savannah River Operations Office, Aiken, S.C., USA
(1966) Stauffer Chemical Corporation, Agricultural Research Center, Mountain View, Calif., USA
(1966) Department of Entomology, University of Maryland, College Park, Md., USA
(1966) National Cancer Association Research Foundation, Washington, D.C., USA
(1967) Department of Entomology, University of California, Riverside, Calif., USA
(1966) Stauffer Chemical Corporation, Research Center, Richmond, Calif., USA
(1966) Department of Zoology, University of Wisconsin, Madison 6, Wis. 53706, USA
(1967) Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oreg., USA
(1966) Department of Radiation Genetics, State University of Leyden, 87-73 Rapenburg, Leyden, The Netherlands
Miles, J.W. 670
(1967) Biology-Chemistry Section, Technology Branch, Communicable Disease Center, Public Health Service, U.S. Department of Health, Education and Welfare, Savannah, Ga., USA

Miles, P.W. 192, 193
(1967) Waite Agricultural Research Institute, University of Adelaide, Adelaide, Australia

Miller, C.W. 209, 401, 362
(1966) Institute of Agricultural and Industrial Meteorology, Amherst, Mass., USA and Cranberry Experiment Station, East Wareham, Mass., USA

Mills, R.B. 1186, 1188
(1967) Department of Entomology, Kansas State University, Manhattan, Kansas, USA

Mills, A.K. 194
(1907) Agricultural University, Wageningen, The Netherlands

Minear, E. 3150
(1966) Genetics Division, Atomic Energy Commission, Bethesda, Md., USA

Mitchell, H.K. 186
(1966) California Institute of Technology, Pasadena, Calif., USA

Mullin, N. 44, 84, 882
(1966) Entomology Research Division, ARS, USDA, State College, Miss., USA

Muller, S. 1044, 1200, 1204, 1205, 1206, 1207, 1208
(1967) Northern Illinois University, DeKalb, Ill., USA

Miyamoto, J. 782, 783
(1965) Sumitomo Chemical Co., Osaka, Japan

Miyazaki, S. 864
(1967) Department of Entomology, University of Wisconsin, Madison 6, Wis. 53706, USA

Mkrtchyan, K.L. 1948
(1965) Armenian Agricultural Research Institute, Yerevan, Armenian SSR

Moens, P.S. 1084
(1966) Department of Botany, York University, Toronto 6, Ont., Canada

Moochini, V. 492
(1967) Institut für Angewandte Zoologie, Institut für Pflanzenkrankheiten, Universität Bonn, Bonn, Federal Republic of Germany

Moh, C.C. 2346
(1966) Inter-American Institute of Agricultural Science, Tropical Center for Research and Graduate Training, Turrialba, Costa Rica

Molchanova, V.A. 1597
(1967) All-Union Research Institute of Plant Protection, Leningrad, USSR

Mole, R.H. 1098
(1963) Medical Research Council, Harwell, Didcot, Berks., England

Mollah, S.A. 1190, 1194, 1195
(1967) Radiobiology Division, Atomic Energy Centre, Peshawar, Pakistan

Moller, J. 1346

Morton, R.D. 57, 58

Morto, J. 1587, 1603

Morris, R.E. 466

Montagnier, H. 485

Montalenti, G. 242

Montagnoli, P.G. de 1266

Moore, L.J. 547

Moore, B.S. 1267

Moor, W.S. 886

Mosey, M. 385

Morgan, D.J. 485

Morgan, J.H. 1791

Morikawa, O. 242

Morikawa, D. 1960

Mortley, H.V. 696

Morosov, V.S. 1103

Morriss, G.M. 314

Morrison, F.O. 696

Morton, M.R. 1885
Mouton, G., 1908, 1909, 1919, 1920
Mouta, I.Y., 732, 838
Moulton, B.C. 32
Moucon, R. 1878
Mucenhauser, P.A. 315
Muehle, W.W. 754
Muehler, I. 1967
Muhamed, A. 316, 317
Mukai, T. 1967
Mukerji, A.B. 318
Mukerji, K.N. 1911, 1912, 1936
Muller, H.J. 1417
Muller, P.W. 710
Mumma, R.O. 666, 668
Müllenhoff, P. 432, 433, 434, 435

(1963) Laboratoire d’Anatomie Compresse, Faculte des Sciences, Paris, France

(1950) Institute of Genetics, University of Lund, Lund, Sweden

(1957) School of Medicine, University of Chile, Santiago, Chile

(1957) Tumori Laboratory, "Sheff" Research Lab., Stainthorpe, Kent, England

(1963) Institute of Genetics and Cytology, Minsk, USSR

(1966) Department of Radiobiology, Atomic Energy Establishment, National Research Centre, Dukki, Cairo, UAR

(1967) University of Tennessee, Knoxville, Tenn. 37916, USA

(1966) Free University of Brussels, 50 Avenue Franklin Roosevelt, Brussels, Belgium

(1966) Johns Hopkins University, Baltimore, Md, 21218, USA

(1967) Radiochemistry Research Laboratory, The Dow Chemical Co., Midland, Mich., USA

(1966) Universitäts zu Köln, Albertus-Magnus-Platz, Cologne, Federal Republic of Germany

(1967) Pakistan Atomic Energy Centre, Lahore, Pakistan

(1966) National Institute of Genetics, Mito, Japan

(1966) University of Utah, Salt Lake City, Utah, USA

(1967) Department of Radiology, Institute for Radiopathology and Radiation Protection, State University of Leyden, 67-75 Scheveningen, Leyden, The Netherlands

(1965) Indiana University, Bloomington, Ind., USA

(1966) Abteilung für Forschung und Schadlingsbekämpfung, I.R. Geigy AG, Basel, Switzerland

(1967) Fertile Research Laboratory, Pennsylvania State University, University Park, Pa., USA

(1965) 479 Soest, Windmühlenweg 32, Westfalen, Federal Republic of Germany

Munday, B.P. 961
Murawie, A.M. 1289, 1296
Muffoz, E.R. 1687
Musashino, M. 196
Musto, G.F. 1191, 1253
Murphy, C.G. 1971
Murphy, G. 1669
Murphy, T.A. 100, 191
Muscelli, C.G. 1140
Muszkat, A.F. 445
Mysak, M., N. 1688, 1689
Myrza, M.E. 1926
Mytilineos, C. 510
Nabi, N. 1672
Nadler, D. 1599
Nadell, D.J. 16, 1091
Nag, B.D. 70
Nagy, B. 1586, 1682, 2781, 2920
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mundy, R.F.</td>
<td>Lawrence Radiation Laboratory, University of California, Berkeley, Calif, USA</td>
</tr>
<tr>
<td>Municino, A.M.</td>
<td>Institute of Chemistry, Madrid, Spain</td>
</tr>
<tr>
<td>Manzon, E.B.</td>
<td>Department of Radiobiology, Argentine Atomic Energy Commission, Buenos Aires, Argentina</td>
</tr>
<tr>
<td>Murakami, A.</td>
<td>National Institute of Genetics, Mito, Japan</td>
</tr>
<tr>
<td>Muramoto, M.</td>
<td>Tohoku University, Katahira, Sendai, Japan</td>
</tr>
<tr>
<td>Murton, G.F.</td>
<td>University of California, Berkeley, Calif, USA</td>
</tr>
<tr>
<td>Murphy, C.G.</td>
<td>Nuclear Engineering Department, Iowa State University, Ames, Iowa, USA</td>
</tr>
<tr>
<td>Murphy, G.</td>
<td>Medical Research Laboratory, U.S. Army, Edgewood Arsenal, Md, USA</td>
</tr>
<tr>
<td>Murphy, T.A.</td>
<td>Departamento de Biología Genética, Universidade de São Paulo, São Paulo, Brazil</td>
</tr>
<tr>
<td>Musilin, A.P.</td>
<td>Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR</td>
</tr>
<tr>
<td>Mysyanychuk, E.N.</td>
<td>University of Oregon, Eugene, Ore, USA</td>
</tr>
<tr>
<td>Muraswalski, M.E.</td>
<td>Biology Service Joint Research Centre Israorn, Casella Postale 1, Lupa, Italy</td>
</tr>
<tr>
<td>Mytensenset, G.</td>
<td>Atomic Energy Centre, Decca, Pakistan</td>
</tr>
<tr>
<td>Nabi, N.</td>
<td>International Atomic Energy Agency, 11 Kärntnerstr, A-1013 Vienna, Austria</td>
</tr>
<tr>
<td>Nagy, B.D.</td>
<td>Saha Institute of Nuclear Physics, Calcutta, India</td>
</tr>
<tr>
<td>Nagy, S.</td>
<td>Research Institute for Plant Protection, Budapest, Hungary</td>
</tr>
</tbody>
</table>
(1967) Research Institute, Canada Department of Agriculture, Belville, Ont., Canada

Nakagawa, S. 2474

(1965) Entomological Research Division, ARS, USDA, Honolulu, Hawaii

Nakamichi, Y.H. (1980) 924, 1090

(1980) National Institute of Radiological Sciences, Chiba, Japan

Nakao, Y. 1674, 1989, 1090

(1964) Department of Biology, Johns Hopkins University, Baltimore, Md. 21218, USA

Nakashima-Tateoka, K. 1091

(1966) University of Osaka, Prefecture, Japan

Nakatogawa, T. 783, 785, 797

(1967) Iowa State University, Ames, Iowa, USA

Naito, S. 327

(1966) University of Wisconsin, Madison S, Wisc. 53706, USA

Nagai, G.E. 2514

(1967) Calco University, Carin, U.A.R.

