Insect Population Control

by the Sterile-Male Technique

A.W. Lindquist, Scientific Editor

COMPREHENSIVE REPORT OF A PANEL
HELD IN VIENNA,
16-19 OCTOBER 1962

INTERNATIONAL ATOMIC ENERGY AGENCY - VIENNA, 1963
INSECT POPULATION CONTROL

BY THE STERILE-MALE TECHNIQUE
The following States are Members of the International Atomic Energy Agency:

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFGHANISTAN</td>
<td>JAPAN</td>
</tr>
<tr>
<td>ARAVIA</td>
<td>REPUBLIC OF KOREA</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>LEBANON</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>LIBERIA</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>LUXEMBOURG</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>MALI</td>
</tr>
<tr>
<td>BOLIVIA</td>
<td>MEXICO</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>MONACO</td>
</tr>
<tr>
<td>BULGARIA</td>
<td>MONGOLIA</td>
</tr>
<tr>
<td>EGYPT</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>EL SALVADOR</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>ECUADOR</td>
<td>NICARAGUA</td>
</tr>
<tr>
<td>ETHIOPIA</td>
<td>NORWAY</td>
</tr>
<tr>
<td>FINLAND</td>
<td>PAKISTAN</td>
</tr>
<tr>
<td>FRANCE</td>
<td>PARAGUAY</td>
</tr>
<tr>
<td>GERMANY</td>
<td>PERU</td>
</tr>
<tr>
<td>GREECE</td>
<td>PHILIPPINES</td>
</tr>
<tr>
<td>HAITI</td>
<td>POLAND</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>PORTUGAL</td>
</tr>
<tr>
<td>ICELAND</td>
<td>ROMANIA</td>
</tr>
<tr>
<td>INDIA</td>
<td>SAUDI ARABIA</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>SENEGAL</td>
</tr>
<tr>
<td>IRAQ</td>
<td>SOUTH AFRICA</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>SPAIN</td>
</tr>
<tr>
<td>ITALY</td>
<td>SUDAN</td>
</tr>
<tr>
<td>IVORY COAST</td>
<td>SWEDEN</td>
</tr>
<tr>
<td>JAPAN</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>KOREA</td>
<td>SYRIAN ARAB REPUBLIC</td>
</tr>
<tr>
<td>LIBERIA</td>
<td>THAILAND</td>
</tr>
<tr>
<td>MALAYSIA</td>
<td>TUNISIA</td>
</tr>
<tr>
<td>MEXICO</td>
<td>TURKEY</td>
</tr>
<tr>
<td>MOROCCO</td>
<td>UKRAINIAN SOVIET SOCIALIST REPUBLIC</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>UNION OF SOVIET SOCIALIST REPUBLIC</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>UNITED ARAB REPUBLIC</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND</td>
</tr>
<tr>
<td>NORWAY</td>
<td>UNITED KINGDOM OF LIBYA</td>
</tr>
<tr>
<td>NORTH KOREA</td>
<td>UNITED STATES OF AMERICA</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>URUGUAY</td>
</tr>
<tr>
<td>SENEGAL</td>
<td>URUGUAY</td>
</tr>
<tr>
<td>SUDAN</td>
<td>VENEZUELA</td>
</tr>
<tr>
<td>SYRIA</td>
<td>VIET-NAM</td>
</tr>
</tbody>
</table>

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

© IAEA, 1963

Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Klagenfurt II, Vienna 1, Austria.

Printed by the IAEA in Austria
October 1963
INSECT POPULATION CONTROL
BY THE STERILE-MALE TECHNIQUE

A.W. Lindquist, Scientific Editor

COMPREHENSIVE REPORT OF A PANEL
HELD IN VIENNA,
15-19 OCTOBER 1962

INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA, 1963
The successful use of this technique in Mediterranean fruit fly control is not only an example of mankind's advancement in that area but also a milestone in the history of agricultural research.

The Agency, in its current short-term objectives, should be summarized in one of the panel meetings. Even though individual scientists or organizations may disagree, the report should be published as one of the Agency's contributions to the global knowledge base.
FOREWORD

The successful use of the sterile-male technique to eradicate the screw worm fly from the Southeastern part of the United States demonstrated that an entirely new biological method using radiation-sterilized insects could not only control but even eradicate harmful insect pests. This is an excellent example of the peaceful application of atomic energy for the benefit of mankind, the primary aim of the International Atomic Energy Agency.

The Agency has received numerous inquiries regarding the possible use of this technique against other important insect pests, such as the Mediterranean fruit fly, the olive fly and the tsetse fly. In view of this interest and the tremendous potential of the method, it was felt that the Agency should actively pursue and develop the inherent possibilities of this breakthrough. Therefore, a panel of experts was convened from 16-19 October 1962 in Vienna at the Headquarters of the International Atomic Energy Agency not only to discuss the various aspects and applications of the sterile-male technique and to assess both its usefulness and its current shortcomings, but also to suggest future lines of action.

At the conclusion the panel members felt that the panel proceedings should be summarized in a comprehensive technical report. Dr. A. W. Lindquist, one of the panel members, was asked to edit the information presented. All of the panel members should be considered as contributors to this report, even though individual contributions are not listed by name in it.

Since the report contains a wealth of information as well as many references, it was decided to give it as wide a distribution as possible and to publish it as one of the Agency's Technical Reports Series.
I. INTRODUCTION

II. THE SCREW-WORM
 a. Requirements
 b. Screw-worm control
 c. Eradication attempts

III. FACTORS INFLUENCING INSECTIS
 a. Developmental
 b. Species
 c. Sex
 d. Dose rate
 e. Temperature
 f. Dose fractionation
 g. Culture environment
 h. Gas tension

IV. SOME ASPECTS OF CULTURE OF INSECTS
 a. Nutritional requirements
 b. Physical form
 c. Contamination
 d. Food for adult insects
 e. Obtaining eggs

V. SPECIES BEING CONSIDERED FOR STERILE-MAL PEST CONTROL
 a. The Australian
 (i) Comparison
 (ii) Suitability
 (iii) Use of the Australian
 b. The New Guinean
 c. The tropical ox
 (i) Economic
 (ii) Biological
 (iii) Biology
 (iv) Control
 (v) Promising
 (vi) Research
 d. The tsetse fly
 (i) West Africa
 (ii) East Africa
 (iii) Animal transmission
 e. The Mediterranean
 (i) Hawaii
 (ii) United Arab Emirates
 (iii) France
 (iv) Israel
 (v) Tunisia
CONTENTS

I. INTRODUCTION ... 9

II. THE SCREW-WORM SAGA .. 10
 a. Requirements for the sterile-male technique 10
 b. Screw-worm eradication on an area basis 12
 c. Eradication attempt in Texas and the Southwest 12

III. FACTORS INFLUENCING THE INDUCTION OF STERILITY IN
 INSECTS ... 13
 a. Developmental stage .. 13
 b. Species ... 14
 c. Sex ... 15
 d. Dose rate ... 15
 e. Temperature .. 16
 f. Dose fractionation .. 16
 g. Culture environment ... 17
 h. Gas tension .. 18

IV. SOME ASPECTS OF NUTRITION CONCERNED WITH THE MASS
 CULTURE OF INSECTS ... 18
 a. Nutritional requirements .. 18
 b. Physical form of the medium 19
 c. Contamination of the medium 19
 d. Food for adult insects ... 20
 e. Obtaining eggs .. 20

V. SPECIES BEING CONSIDERED OR BEING USED IN PROGRAMMES
 OF STERILE-MALE RELEASE .. 21
 a. The Australian sheep blowfly 21
 (i) Comparison of the sheep blowfly and the screw-worm 21
 (ii) Suitability of the sheep blowfly for sterile-male release 21
 (iii) Use of the technique for the control of sheep blowfly in
 Australia? ... 22
 b. The New Guinea screw-worm 22
 c. The tropical ox warble ... 23
 (i) Economic importance .. 23
 (ii) Distribution and incidence 24
 (iii) Biology and life cycle 24
 (iv) Control .. 25
 (v) Promising aspects of sterile-male release 26
 (vi) Research problems .. 26
 d. The tsetse fly ... 27
 (i) West African trypanosomiasis in man 27
 (ii) East African trypanosomiasis in man 27
 (iii) Animal trypanosomiasis in Africa 27
 e. The Mediterranean fruit fly 28
 (i) Hawaii .. 28
 (ii) United Arab Republic ... 29
 (iii) France .. 30
 (iv) Israel .. 30
 (v) Tunisia .. 30
VI. CONCLUSIONS ... 53

VII. PANEL RECOMMENDATIONS 54

REFERENCES .. 57

The following members of the Panel presented its recommenda-

J. O. Bull

L. D. Christiansen

F. Evens

M. Feron

Mostafa Hafez

K. Hagen

H. O. Königshöfer

A. W. Lindquist

C. Logothetis

J. Monro
I. INTRODUCTION

The following report represents some of the important contributions of the members of the Panel on Insect Population Control by the Sterile-Male Technique. The Panel was sponsored and convened by the International Atomic Energy Agency in Vienna, Austria, 16-19 October 1962. The objective of the Panel was to review available information on the subject and advise the Agency as to how it might encourage and support research in this area of work. The discussions were informative and stimulating. It is anticipated that there will be greater research efforts on many species of insects to determine if the sterile-male technique can be used for control or complete eradication. At the conclusion of the discussions the Panel presented its recommendations, which are found at the end of this report.