Nagano, J.L. 223, 549

(1966) University of Florida, Gainesville, Fla., USA

Neal, R.A. 768

(1968) Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville S, Tenn., USA

Nedegard, S. 84

(1964) Department of Zoology, University of Massachusetts, Amhurst, Mass., USA

Neeb, W.W. 1715, 1722

(1966) Department of Entomology, West Virginia University, Morgantown, West Virginia, USA

Negishi, A. 218

(1965) National Institute of Radiological Sciences, Chiba, Japan

Nel, M. 1818

(1963) National Institute of Radiological Sciences, Chiba, Japan

Nelson, D.J. 228

(1963) Oak Ridge National Laboratory, Oak Ridge, Tann., USA

Nelson, S.O. 1547, 1548, 1783, 1784, APX2, APX4

(1967) Electrical Conditioning, Preservation, and Protection Investigations, Farm Electrification Research Branch, Agricultural Engineering Division, ARS, USDA, Neb., USA, and the University of Nebraska, Lincoln, Neb., USA

Nelson, T.F. 1713

(1966) Entomological Research Division, ARS, USDA, Corvallis, Oreg., USA

Newburgh, R.W. 123, 389, 421

(1967) Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oreg., USA

Newsom, C.L. 1014

(1968) Oak Ridge National Laboratory, Oak Ridge, Tann., USA

Newsom, L.D. 1159

Newsom, J.R. 1095, 1806

Newton, W.H. 1694

Niggen, V. 319

Nishizawa, T. 166

Nixon, W.G. 1747

Noennemehler, L. 319

Noordink, J.P. 462, 809, 840

Norgren, R.L. 962

Norland, J.F. 1698

Norman, C. 197

Norris, T.R. 1010

North, D.T. 107, 1132, 1142

Novinski, L. 1052

Nut, U. 1402

O'Keene, P.D. 61, 84, 372, 409, 502, 585, 626, 636, 658, 659, 797, 896

O'Connell, G. 456

O'Toole, G.T. 1079

850
<table>
<thead>
<tr>
<th>Name</th>
<th>University/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newcombe, C.L.</td>
<td>San Francisco State College</td>
<td>San Francisco, Calif., USA</td>
</tr>
<tr>
<td>Newton, L.D.</td>
<td>Department of Entomology, Louisiana State University</td>
<td>Baton Rouge, La., USA</td>
</tr>
<tr>
<td>Newton, J.F.</td>
<td>Research Station, Canada Department of Agriculture</td>
<td>Summerland, B.C., Canada</td>
</tr>
<tr>
<td>Newton, W.H.</td>
<td>Texas A and M University, College Station</td>
<td>College Station, Tex., USA</td>
</tr>
<tr>
<td>Nigro, V.</td>
<td>Laboratoire de Zoologie EXPERIMENTAL, Faculte des Sciences</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Nishioka, T.</td>
<td>Chiba University, 1 Yayoicho, Chiba City, Japan</td>
<td></td>
</tr>
<tr>
<td>Nixon, W.C.</td>
<td>Engineering Department, Cambridge University</td>
<td>Cambridge, England</td>
</tr>
<tr>
<td>Nonneumann, J.</td>
<td>Laboratoire de Zoologie EXPERIMENTAL, Faculte des Sciences</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Noonan, L.P.W.</td>
<td>Labs A, 5901, USA</td>
<td></td>
</tr>
<tr>
<td>Norgren, R.L.</td>
<td>Cranberry Experiment Station, University of Massachusetts</td>
<td>East Wareham, Mass., USA</td>
</tr>
<tr>
<td>Noland, J.F.</td>
<td>Metabolism and Radiation Research Laboratory</td>
<td>Fargo, N.Dak., USA</td>
</tr>
<tr>
<td>Norman, C.</td>
<td>Department of Biology, West Virginia University</td>
<td>Morgantown, West Virginia, USA</td>
</tr>
<tr>
<td>Norris, K.R.</td>
<td>C.S.I.R.O., Division of Entomology, Canberra, Australia</td>
<td></td>
</tr>
<tr>
<td>North, D.T.</td>
<td>Entomology Research Division, ARS, USDA</td>
<td>Fargo, N.Dak., USA</td>
</tr>
<tr>
<td>Novinski, E.</td>
<td>University of Oregon, Eugene, Oreg., USA</td>
<td></td>
</tr>
<tr>
<td>Nur, U.</td>
<td>Department of Biology, University of Rochester, Rochester</td>
<td>N.Y. 14627, USA</td>
</tr>
<tr>
<td>O'Brien, R.O.</td>
<td>Section of Neurobiology and Behaviour, Department of Entomology</td>
<td>Cornell University, Ithaca, N.Y., USA</td>
</tr>
<tr>
<td>O'Connor, G.</td>
<td>Biology Department, Saint Louis University</td>
<td>Saint Louis, Mo., USA</td>
</tr>
<tr>
<td>O'Sullivan, G.T.</td>
<td>Biology Branch, Department of Agriculture</td>
<td>Victoria, Queensland, Australia</td>
</tr>
</tbody>
</table>
Oatley, C. W., 1742

Oberlander, H., 204, 208, 209, 291

Ochinskaia, G. K., 1453, 1454

Oden, C. K., 34

Odum, E. P., 586

Oe, D., 251

Offield, P., 74, 75, 292, 3143, 3144

Ogaki, M., 1924

Ohta, S., 1090

Okada, S., 103

Okada, K., 964

Okada, T., 128

Okamoto, S., 1286, 1288

Olivieri, A., 1923

Olivieri, G., 1922

Olmstead, A., 1972

Ono, C., 1596

Oishi, K., 1993

Onodera, S., 201, 222

Oonishi, E. S., 559

Oppenau, F. I., 667

Ottoson, E., 902

Ota, S. A., 1298

Otsuka, M., 1698

Ottom, W. S., Jr., 529

Ottok, M. F., 636, 637

Outram, D. E., 2409

Outlaw, W. A., 581

Outter, L. R., 1278

Ozagaki, K. K., 362

Otsuka, K., 295

Outram, I., 292, 602, 603

Outter, W. L., 776

Ozer, M., 1249

Palmer, R. S., 884, 885, 887

Palmer, I. S., 746

Pantaleo, E., 627, 628

Pappagianis, M., 1154

Parfenov, G. F., 1179, 1280
Oppenworth, F.J.

(1967) Laboratory for Research on Insects, Wageningen, Netherlands

Orlando, E.

(1966) Instituto di Zoologia, University of Modena, Modena, Italy

Oscega, A.

(1955) Instituto de Energia Nuclear, Madrid, Spain

Otaka Sune, N.

(1966) University of New South Wales, P.O.R. 2, Kensington (Sydney), N.S.W., Australia

Ottum, W.S., Jr.

(1964) University of Colorado, Boulder, Colo., USA

Osuman, M.F.

(1967) Faculty of Science, University of Cairo, Cairo, U.A.R.

Osumun, D.E.

(1967) Department of Biological Sciences, University of Delaware, Newark, Del., USA

Owen, W.A.

(1966) University of Minnesota, Minneapolis, Minn., USA

Owie, E.L.

(1967) Board of Agriculture, Hawaii, USA

Otagaki, K.K.

(1966) Tohoku University, Katahira, Sendai, Japan

Othon, K.

(1967) Imperial College Field Station, Sunninghill, Berks., England

Outram, I.

(1967) South Plains Research and Extension Center, Texas A and M University, Lubbock, Tex., USA

Owen, M.

(1965) Faculty of Agriculture, Ankara, Turkey

Palmer, R.R.

(1966) Agricultural Toxicology and Residue Research Laboratory, University of California, Davis, Calif. 95616, USA

Palmer, J.S.

(1966) Entomology Research Division, ARS, USDA, Kerrville, Tex., USA

Pantaleo, R.

(1966) Department of Genetics, School of Medicine, University of Bari, Bari, Italy

Pappageorgiou, M.

(1966) "Democritos" Nuclear Research Center of the Greek Atomic Energy Commission, Athens, Greece

Parfenov, G.P.

(1966) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR

University, Cambridge,

University, Waltham, Mass., USA

Netherlands-Radiology,

N.Y., USA

University, Tohoku-Ku,

N.Y., USA

University, Tokyo-Ku,

N.Y., USA

University, Tokyo-Ku,

Japan

University, Tohoku-Ku,

Japan

University, Tohoku-Ku,
Patriyovs, G. P. 1458, 2445

Parks, D. V. 598

Parks, D. R. 982, 951, 962

Parks, G. L. 927

Parks, W. H. 486

Patau, M. J. 199

Passmore, W. 91

Pasyukov, G. F. 1458, 2445

Pathak, C. 1978, 1979

Pate, L. 588

Patterson, F., 1983

Patterson, T. 1772

Patterson, J. 588

Paterson, M. 1168

Paterson, B. 1458

Paterson, R. 76

Paul, B. B. 968

Paul, L. S. 1795

Paz, C. 902, 341, 906

Payne, J. A. 1606

Payne, D. B. 982

Pearce, G. W. 138, 615

Pearson, B. W. 1741, 1747, 1748

Peleg, S. A. 112, 1359, 1388, 1391

Perelman, C. 1319

Pelling, C. 394

Penz, S. 1267

Perchonok, F. 91

Perez-Davi1a, Y. 1589

Perry, A. S. 592, 972, 1791

Perry, B. J. 712

Pershad, S. 498

Pershitas, R. 1772

Penson, F. 1989

Penton, F. 1060

Pecsarr, T. E. 972

Peters, T. J. 550, 663

Petersen, J. B. 1272

Petrovskaya, N. I. 1148

Peterson, M. F. 1059

Pettit, R. J. 200, 201, 382, 381

Pettit, R. J. 550, 553

Phillips, F. M. 568

Phillips, D. D. 799

PlaskevChaya, Y. 8

Pitkanen, J. C. 1479

Picton, M. H. 1475
Perchonon, F. 91
Perey, A. S. 585, 586, 590
Perez-Davilla, Y. 1290
Perry, B. J. 772
Peters, S. 468
Peters, E. 1296
Peters, Y. P. 1749
Peters, W. 1996
Pétajä, T. E. 973
Pevzner, T. J. 586, 587
Petersen, J. B. 2872
Petroshova, N. I. 1145
Petrov, M. F. 1980
Pettit, R. J. 200, 201, 326, 327
Petty, R. O. 589, 593
Phillips, F. M. 586
Phillips, D. D. 799
Puruprathaya, Y. 8
Pieloch, J. C., Jr. 1579
Pietson, H. D. 1475
(1966) University of Chicago, Chicago 37, Ill., USA
(1967) University of Chicago, Chicago 37, Ill., USA
(1986) Chemistry Section, Defence Research Board of Canada, Suffield Experimental Station, Ralison, Alta., Canada
(1986) Department of Radiology, University of Turku, Turku, Finland
(1966) Ohio State University, Columbus 10, Ohio, USA
(1967) Department of Biology, Marquette University, Milwaukee, Wis., USA
(1966) Department of Biology, Wabash College, Crawfordsville, Ind., USA
(1967) Plant Pest Control Division, ARS, USDA, Hills, Mich., USA
(1967) Mobil Chemical Research Edison Township Laboratory, Route 27, Metuchen, N.J., USA
(1966) Faculty of Tropical Medicine, University of Bangkok, Bangkok, Thailand
(1967) Veterinary Medical Research Institute, Iowa State University, Ames, Iowa, USA
(1964) Northwestern University, Evanston, Ill., USA
Piacentini, L. N.
1986
(1987) Department of Zoology, University of British Columbia, Vancouver, B.C., Canada

Plaine, H. L.
1987
(1988) Ohio State University, Columbus 10, Ohio, USA

Planel, H.
1974; 1375, 1484
(1967) Laboratoire d’Urologie de la Faculté de Médecine, 54, Allée Jules-Guesde, Toulouse, Haute-Garonne, France

Piapp, F. W., Jr.
1981
(1969) Forests Affecting Man and Animal Research Branch, Entomology Research Division, ARS, USDA, Corvallis, Ore., USA

Piatova, F. P.
1966
(1967) Institute of Atomic Energy, Moscow, USSR

Piatz, W.
266, 247, 247, 327
(1967) Department of Zoology, University of Wisconsin, Madison 6, Wis. 53706, USA

Plummer, G. L.
1960
(1960) Georgia University, Athens, Ga., USA

Po-Chedley, D. S.
1418
(1966) Biology Department, D’Youville College, 350 Porter Avenue, Buffalo 1, N.Y., USA

Podolsky, V. V.
1982

Polath, E.
1927
(1987) Institut Allgemeine Biologie, Universität Wien, A-1010 Vienna, Austria

Polehoslink, V. D.
1905; 1379
(1966) Central Science-Research Disinfecting Institute, Moscow, USSR

Pollitzer, A. N.
338
(1963) Department of Zoology, Columbia University, Morningside Heights, New York 27, N.Y., USA

Porr, A.
1961; 1146

Pors, B.
521

Porembiska, Z.
292
(1986) Medical School, Warsaw, Poland

Porgosz, L.
1974
(1964) Fruit and Good Technology Research Institute, Stellenbosch, South Africa

Powens, J. J.
1983
(1987) Department of Food Sciences, University of Georgia, Athens, Ga., USA

Poznańska, B.
1546, 1781
(1955) Research Institute for Plant Protection, Budapest, Hungary

Pravina, G. M.
1489
(1966) Ministry of Public Health of the USSR, Moscow, USSR

Price, C. E.
1728

Price, G. M.
295, 294, 205

Price, M. A.
1994

Price-Jones, D.
1728

Primak-Mirolyubov, V. N.
1948

Proctor, M.
1856

Prothero, M. D.
1805, 1806

Prudhomme, J. C.
339, 436

Prelaska, A.
300, 306, 391

Pollitzer, J. F.
394, 3112

Purdom, C. L.
949, 1319, 1611

Piao, J.
1792, 1998

Quann, J. H.
359

Quain, V.
3567, 1198

Quinquaud-Moffet, V.
1448

Qureshi, M. A. H.
3525

Qureshi, M. S.
72, 291, 592

Queret, Z. A.
1926, 1577

Radeleff, R. D.
740

Ragun, K.
655
Price, C.E. 1785
(1968) Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tenn., USA

Price, C.M., 205, 204, 205
(1967) Biochemistry Department, A.R.C., Pest Insect Station Laboratory, London Road, Slough, Bucks., England

Price, N.A. 1854
(1969) Texas A and M University, College Station, Tex., USA

Price-Jones, D. 1786

Primak-Minbyzov, V.N. 1948
(1966) Centre d'Etude de l'Energie Nucleaire, Mol, Belgium

Proum, M. 1694
(1967) Research Station, Canada Department of Agriculture, Summerland, B.C., Canada

Proverda, M.D. 1605, 1606

Pundak, J.C. 292, 428
(1967) Section de Biologie Generale et Appliquee, Faculte des Sciences, Lyon, France

Pustizhe, A. 336, 392, 393
(1965) Department of Cytochemistry, M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Pulitzer, I.F. 394, 1942
(1966) University of Pavia, Pavia, Italy

Purow, C.E. 1948, 1958, 1961
(1967) Ministry of Agriculture, Fisheries and Food, Fisheries Laboratory, Lowestoft, Suffolk, England

Pusey, I. 102, 1928
(1966) University of Turku, Turku, Finland

Quastel, J.H. 288
(1968) McGill University, Montreal 2, P.Q., Canada

Quintana, V. 1197, 1248
(1967) University of Puerto Rico, Nuclear Centre, Mayaguez, Puerto Rico

Quintana-Muñiz, V. 3448
(1966) University of Puerto Rico, Nuclear Centre, Mayaguez, Puerto Rico

Quested, M.A.H. 3523
(1966) Department of Entomology, University of Manitoba, Winnipeg, Man., Canada

Qarad równa, M.S. 28, 601, 602
(1969) Atomic Energy Research Centre, Tandojam, Pakistan

Qureshi, F.A. 1976, 1977
(1968) Animal Disease and Parasite Research Division, AB, USDA, Knoxville, Tenn., USA

Radeoff, R.D. 740
(1967) Indian Agricultural Research Institute, New Delhi, India

Raghu, K. 655
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rahnikar, G.W.</td>
<td>(1966) Research Institute, Belleville, Ont., Canada</td>
</tr>
<tr>
<td>Rahman, R.</td>
<td>1966</td>
</tr>
<tr>
<td>Rai, K.S.</td>
<td>(1967) Radiobiology Division, Atomic Energy Centre, Daurala, Pakistan</td>
</tr>
<tr>
<td>Raimundo, A.C.</td>
<td>1967 Mount Allison College, Newcomb City, Calif., USA</td>
</tr>
<tr>
<td>Rajasekharam, S.S.</td>
<td>1968 Institute of Science, Department of Biochemistry, Bangalore 12, India</td>
</tr>
<tr>
<td>Ramachandran, B.V.</td>
<td>(1966) Institute of Medicine, University of Uppsala, Uppsala, Sweden</td>
</tr>
<tr>
<td>Rao, D.R.</td>
<td>1966 Australian National University, P.O.B. 4, Canberra, A.C.T., Australia</td>
</tr>
<tr>
<td>Rapport, H.</td>
<td>1967 Lawrence Radiation Laboratory, Department of Chemistry, University of California, Berkeley, Calif., USA</td>
</tr>
<tr>
<td>Rasch, E.M.</td>
<td>(1967) Department of Biology, Marquette University, Milwaukee, Wis., USA</td>
</tr>
<tr>
<td>Rasch, R.W.</td>
<td>(1967) Department of Biology, Marquette University, Milwaukee, Wis., USA</td>
</tr>
<tr>
<td>Ratty, F.J.</td>
<td>(1967) Biology Department, San Diego State College, 5402 College Avenue, San Diego 13, Calif., USA</td>
</tr>
<tr>
<td>Ray, E.S.</td>
<td>1967 Entomology Research Division, ARS, USDA, Ankeny, Iowa, USA</td>
</tr>
<tr>
<td>Ray, S.</td>
<td>1966 Indian Institute of Science, Bangalore, India</td>
</tr>
<tr>
<td>Ray, J.W.</td>
<td>1967</td>
</tr>
<tr>
<td>Rea, P.</td>
<td>(1968) Facultad de Ciencias, Bonnait, France</td>
</tr>
<tr>
<td>Razykovsky, B.L.</td>
<td>(1967) Radiobiological Research Unit, Osmania University, Hyderabad 7, India</td>
</tr>
<tr>
<td>Reddy, D.S.</td>
<td>1967 Department of Biology, Rice University, Houston 1, Tex., USA</td>
</tr>
<tr>
<td>Reddy, S.R.R.</td>
<td>1967</td>
</tr>
</tbody>
</table>

Reeser, J.S. | 1967 |
Robbinder, D. | 1967 |
Robbins, E. | 1968 |
Rotch, D.F. | 1969 |
Roebuck, J.A. | 1970 |
Rohrbach, H. | 1967 |
Rondon, H.L. | 1968 |
Rothschild, R. | 1967 |
Raimond, G. | 1968 |
Robbins, D. | 1969 |
Riccardi, A. | 1967 |
Richardson, A.G. | 1970 |
Richardson, N. | 1968 |
Riddel, D. | 1969 |
Ridgway, R.L. | 1969 |
Riedel, M. | 1968 |
Riebel, S.M. | 1969 |
Riemann, J.C. | 1969 |

658
Reesor, J. A.
722

Robbins, D.
705

Reichard, E.
1095

Reichle, D. E.
79, 89, 292, 333

Reidrup, J. V.
7106

Reller, J.
722

Rempold, H.
206, 510

Reynolds, H. T.
778, 856

Rezkova, R.
427, 1509

Reznicek Raimondi, G.
538

Ribbert, D.
845, 418

Riccardi, A.
705, 706

Richard, A. G.
1316

Richardson, N.
5387

Riddell, D.
487

Ridgway, H. E.
772, 776

Riedl, M.
1605

Riedl, S. M.
19

Riemann, J. G.
448, 297, 1301

(1966) Chemistry Section, Defence Research Board of Canada, Suffield Experimental Station, Ralston, Alta., Canada

(1967) Department of Biochemistry, C. H. Boehringer Sohn, Ingelheim, Federal Republic of Germany

(1968) Vitro Laboratory, West Orange, N. J., USA

(1967) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1966) Eidgenoessische Technische Hochschule, Zurich, Switzerland

(1964) Max-Planck-Institut für Biochemie, Munich, Federal Republic of Germany

(1965) Department of Entomology, University of California, Riverside, Calif., USA

(1965) Institute of Entomology, Czechoslovak Academy of Sciences, Prague, CSSR

(1965) University of Milan, Milan, Italy

(1967) Zoologisches Institut, Westfälische Wilhelms-Universität, 2 Schloßplatz, Münster, Federal Republic of Germany

(1965) Centro Universitario di Ricerca ed Applicazione di Medicina Nucleare, Ospedale di Circolo, Varese, Italy

(1965) Department of Entomology, Interior and Wildife, University of Minnesota, St. Paul, Minn. 55101, USA

(1965) Department of Zoology, University of Adelaide, Adelaide, Australia

(1967) Zoologisches Institut, Westfälische Wilhelms-Universität Münster, 9 Bredenstengasse, Münster, Federal Republic of Germany

(1967) Entomology Research Division, AFS, USDA, College Station, Tex. 77841, USA

(1967) Fakultät für Landwirtschaft und Gartenbau, Technische Hochschule München, 31 Aschamstrasse, München, Federal Republic of Germany

(1968) Institute of Molecular Biophysics, Florida State University, Tallahassee, Fla. 32306, USA

(1967) Radiation Biology and Insect Genetics Section, Metabolism and Radiation Research Laboratory, Entomology Research Division, AFS, USDA, FARGO, N. Dak., USA
Rosen, F.
598

Rosen, F. M.
96, 254, 295, 300

Rottino, F. J.
599

Rubino, L. O.
1760

Rubin, W. E.
570, 594, 595, 440

Roberts, F. L.
1104

Roberts, P.
1054

Roberts, P. A.
1054, 1055

Robredo, F.
2787

Robson, A.
513

Roeck, G. C.
512

Rochford, B.
1494

Rothstein, M.
1314, 1580, 1581, 1421, 1420

Roels, Sainton, M. L.
507

Roderbusch, J.
777, 778, 779

Rodez, E.
503

Rodman, T. C.
337

Rodriguez, J. I.
1958

(1967) Biology Department, San Diego State College, 5402 College Avenue, San Diego 15, Calif., USA

(1966) International Laboratory of Genetics and Biophysics, Naples, Italy

(1967) Central Laboratory, T.N.O., Deut, The Netherlands

(1967) Metabolism and Radiation Research Laboratory, ARS, USDA, Fargo, N. Dak., USA

(1967) Insect Physiology Laboratory, Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA

(1965) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1964) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1965) Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1964) Servicio de Plagas Forestales, Madrid, Spain

(1967) University of Leeds, Leeds 2, England

(1967) V.P.I., Blacksburg, Va., USA

(1964) Rutgers University, Newark, N.J., USA

(1967) Department of Physiology, School of Medicine, University of Miami, Coral Gables, Fla. 33124, USA

Rodriguez, J. G.
315, 487

Roeck, H.
314

Rogers, A. H.
567

Rogers, J. E., Jr.
106, 274

Rogers, L. J.
622

Rome, R. F.
372

Rose, J. A.
636

Rosenfield, I.
768

Rosenhall, G. M.
528

Ross, H. R.
886

Ross, J. J., Jr.
1757

Ross, M. H.
1156

Rossi, M. H.
1147

Routt, S. H., Comp.
3726

Roth, E. L.
1757

Roush, W. J.
780

Roy, A.
70

Rubin, P. G.
1195

Rubinstein, D.
668

Rudenstik, Y. V.
547

Rudkin, C. T.
Rodriguez, J. G.
511, 487

Roels, H.
538

Rogers, A. M.
541

Rogers, J. E., Jr.
196, 234

Rogers, L. L.
555

Romme, R. F.
573

Ross, J. A.
588

Ross, J. R., Jr.
707

Ross, M. H.
1206

Ross, R. H.
1247

Rossow, S. F., Comp.
2572

Roti Roti, J. L.
2727

Roulston, W. J.
720

Roxia, A.
76

Rubin, P. G.
1195

Rubinstein, D.
568

Rudofichuk, Y. V.
567

Rudin, G. T.,
539

(1965) Department of Entomology, University of Kentucky, Lexington, Ky., USA

(1966) Department of Pathology, University of Ghent, Ghent, Belgium

(1967) Cornell University, Ithaca, N.Y., USA

(1967) Department of Biochemistry and Agricultural Biochemistry, University College of Wales, Aberystwyth, Wales

(1967) Tunnell Laboratory, "Shell" Research Ltd., Sittingbourne, Kent, England

(1966) Western Washington Research and Extension Center, Puyallup, Wash., USA

(1965) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1955) Saint Bartholomew's Hospital, London, England

(1962) Nuclear Science and Engineering Corporation, Pittsburgh, Pa., USA

(1967) Department of Entomology, V.P.L., Blackburg, Virginia, USA

(1967) Radiological Research Laboratory, Columbia University, Morningside Heights, New York 27, N.Y., USA

(1966) Atomic Energy Board, Pretoria, Pretoria, South Africa

(1967) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1966) C.S.I.R.O., Division of Entomology, Yeerongpilly, Queensland, Australia

(1967) Saha Institute of Nuclear Physics, Calcutta, India

(1949) University of Pavia, Pavia, Italy

(1963) Department of Biochemistry, McGill University, Montreal 5, P.Q., Canada

(1960) Institute for Cancer Research, Philadelphia, Pa., USA
Rukavishnikov, S.
Rukavishnikov, S.I.
1986, 1987
Rutkoff, F.E.
1966
Russel, M.P.
1971
Ruse, D.M.
1986
Rybakov, N.I.
1978
Sachet, R.M.
1986
Sacktor, B.
402
Sado, T.
826, 924, 974, 1103
Saito, T.
783
Sato-Suzuki, M.
306
Sazonov, F.P.
1191, 1192, 1223, 1251, 1253, 1292, 2248
Sakurai, A.
867
Saldana, V.M.
1970
Saldan, L.N.
1118, 1977
Salpes, M.M.
1726
Saluk, F.H.
1192
Sannemann, E.
823, 886
Sarmiento, A.1.
17
Sanchez, E.
673
(1964) Institute for Biochemistry, Faculty of Medicine, Albert-Ludwigs-Universität, 11 Belobritstrasse, Freiburg i. Br., Federal Republic of Germany
(1987) School of Medicine, University of Chile, Santiago, Chile
Sankaranarayanan, K.
Sato, K.
1967
Sato, R.
789
Samos, L.P.
14
Sawaraze, Chalatiak
1728
Sarma, D.S.R.
292
Sarma, P.S.
392
Sasaki, S.
3515, 1350
Sato, C.
3130
Sato, Y.
789, 793
Sauer, M.W.
281
Sassarini, N.
111
Schaefer, C.H.
874, 896, 981
Scheneis, F.
1629
Schleglauer, A.
1208, 1728
Schmichael, P.
451
Schmidt, C.D.
1681
Schmidt, C.H.
892, 895, 1569
Schmidt, G.H.
536
Schneider-Minder, A.
1985, 1994
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Address</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sankaranarayanan, K.</td>
<td>Department of Radiation Genetics, State University of Leyden, 69 Wassenaarseweg, Leyden, The Netherlands</td>
<td>1977</td>
</tr>
<tr>
<td>Sato, K.</td>
<td>National Institute of Genetics, Misawa, Japan</td>
<td>1980</td>
</tr>
<tr>
<td>Santl, R.</td>
<td>Istituto di Ricerche Agrarie, Società Montecatini, Milan, Italy</td>
<td>1945</td>
</tr>
<tr>
<td>Santos, I.R.</td>
<td>Research Laboratory, Japan</td>
<td>14</td>
</tr>
<tr>
<td>Savanee Chalpitrak</td>
<td>Biological Science Division, Office of the Atomic Energy for Peace, Bangkok, Thailand</td>
<td>1968</td>
</tr>
<tr>
<td>Sarma, D.S.R.</td>
<td>Institute of Science, Department of Biochemistry, Bangalore 22, India</td>
<td>1963</td>
</tr>
<tr>
<td>Sarma, P.S.</td>
<td>Institute of Science, Department of Biochemistry, Bangalore 22, India</td>
<td>1963</td>
</tr>
<tr>
<td>Sasada, S.</td>
<td>Tohoku University, Katahira, Sendai, Japan</td>
<td>1966</td>
</tr>
<tr>
<td>Sato, G.</td>
<td>Tohoku University, Katahira, Sendai, Japan</td>
<td>1966</td>
</tr>
<tr>
<td>Sato, Y.</td>
<td>Sumitomo Chemical Co., Osaka, Japan</td>
<td>1962</td>
</tr>
<tr>
<td>Sauer, H.W.</td>
<td>Zoologisches Institut, Ruhr-Universität, 1 Grubengasse, Heidelberg, Federal Republic of Germany</td>
<td>1968</td>
</tr>
<tr>
<td>Searmanelli, N.</td>
<td>Department of Parasitology, School of Medicine, University of Chile, Santiago, Chile</td>
<td>1968</td>
</tr>
<tr>
<td>Schaefer, C.H.</td>
<td>Agricultural Research Division, 'Shell' Development Company, Modesto, CA, USA</td>
<td>1967</td>
</tr>
<tr>
<td>Schenone, F.</td>
<td>Bayerische Landesanstalt für Rodenforschung, Munich, Federal Republic of Germany</td>
<td>1967</td>
</tr>
<tr>
<td>Schlegel, A.</td>
<td>Institut für Angewandte Zoologie, Universität Bonn, 1 Am der Immenburg, Bonn, Federal Republic of Germany</td>
<td>1937</td>
</tr>
<tr>
<td>Schmidsiek, F.</td>
<td>Physiologisch-Chemisches Institut, 4 Bolzmannstrasse, Berlin-Dahlem, Federal Republic of Germany</td>
<td>1968</td>
</tr>
<tr>
<td>Schmidt, C.D.</td>
<td>Entomological Research Division, ARS, USDA, Corvallis, Oregon, USA</td>
<td>1968</td>
</tr>
<tr>
<td>Schmidt-Minder, A.</td>
<td>Zoologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland</td>
<td>1861</td>
</tr>
</tbody>
</table>
Schneiderman, H.A. 49, 543, 584, 595, 666, 297, 581

Schmell, J.H. 556

Schmieder, H.J. 876, 784, 792

Schneider, R.A. 670

Schonbrod, S.D. 441

Schoof, H.P. 1791

Schoeling, F. von 602

Schulz, V. 1761, 1782

Schults, R.J. 1255

Schulz, E.R. 454

Schumacher, C.A. 376, 789, 793, 796

Schwarz, M. 145

Schäffer, H.B. 587

Schwarze, G. 499

Schwartz, F.E. 292

Schwartz, I.L. 564

Schwarz, U. 706, 709, 710, 718, 731, 120, 784, 795, 798, 799, 787

Seonfrei, R.E. 582, 583

Scott, T.A. 805

Scott, W.I. 1456

Sezba, M.E.L. 1092

Seawright, A.A. 693

Seay, T.N. 487

Seidz, J. 586, 585, 581, 584

Secco, R. 1324

Sedl, E. 1277

Sefa, G.A. 36, 36

Sedlak, R. 736, 728

Schrader, C.E. 172, 214, 216, 217, 218

Sen-Sarma, P.K. 456

Seo, S.T. 767

Sethi, G.R. 387, 554

Sevastyanova, G.A. 340

Shank, M.H. 515, 543

Sharma, R.K. 1396

Shaw, W.S. 1363, 3282

Shaw, A. 1146

Shea, T.L. 1542

Shelton, H. 209
Scott, W.J.
1980

Scriba, M.E.L.
1989

Scribner, A.A.
353

Secy, T.N.
457

Teddy, I.
506, 556, 555, 554

Sogof, R.
3225

Seeley, R.A.
1974

Soga, G.A.
35, 36

Schaller, H.
718, 719

Seborer, C.E.
172, 216, 316, 317, 318

Sen-Sarma, R.K.
491

Sene, S.T.
3147

Sethi, G.R.
381, 1574

Sevastyanov, G.A.
341

Shah, M.H.
513, 313

Sharma, R.P.
1996

Shashkov, V.S.
1161, 1223

Shastri, A.
1918

Shaw, T.K.
1542

Shepherd, T.
506

(1969) Commonwealth Scientific and Industrial Research Organization,
Sydney, Australia

(1996) Institute of Zoology, Phillips-Universität, 69 Kerpenbach,
Mainz, Federal Republic of Germany

(1967) Department of Veterinary Pathology, University of Queensland,
Brisbane, Australia

(1986) Department of Entomology, University of Kentucky,
Lexington, Ky., USA

(1967) Central Research Institute for Plant Production, 507 Prague 6,
CSSR

(1966) City of Hope Medical Center, Duarte, Calif., USA

(1967) University of Texas, Austin 12, Tex. 78712, USA

(1966) Institut für Ernährung, Potsdam, German Democratic Republic

(1964) Philippe-Universität, 10 Siegenstrasse, Mainz, Federal
Republic of Germany

(1965) Forest Research Institute, Dehra Dun, India

(1965) Entomology Research Division, ARS, USDA, Honolulu, Hawaii

(1964) Indian Agricultural Research Institute, New Delhi, India

(1964) Pedagogic Institute, N.I. Lenin, Moscow State, Moscow, USSR

(1966) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1966) Genetics Division, Indian Agricultural Research Institute,
New Delhi, India

(1961) Regional Office of the World Health Organization,
Washington, D.C., USA

(1964) Department of Pathology, McGill University, Montreal 2, P.Q.,
Canada
Shallenberger, T. L. 1969 Stanford Research Institute, Menlo Park, Calif., USA
Shan, S. K. 1967 Washington State University, Pullman, Wash., USA
Sherlock, E. 1969 Imperial Chemical Industries, Wokingham, Berks., England
Shigemasa, N. 1969, 1970, 1972 Surgical Experiment Station, Wada, Sagamihara-Ku, Tokyo, Japan
Shikinomi, B. V. 1965 Institute of Biological Physics, Moscow, USSR
Shim, I. W. 1964, 1966
Shimabukuro, B. H. 1961
Shimura, K. 1964 Tohoku University, Katahiracho, Sendai, Japan
Shino, A. F. 1967 Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
Shimizu, T. 1967, 1968, 1969 Laboratory of Radiation Genetics, Research Institute for Nuclear Medicine and Biology, Hiroshima University, Hiroshima, Japan
Shipman, W. H. 1969, 1970
Shope, E. 1964 Naval Radiological Defense Laboratory, San Francisco, Calif., USA
Shimizu, M. 1961
Shibata, T. 1964 Ministry of Agriculture and Forestry, Tokyo, Japan
Shibukawa, T. 1964 Division of Agricultural Sciences, Nishigahara, Tokyo, Japan
Shethana, T. J. 1967 Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA
Shrivastava, S. C. 1965 Department of Entomology, Fisheries and Wildlife, University of Minnesota, St. Paul, Minn., 55101, USA
Silva, J. E. da 1965 Department of Parasitology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Simmons, H. S. 1965
Simmons, L. C. G. 1965
Simmons, E. 1965
Simmons, H. 1965
Simons, H. R. 1965
Singh, T. P. 1967
Sinha, J. P. 1967, 1970
Sinha, J. C. 1967
Singh, L. L. 246, 248, 244, 246
Sisota, E. S. 1960
Sivan, Y. 1970
Sivaraman, P. 1970
Sinha, F. L. J. 1968
Sakuma, M. 1965
Schnabel, D. M. 1965
Skala, W. I. 1964
Slatter, J. V. 1964
Slater, N. S. 1964
Simmons, H. S. 1966
Simont, L.C.G. 344
Simon, F. 1980
Simon, H. 221, 224
Simon, H. 1796
Sin, P. 871, 872
Singh, F. 487
Singh, S.P. 1026, 1229
Singh, L.C. 342
Sirlin, J.L. 346, 349, 344, 345
Sirena, E.S. 2250
Sinha, N.M. 178, 1391, 1212
Sivas, Y. 1902
Sivasubramanian, P. 1572
Siwama, F., L.J. 204
Shah, P. 245
Skinner, D.M. 208
Skrabs, W.J. 212
Slater, J.V. 1989
Slater, N.S. 4

(1966) Enomology Laboratory, Research Branch, Canada Department of Agriculture, Chatham, Ont., Canada
(1966) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1965) Technische Hochschule Miinchen, 21 Anbachstrasse, Munich, Federal Republic of Germany
(1967) Institut fur Biologische Schadlingsbekampfung, 82 Krankenheiter Stasse, Danmark, Federal Republic of Germany
(1967) Department of Biochemistry, School of Medicine, University of California, San Francisco, Calif., 94121, USA
(1969) Department of Entomology, University of Kentucky, Lexington, Ky., USA
(1966) Institute of Animal Genetics, West Main Road, Edinburgh, Scotland
(1966) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA
(1969) A.N. Shte Biochemical Institute, Moscow, USSR
(1969) Soreq Nuclear Research Centre, Yavne, Israel
(1967) Biologische Anlagen, Atomic Energy Establishment, Trombay, Bombay, India
(1954) Laboratory for Organic Chemistry, University of Amsterdam, 21 Spui, Amsterdam, The Netherlands
(1969) Boris Kidric Institute of Nuclear Sciences, Belgrade, Yugoslavia
(1969) Yale University, New Haven, Conn., USA
(1966) Union Carbide Corporation, South Charleston, Va., USA
(1967) Lawrence Radiation Laboratory, University of California, Calif. 94129, USA
(1966) Department of Biology, Queen's University, Kingston, Ont., Canada
Sliwowska, H. 1272

Sliwoski, B.M. 367

Smirnov, W.A. 2111, 1443

Smith, C.N. 2652, 1781, APK11

Smith, D.A. 364

Smith, G.N. 788, 789, 791, 792, 793, 1702

Smith, J.C. 2817, 1476

Smith, D.M. 126

Smith, I.N. 563, 564, 614

Smith, R.H. 955, 965, 966, 962, 1224, 1252, 1274

Smith, T.L. 1192

Smithies, B.J. 76, 565, 1225, 1792

Smolek, M.H. 1272

Smolkin, A.N. 949

Smith, T. 381

Smyth, J.A. 1275

Sobels, F.H. 1270, 1234, 1236, 1238, 1237, 1278

Solowjew, J.P. 1374, 1378, 1464

Somerville, D.E. 564

Somme, F. 1424, 1425

Sonnach, D.R. 1425

Sonnach, K.G. 1425

Stade, J.B. 563

Speigelman, E. 1425, 1513, 1527

Speck, D. 788

Spennet, J.L. 633

Sperlich, D. 1425

Stoermer, T. 1556

Sreberny-Aradszinsa, A. 1556

Srivastava, M.D. 1592

Srivastava, P.N. 2314

Somme, F. 1424, 1425

Sonnach, D.R. 1508

Sonnach, K.G. 1508

Spencer, J.B. 563

Spence, R.E. 563

Sperlich, D. 1531, 1532, 1537

Stade, J.B. 563

Srivastava, M.D. 1592

Srivastava, P.N. 2314
Sonnenblick, E. P., 1424, 1429

Southwood, T. R. E., 1430

Souza, H. L. de, 986

Speich, B. R., 1104

Speich, K. G., 1104

Spencer, J. R., 630

Spengler, R. E., 630

Spelke, D., 1021, 1533, 1527

Spieglman, S., 16, 325

Spiller, D., 1754

Sprat, J. L., 661

Springhart, A., 1125

Stapley, R. A., 1068

Sreenivasan, A., 1468

Stilbanc, S., 397

Srivastav, T., 1239

Srivastava, M. D. L., 1052

Srivastava, P. N., 1074

Szego University, Newark, N.J., USA

(1966) University of London, Imperial College of Science and Technology, Prince Consort Road, South Kensington, S.W. 7., England

(1984) Departamento de Biologia General, Universidade de São Paulo, Cidade Universitária 'Armando de Salles Oliveira', Caixa Postal 8191, São Paulo, Brazil

(1965) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1965) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

(1965) Western Reserve University, Cleveland 6, Ohio, USA

(1966) Department of Entomology, University of California, Riverside, Calif., USA

(1987) Institut für Allgemeine Biologie, Universität Wien, A-1010 Vienna, Austria

(1966) Department of Microbiology, University of Illinois, Urbana, Ill., USA

(1967) Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA

(1963) University of Pavia, Pavia, Italy

(1966) Atomic Energy Establishment, Trombay, Bombay, India

(1966) Indian Institute of Science, Bangalore, India

(1967) Regional Research Centre, Indian Agricultural Research Institute, Hyderabad, India

(1966) Biological Sciences Division, Office of the Atomic Energy for Peace, Bangkok, Thailand

(1968) University of Allahabad, Allahabad, U.P., India

(1967) Department of Physiology, School of Medicine, University of Miami, Coral Gables, Fla., 33124, USA
Stabler, N. 1362, 1368

Stahl, B. W. 1479

Steel, T. E. N. 653

Steel, W. F. 459

Stein, C. L. 1198

Steiner, L. F. 4774, 8636

Stenmark, J. N. V. 677

Stem, C. 913

Stern, V. M. 554

Sternberg, J. G. 623

Stiaimi, M. 526, 835

Stichon, J. D. 936

Stubbe, R. H. 83

Stoffels, A. L. 576

Stokes, B. F. 736

Stokes, W. J. 1987

Stokes, W. S. 1196

Strange, V. A. 1082, 1083

Stasz, J. R. 87

670

Street, L. C. 678

Stefancuk, O. 971, 1078, 1103, 1106, 1144, 1155, 1158, 1278

Stoffregen, G. M. 660, 678

Strom, R. 418

Subrahmanyan, H. 1158

Sudo, A. 563

Suca, A. 42, 779

Sugai, E. 972, 1278

Sugihara, M. 1689, 1693

Sugihara, K. 226

Sullivan, A. H. 1021

Sullivan, L. J. 826, 842

Sun, A. Y. K. 662

Sun, G. Y. C. 598

Sun, Y. P. 674, 680, 681, 769

Sundwall, A. 802

Soomalalainen, H. O. T. 373

Squinning, A. G. 3064

Suzuki, D. T. 1280

(1965) Department of Biochemistry, Faculty of Medicine, Laval University, P.O.B. 486, Quebec, P.Q., Canada

(1966) Naval Medical Research Institute, Bethesda, Md., USA

(1966) Department of Entomology and Parasitology, University of California, Berkeley, Calif. 94720, USA

(1966) Union Carbide Corporation, South Charleston, Va., USA

(1966) Oregon State University, Corvallis, Oreg., USA

(1966) Entomological Research Division, ARS, USDA, Honolulu, Hawaii

(1968) Norwegian Plant Protection Institute, Vollebekk, Norway

(1966) Department of Entomology, University of California, Berkeley, Calif. 94720, USA

(1967) Department of Entomology, University of Illinois, Urbana, Ill., USA

(1967) Organisch-Chemisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 3 Liebfrauenweg, Bonn, Federal Republic of Germany

(1968) University of Tennessee, Knoxville, Tenn., USA

(1967) Department of Zoology, University of Newcastle Upon Tyne, Newcastle Upon Tyne, England

(1965) Department of Botany, Roman Catholic University of Nijmegen, 13 Wilhelminalaan, Nijmegen, The Netherlands

(1967) University of Western Ontario, London, Ont., Canada

n.d. Department of Entomology, University of Florida, Gainesville, Fla., USA

(1983) University of Texas, Austin, Tex. 78712, USA

(1986) University of Melbourne, Parkville, 3, Melbourne, Australia
Street, I. C. 673

Strážny, G. 971, 1078, 1106, 1385, 1131, 1112, 1278

Strongin, G. M. 856, 879

Strumpe, R. 415

Subrahmanyan, U. 1183

Sudo, A. 303

Suen, A. 42, 1783

Sugai, E. 979, 2579

Sugihara, N. 1680, 1881

Sugihara, K. 227

Sullivan, A. H. 1658

Sullivan, L. J. 826, 942

Sun, A. Y. S. 490

Sun, G. Y. C. 506

Sui, Y. N. 674, 885, 281, 799

Sundwall, A. 904

Surnamainen, H. O. T. 373

Sushkin, A. G. 1004

Suzuki, D. T. 1288

(1967) Utah State University, Logan, Utah, USA

(1965) Institute of General Genetics, University of Oslo, Oslo, Norway

(1954) 16 Avenue Alphonse München, Luxemburg

(1967) University of California, Berkeley, Calif. 94720, USA

(1967) Biological Institute, College of General Education, University of Tokyo, Komaba, Meguro, Tokyo, Japan

(1965) Bayerische Landesanstalt für Bodenkultur, Pflanzenbau und Pflanzenzucht, Munich, Federal Republic of Germany

(1967) Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan

(1967) Japan Academy, Vema Park, Tokyo, Japan

(1967) CERN European Organisation for Nuclear Research, 1211 Geneva 23, Switzerland

(1967) Mellon Institute, Pittsburgh, Pa., USA

(1967) Oregon State University, Corvallis, Oreg., USA

(1967) Oregon State University, Corvallis, Oreg., USA

(1967) Agricultural Research Division, Shell Development Company, Richmond, Calif., USA

(1966) Research Institute of National Defense, Sundberg, Sweden

(1966) Department of Radiology, University of Tampere, Tampere, Finland

(1987) Institute of Medical Radiology, Obninsk, USSR

(1967) Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
Suzuki, M. 377

Sweeds, I. A. 209, 400

Swift, M. 247

Swales, G. M. 269

Swaisgood, M. 691

Swoboda, A. K. 691

Szalay-Marszlik, L. 1446, 1781

Taborne, E. 2187

Takahashi, L. 912

Takemizato, T. N. 828, 1586

Takemura, L. 28, 499, 584, 566, 460, 531, 594, 288, 7153

Tak-Ming, C. 440

Takahashi, S. 348

Takahashi, S. Y. 103

Takahashi, H. 222, 222

Talbott, A. S. 1691

Tankas, M. J. 866

Tamaki, E. 860, 864

Tamura, S. 367

Tanaka, Y. 3197

(1956) University of Tokyo, Motoji-Cho, Rinka-ku, Tokyo, Japan

(1967) Entomology Research Division, A.S.A. USDA, Beltsville, MD, 20705, USA

(1982) Whitman Laboratory, University of Chicago, Chicago 37, Ill., USA

(1957) Department of Biology, Wesleyan University, Middletown, Conn., USA

(1987) Department of Soil and Crop Sciences, Texas A and M University, College Station, Tex., USA

(1985) Research Institute for Plant Protection, Budapest, Hungary

(1964) Centre d’Études et de Recherches de Médiciné Animale, Paris, France

(1967) Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan

(1960) Argonne National Laboratory, Argonne, Ill., USA

(1967) Central Research Institute for Plant Production, 507 Prague Nanyne, CSNR

(1960) Institute of Zoology, Academia Sinica, Peking, China

(1960) Department of Biology, College of Liberal Arts, Kobe University, Rokko, Nada-ku, Kobe, Japan

(1960) Tokyo Metropolitan University, Meguro-ku, Tokyo, Japan

(1966) Horticultural Experiment Station, Wasa, Sugishimi-ku, Tokyo, Japan

(1964) American University of Beirut, Beirut, Lebanon

(1966) Mellon Institute, Pittsburgh, Pa., USA

(1964) Central Research Institute, Japan Monopoly Corporation, Tokyo, Japan

Tansuy, A. 369

Tatarczyk, K. 1611, 1610, 1612

Tatsumi, M. 239

Tadaki, H. 978

Taylor, R.I. 369

Taylor, H.B. 1281

Takayama, Y. 974, 975, 1081, 1198, 1238, 1368, 1968

Teffe, W. H. 222

Tentec, R. 265

Teravski, L. 1387

Terai, J. D. 1534

Terazovski, A. C. 890, 890

Terriere, L.C. 594, 841

Terry, P.H. 877

Teresa, J. A. 1196, 1108

Tennud, F. 1388

Thabia, S.M. 851

Thobbi, V. V. 1239
Tama, Y., 1966

Tanaka, R.
1961

Tanawat, A.O.

Tanaka, M., 1968, 1969

Tandl, R., 1971

Tatnelli, E., 1970

Taylors, F., 1968

Taylor, W.H., 1967

Teller, W.H.
1972

Tenczer, R.
1963

Teraviski, L.K.
1967

Teneri, J.J.
1966

Teran, A.U.C.
1967

Terry, P.H.
1967

Terman, J.A.
1967

Tennia, P.
1968

Thal, E.A.
1967

Thobbi, V.K.
1969

(1967) Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, UAR

(1966) Food Research Institute, Canada Department of Agriculture, Ottawa, Ont., Canada

(1967) Department of Zoology, University of British Columbia, Vancouver, B.C., Canada

(1967) Plant Pest Control Division, ARS, USDA, Oak Air Force Base, USA

(1967) CSIRO Division of Entomology, Yeongang, Queensland, Australia

(1966) Washington State University, Pullman, Wash., USA

(1960) National Institute of Genetics, Minami, Japan

(1967) Hazard Evaluation Branch, U.S. Naval Radiological Defense Laboratory, San Francisco, Calif., USA

(1967) Insect Physiology and Metabolism Section, Metabolism and Radiation Research Laboratory, Enzymology Research Division, ARS, USDA, Fargo, N. Dak., USA

(1967) Department of Entomology, Oregon State University, Corvallis, Oreg., USA

(1967) Entomology Research Division, ARS, USDA, Beltsville, Md., 20705, USA

(1995) Naval Medical Research Institute, Bethesda, Md., USA

(1980) Laboratoire de Zoologie Expérimentale, Faculté des Sciences, Université de Lyon, 56 Rue Cavaignac, Lyon 7, France

(1968) London School of Hygiene and Tropical Medicine, Tropical Products Institute, Onyati Road, London, W.C.1, England

(1997) Regional Research Centre, Indian Agricultural Research Institute, Hyderabad, India
Wand, C. T. 825
(1965) Department of Entomology, University of Wisconsin, Madison, Wis. 53706, USA

Wand, H. L., Comp. 1956
(1967) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Wand, L. F., Jr. 799
(1966) Agricultural Research Division, Shell Development Company, Modesto, Calif., USA

Wang, G. W. 619, 1186, 1191
(1967) Department of Entomology, University of Arizona, Tucson, Ariz., USA

Watanabe, M. 354
(1966) Department of Biology, Centenary College, Shreveport, La., USA

Wear, N. 1186
(1966) Chemical Sciences Building, Research Department, Station Street, Nottingham, England

Wear, W. N. 795, 791, 728, 793
(1965) Biotechnical Group, E.C. Brisco Laboratory, The Dow Chemical Company, Midland, Mich., USA

Wear, W. A. P. 1266, 1264, 1244
(1967) Department of Radiation Genetics, State University of Leyden, 47-73 Ruyvenweg, Leyden, The Netherlands

Watt, W. B. 513
(1959) Yale University, New Haven, Conn., USA

Watson, F. L. 1989, 1786
(1966) Canada Department of Agriculture, Winnipeg, Man., Canada

Watson, J. M. 562
(1967) Catholic University of Louvain, 4 Rue Kraekel, Louvain, Belgium

Waves, H. E. 1202
(1967) University of Massachusetts, Amherst, Mass., USA

Weaver, N. 610
(1963) Institute of Plant Protection, Poznan, Poland

Weegewsk, W. 498, 535
(1966) Institute of Biology and Landwirtschaft, Reaktorenzentrum Seibersdorf, Seibersdorf, N. S., Austria

Weiss, C. M. 860
(1964) 860

Weiss, G. R. 886
(1960) 886

Weinmanion, D. P. 1475
(1960) 1475

Weinman, M. 841
(1963) 841

Weinman, N. C. 618
(1963) 618

West, A. S. 24
(1963) 24

Westman, M. 1883
(1963) 1883

Westfield, R. C. 698
(1964) 698

Wheeler, J. 799
(1960) 799

White, A. G. 541
(1966) 541

Whitefield, V. E. 518
(1965) 518

Whitling, A. R. 935, 988, 969, 982, 1124, 1125, 1150
(1965) 935, 988, 969, 982, 1124, 1125, 1150

Whitling, P. W. 1125
(1965) 1125

Whitney, D. 4614
(1964) 4614

Whitton, J. I. 820
(1964) APX10

Whittinghill, M. 1985, 1965
(1965) 1985, 1965

Wickman, B. E. 1754
(1965) 1754

Wielesmaminger, D. N. T. 891
(1964) 891

Wiegert, B. C. 517, 526
(1964) 517, 526

680
Thomas, G.W. 691
(1967) Department of Soil and Crop Sciences, Texas A and M University, College Station, Tex., USA

Thomas, J. J., Jr. 1246, 1252
(1966) Departments of Physiology and Radiation Biology, Medical Center, University of Rochester, Rochester, N.Y., USA

Thomas, K. K. 393, 401, 406
(1967) Department of Biological Sciences, Northwestern University, Evanston, Ill., USA

Thomas, L.F. 1036, 1037
(1965) Pfeiffer College, Mts. Airy, N.C., USA

Thompson, E. 619
(1966) Department of Zoology and Entomology, Ohio State University, Columbus 10, Ohio, USA

Thompson, M. J. 399, 399
(1967) Entomology Research Division, ARS, USDA, Beltsville, Md. 20705, USA

Thompson, P. E. 1038
(1967) Iowa State University, Ames, Iowa, USA

Thompson, P. G. 422
(1966) Division of Entomology, Commonwealth Scientific and Industrial Research Organisation, Veterinary Parasitology Laboratory, Yeerongpilly, Queensland, Australia

Thompson, R. C. 1289
(1967) Batelle-Northwest Laboratory, Richland, Wash., USA

Thompson, S. 934
(1967) Biogeosciences Research Laboratory, Falls Church, Va., USA

Thomley, M. I. 1294
(1963) Low Temperature Research Station, Cambridge, England

Thorpe, R. 206
(1964) Australian National University, F.O.B. 4, Canberra, A.C.T., Australia

Throop, B. 86
(1964) Department of Pathology, McGill University, Montreal S, P.Q., Canada

Thygesen, T. 19

Tiepolo, L. 303
(1965) University of Pavia, Pavia, Italy

Tiers, A. 463, 464
n.d. Israel Institute for Biological Research, Neve-Ziona, Israel

Tigyi-Szabo, A. 69
(1967) University of Pecs, Pecs, 48-AS Ter 1, Hungary

Tikhonova, M. M. 976, 1027, 1058, 1109
(1967) Leningrad "A.A. Zhdanov" State University, 7/9 Universitetskaya Nab., Leningrad, USSR

Tilton, E. N. 1392, 1440, 1956, 1961, 1977
(1966) Market Quality Research Division, Dried Fruit and Tree Nut Insect Investigations, ARS, USDA, Fresno, Calif., USA

Tilson, W. 1072

Timofeev-Ressovsky, N. V. 82
Timofeev-Ressovsky, E. A. 82

Tisdale, P. 1274, 3075, 3494

Tobari, J. 1090, 1515

Tobari, Y. N. 1096

Tobies, C. A. 1403

Tököli, G. 1262

Tököli, S. 1262

Tököli, B. P. 1283

Tokunaga, C. 1262

Tokuda, F. S. A. 996, 1140

Tokuda, J. S. de 985

Tolman, J. M. 705, 707

Tomlinson, W. L. 902

Topperzade, A. 84

Toresmann, C. 1216

Tosima, A. 1294

Trow, H. 977, 978, 1040, 1041, 1042, 1043
Tilton, W.
1977
(1966) ARS, USDA, Savannah, Ga., USA

Timofeev-Rebrovskii, N. V.
85
Timofeeva-Rebrovskaya, E. A.
83

Tisador, E.
1874, 1876, 1884
(1877) Laboratoire d'Histologie de la Faculté de Médecine, 27, Allée Jules-Guesde, Toulouse, Haute-Garonne, France

Tobari, T.
1990, 1991
(1967) Tokyo Metropolitan University, Meguro-Ku, Tokyo, Japan

Tobias, C. A.
1401
(1965) Donner Laboratory, Lawrence Radiation Laboratory, University of California, Berkeley, Calif., 94720, USA

Tombik, G.
1865
(1965) Budapest, Hungary

Tombik, S.
1850
(1965)

Tokita, B. P.
1950
(1965) Lawrence Radiation Laboratory, Department of Zoology and Department of Genetics, University of California, Berkeley, Calif., 94720, USA

Tokunaga, C.
1028
(1965)

Tolstoi F., S. A.
995, 1160
(1965) Departamento de Biologia General, Universidade de São Paulo, Cidade Universitária 'Armando de Salles Oliveira', Caixa Postal 8191, São Paulo, Brazil

Tolstoi, I. S. de
985
(1964) Departamento de Biologia General, Universidade de São Paulo, Cidade Universitária 'Armando de Salles Oliveira', Caixa Postal 8191, São Paulo, Brazil

Tomman, N. M.
1950, 1967
(1967) Iowa State University, Ames, Iowa, USA

Tomilichenko, W. E.
1932
(1969) Cranberry Experiment Station, University of Massachusetts, East Wareham, Mass., USA

Toppaz, A.
1942
(1950) Section of Neurobiology and Behavior, Cornell University, Ithaca, N. Y., USA

Tomsa, C.
1950
(1967) Laboratoire d'Entomologie, Faculté des Sciences, 119, Route de Narbonne, Toulouse, Haute-Garonne, France

Tomek, A.
1984
(1969) Strombolidochologisches Institut, Universität Hamburg, 1 Edmund-Siemens-Allee, Hamburg 13, Federal Republic of Germany

Trent, H.
977, 978, 1940, 1942, 1944
(1967) Institut für Strombolidologie, Westfälische Wilhelms-Universität Münster, 2 Schlosplatz, Münster, Federal Republic of Germany
Travis, I. 293

Frieden, J. E. 85, 325, 461, 899

Truszkowski, I. A. 892

Trusko, J. E. 410, 517

Trout, W. R., III 20, 21

Truckenbrock, W. 922

Tsiapalis, C. M. 292

Tsitipis, J. A. 1054

Trubevy, T. N. 272

Tsuda, K. 377

Tsubakino, M. 842, 844

Tuchin, M. W. 429

Tupolyeva, E. M. 1119

Turbo, N. S. 1299

Turkall, S. R. 866

Tsayakh, M. E. 260

Tsayakha, M. E. 1114

U, L. 1295, 1296, 1207, 1044

Uece, E. 1446

Uchida, Y. 787

Ulberg, S. 683

Urada, K. 1054

Upadhye, M. D. 1096, 1097

Van Cobi, M. 1698

Valder, S. A. 406

Valencia, J. L. 1536

Valencia, R. M. 1556, 1597

Van den Anker, C. A. 539, 540

Van der Geest, L. P. S. 462

Van Hooft, F. 1508

Vasdelley, R. C. 1112

Vass, E. 1518

Vass, E. G. 1518

Vargus, J. 22

Van, K. 1656, 1064

Vaskhou, V. I. 1168, 1170

Vasiliou, V. V. 1699, 1698, 1618

Varti, K. V. 992, 2048

Vaughan, W. R. 695

Vesecze, A. 1348

(1986) John Hopkins University, Baltimore, Md. 21218, USA

(1967) A.E.C. Unit of Insect Physiology, Department of Zoology, University of Cambridge, Cambridge, England

(1967) Natural Science Department, Michigan State University, East Lansing, Mich., USA

(1965) Indiana University, Bloomington, Ind., USA

(1965) Heiligenberg-Institut, Baden, Federal Republic of Germany

(1967) Cancer Research Laboratory, Faculty of Medicine, University of Western Ontario, London, Ont., Canada

(1969) 'Democrat' Nuclear Research Center of the Greek Atomic Energy Commission, Athens, Greece

(1969) Scientific Institute for Research in Radiology and Radiation Hygiene, Sofia, Bulgaria

(1960) University of Tokyo, Musashino-Cho, Funakyo-Ku, Tokyo, Japan

(1967) Research Institute of Tropical Medicine, Nagasaki University, Chush-Machi 890, Nagasaki, Japan

(1960) New York City University, New York 5, N.Y., USA

(1965) Institute of Biological Physics, Moscow, USSR

(1990) Department of Pharmacology, Medical College of Virginia, Richmond 21, Va., USA

(1985) Agia Paraskevi Attika, 'Democrat' Nuclear Research Centre, Athens, Greece

(1966) 'Democrat' Nuclear Research Centre of the Greek Atomic Energy Commission, Athens, Greece

(1966) Department of Biological Sciences, Northern Illinois University, De Kalb, Ill. 60115, USA

(1955) Istanbul University, Istanbul, Turkey

(1966) Agricultural Chemicals Division, Sankei Company, Ltd., Yam, Shiga, Japan
Ullberg, S.
698

Umeda, K.
1664

Upadhyaya, M.D.
1696, 1897

Val Cob, M. del
1898

Valder, S.A.
468

Valencia, J.I.
1816

Valencia, R.M.
1518, 1519

Van den Akker, G.A.
539, 540

Van der Geest, L.P.B.
467

Van Heemek, F.
1816

Vanderhey, R.C.
1111

Van, R.
1818

Van, R.G.
1918

Vargas, L.
22

Vas, K.
1894, 1904

Vasiliev, V.L.
1295, 1770

Vasilyan, V.V.
1295, 1992, 1618

Varni, K.V.
866, 1040

Vaughan, W.R.
625

Verneka, A.
1919

(1864) Royal Veterinary College of Sweden, Stockholm 50, Sweden

(1884) Ministry of Agriculture and Forestry, Tokyo, Japan

(1969) College of Tropical Agriculture, University of Hawaii, Honolulu, Hawaii

(1959) Junta de Energia Nuclear, Madrid, Spain

(1867) Department of Entomology, Kansas State University, Manhattan, Kans., USA

(1968) Biology Department, University of Buenos Aires, Buenos Aires, Argentina

(1965) Genetics Division, Atomic Energy Commission, Buenos Aires, Argentina

(1887) University of California, Berkeley, Calif. 94720, USA

(1962) University of Notre Dame, Notre Dame, Ind., USA

(1968) Cornell University, Ithaca, N.Y., USA

(1964) Lab. de Entomol., Inst. de Salud y Defensa, Trop., Mexico

(1969) Budapest, Hungary

(1965) Central Science-Research Disinfectory Institute, Moscow, USSR

(1965) Armenian Agricultural Research Institute, Yerevan, Armenian SSR

(1966) Leningrad "A.A. Zhdanov" State University, 75 Universitetskaya Nab., Leningrad, USSR

(1964) Department of Chemistry, University of Michigan, Ann Arbor, Mich., USA
Verfaillie, G. 210
Verly, W.G. 120
Vermolen, C.W. 358
Vervat, R. 777, 778, 779
Vesely, V. 569, 591, 594
Vichada Kelhayakien 3549
Viecker, D.A. 382
Viel, G. 584
Vlasecky, M.M. AFRC
Villar, E. del 104
Vinson, S.B. 265, 285, 287, 595
Voeller, R.A. 7112
Volchok, Y.A. 1155
Volkov, M.M. 1248
Volkova, G.A. 69, 802
Vonk, H.J. 561
Voronova, L.E. 2136
Vorobtsov, N.N. 605
Vormaa, H.S. 370
Vysotsky, V.G. 1136

(1965) Biology Service, Joint Research Centre, EURATOM, Ispra, Italy
(1965) Department of Microbiology, University of Illinois, Urbana, IL, USA
(1965) Centre de Recherches de Phytopharmacie, Gembloux, Belgium
(1966) Central Research Institute for Plant Protection, 507 Prague, Czechoslovakia
(1966) Entomology Section, Department of Agriculture, Bangkok, Thailand
(1967) Department of Biology, Southeastern Louisiana College, Hammond, LA, USA
(1966) Institute of National Research and Agronomy, Laboratory of Phytopharmacology, Versailles, France
(1967) School of Medicine, University of Chili, Santiago, Chili
(1967) Department of Entomology, Mississippi Agricultural Experiment Station, State College, Miss., USA
(1967) University of Nebraska, Lincoln, Nebraska, USA
(1967) Institute of Zoology, Academy of Sciences of the USSR, 1 Universitetskaya Nab., Leningrad, USSR
(1965) State University, 29 Kromme Nieuwe Gracht, Utrecht, The Netherlands
(1967) Department of Dermatology, School of Medicine, 1600 Northwest 19th Avenue, Miami, FL, USA
(1966) Institute of Biological Physics, Academy of Sciences of the USSR, 33 Leninsky Prospekt, Moscow, USSR

Wagner, H. 223
Wagner, R.O. 465
Wagner, D.E. 2464, 2133
Wakic, A.M. 1308, 1306, 1305, 1310, 1311, 1312
Walker, A.R. 371
Walker, D.W. 1155, 1157, 1158, 1148, 1101
Walker, H.J. 779
Walker, J.R. 1293
Walker, P.T. 799
Walker, R.W. 739
Wallace, B. 1047
Wallberg, M.V. 447
Wallichs, B. 150
Walsh, M.M. 1298
Waller, J. 225
Wan-Yuen, C. 440
Warburg, M. 1923
Ward, A.H. 717

678
Academy of Sciences of the USSR, 33 Lavrenty Propekt, Moscow, USSR

Technische Hochschule München, 21 Amalienstr., München, Federal Republic of Germany

Department of Entomology, University of Wisconsin, Madison 6, Wis, 53706, USA

Radiation Biology and Insect Genetics Section, Metabolism and Radiation Research Laboratory, Entomology Research Division, ARS, USDA, Fargo, N. Dak., USA

Middle Eastern Regional Radiotope Centre for the Arab Countries, Cairo, UAR

Entomology Research Division, ARS, USDA, 4115 Geier Avenue, Baton Rouge, La., USA

University of Puerto Rico, Nuclear Centre, Mayaguez, Puerto Rico

Department of Entomology, Texas A and M University, College Station, Tex., USA

Department of Entomology, Louisiana State University, Baton Rouge, La., USA

Tropical Pesticide Research University, Pomona Down, Salisbury, England

Institute of Agricultural and Industrial Microbiology, Athens, Mass., USA and Cranberry Experiment Station, East Wareham, Mass., USA

Cornell University, Ithaca, N. Y., USA

Department of Entomology, University of Kentucky, Lexington, Ky., USA

Department of Genetics, University of Wisconsin, Madison 6, Wis, 53706, USA

Northwestern Illinois University, De Kalb, Ill., USA

Technische Hochschule München, 21 Amalienstr., München, Federal Republic of Germany

Institute of Zoology, Academia Sinica, Peking, China

Israel Institute for Biological Research, Ness-Ziona, Israel

University of Zambia, Lusaka, Zambia, Africa
Ward, C. T. 825
(1960) Department of Entomology, University of Wisconsin, Madison 6, Wisconsin, USA

Ward, H. L., Comp. 796
(1967) Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

Ward, I. F., Jr. 799
(1966) Agricultural Research Division, Shell Development Company, Modesto, Calif., USA

Warne, G. W. 619, 1115, 1111
(1967) Department of Entomology, University of Arizona, Tucson, Ariz., USA

Warren, M. 796
(1968) Department of Biology, Centenary College, Shreveport, La., USA

Wast, M. N. 784
(1967) Radiochemistry Research Laboratory, The Dow Chemical Co., Midland, Mich., USA

Watanabe, M. 233, 332, 396, 353
(1967) Laboratory of Animal Science, Faculty of Agriculture, University of Tokyo, Motoo-fuji-Chou, Bunkyo-Ku, Tokyo, Japan

Watkins, T. L. 898
(1967) Boots Pure Drug Co., Ltd., Chemical Sciences Building, Research Department, Station Street, Nottingham, England

Watson, S. S. 795, 794, 795, 796
(1965) Biomechanics Group, E.C. Briscoe Laboratory, The Dow Chemical Company, Midland, Mich., USA

Watson, W. P. 1226, 2244, 2245, 2244
(1967) Department of Radiation Genetics, State University of Leiden, 47-75 Leyden, Netherlands

Watson, W. S. 253
(1967) Yale University, New Haven, Conn., USA

Watson, F. L. 1232
(1966) Canada Department of Agriculture, Winnipeg, Man., Canada

Wattiaux, J. M. 394
(1967) Catholic University of Louvain, 1 Rue Kraken, Louvain, Belgium

Weve, R. E. 1943
(1967) University of Massachusetts, Amherst, Mass., USA

Weaver, N. 610

Weaver, W. 1925, 1926

Wegek, W. 489, 535
(1963) Institute of Plant Protection, Poznan, Poland

Weidmann, D. E. 2713

Weidinger, N. 499
(1968) Institut Ff Biologic und Landwirtschaft, Reaktorenzentrum Seibersdorf, Seibersdorf, N. Cr., Austria

Weiler, F. 1971
(1962) Hospices Civils, Strasbourg, France

Weinach, M. F. 1974

Weinstein, D. R. 1072

Weiss, C. M. 630

Weiss, G. S. 668

Wellman, D. 841

Wenzel, K. D. 618

West, A. S. 24

Westerman, M. 833

Wheeler, W. B. 696, 698

Whitcomb, R. R. 799

White, A. G. 541

Whitfield, V. B. 513

Whiting, A. R. 955, 968, 969, 982, 1124, 1125, 1150

Whiting, P. W. 1115

Whitney, D. 1614

Whitman, M. J. APX10

Whitlinghall, M. 1969, 1965

Wickman, R. E. 1274

Wierzchawica, D. N. T. 391

Wiegert, S. C. 317, 316

680