The panel members were as follows:

J. O. Bull
United Kingdom Atomic Energy Authority,
Wantage Research Laboratory,
Wantage, Berks., England

L. D. Christenson
United States Department of Agriculture,
Beltsville, Maryland

F. Evens
Biographic Institute and Laboratory for Ecology,
University of Ghent, Ghent, Belgium

M. Peron
Centre de Recherches Agronomiques du Sud-Est,
Station de Zoologie Agricole,
Cantarel, Montfavet (Vaucluse), France

Mostafa Hafez
Ministry of Agriculture,
Dokki, Cairo, United Arab Republic

K. Hagen
International Atomic Energy Agency
Technical Assistance Expert to the Government of Greece,
25-A Smuts Street, Athens, Greece

H. O. Königshöfer
Food and Agriculture Organization of the United Nations,
Viale delle Terme di Caracalla, Rome, Italy

A. W. Lindquist
formerly: United States Department of Agriculture;
retired, Bridgeport, Kansas

C. Logothetis
Food and Agriculture Organization of the United Nations,
Viale delle Terme di Caracalla, Rome, Italy

J. Monro
University of Sydney,
Sydney, Australia
I. Moore The National and University Institute of Agriculture, P.O. Box 12, Rehovoth, Israel

M.D. Proverbs Canada Department of Agriculture, Summerland, British Columbia

Miss H. Thomou Atomic Energy Commission, Merlin 5, Athens, Greece

J.W. Wright World Health Organization, Palais des Nations, Geneva, Switzerland

The Scientific Secretaries of the Panel were C.H. Schmidt and M. Fried, both of the IAEA.

II. THE SCREW-WORM SAGA

The idea of using sterile male insects in a natural population was considered by E.F. Knipling as early as 1938 for possible control of the screw-worm fly, Cochliomyia hominivorax (Coq.), a destructive livestock pest in the United States. Mating is one of the strongest instincts in animal life, and the use of sterile males to seek out native females and destroy reproduction presents new opportunities. By no other single means, including dispersion of insecticides, is it possible with such efficiency to reach and destroy all of the insects in a normal native population.

The sterile-male technique consists essentially in the rearing and release of male insects, made sexually sterile by exposure to gamma radiation, in numbers greater than exist in nature. Continued release increases the ratio of sterilies to normals so that extinction of the species results.

Knipling (1959) [1] has calculated the theoretical population decline of insect and other animal species subjected to a treatment which causes sterility compared with one that produces only direct kill, as with insecticides. His calculations are given in Table 1.

He makes the following assumptions in the hypothetical model: (i) The female is monogamous in mating habit, and each sterile male in the population is fully competitive with normal fertile males in mating with normal females. (ii) The sterilizing agent or procedure will induce sexual sterility in 90% of the males and females of each generation, and the killing agent will kill 90% of both sexes in each generation. (iii) The biotic rate of increase in an untreated population is fivefold in each generation, and survivors in the two treated populations increase at the same rate.

a. Requirements for the sterile-male technique

The requirements for the success of the technique seem to be rather severe; they have been mentioned in various publications but they are listed here for the sake of completeness.

10
<table>
<thead>
<tr>
<th>Generation</th>
<th>No treatment</th>
<th>Treatment that kills</th>
<th>Reduced sterility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>F₁</td>
<td>0,000,000</td>
<td>500,000</td>
<td>50,000</td>
</tr>
<tr>
<td>F₂</td>
<td>25,000,000</td>
<td>250,000</td>
<td>2,500</td>
</tr>
<tr>
<td>F₃</td>
<td>125,000,000</td>
<td>125,000</td>
<td>12,500</td>
</tr>
</tbody>
</table>

(1) An economical method of rearing large numbers of insects must be available, or at least the problem must be reasonably amenable to development.

(2) The insect must be of a type that can be readily dispersed by aircraft and other means, and the males must have the ability to search effectively for the opposite sex and mate in competition with male native males.

(3) The sterilizing procedure must not adversely affect mating behaviour or injure the males appreciably.

(4) The species to be controlled must have a comparatively low population or be subject to reduction by insecticide or other means. Advantage may be taken of seasonal fluctuations, since most insects are less numerous at some seasons of the year than at others.

(5) The area to be treated must be reasonably protected against re-infestation, preferably isolated by water, mountains or other barriers.

(6) The males to be released must not be harmful to man, animals or plants. Mechanical and low-cost means for separation of sexes before release must be available in cases where the female is harmful. For example, the release of female mosquitoes in large numbers would create an intolerable condition for man and animals within the area. This problem could be exceedingly difficult although progress has been made in the mechanical separation of mosquito pupae.

(7) A thorough knowledge of the habits and ecology of the insect is essential. This will include the number of annual generations, the length of various stages under different conditions, the rate of emergence in natural habitats, the distribution of emerged broods, when and where mating occurs, the populations per unit area and other factors. We know very little regarding the incidence of an insect species per unit area. Most assessments of population density are on the basis of rates of incidence rather than on total numbers. A great deal of careful research is needed, and it may be found that total numbers, especially at a low level of annual incidence, are not nearly as great as supposed. For example, the screw-worm fly was
originally considered to number tens of thousands per square mile. Research at Uvalde, Texas, in the 1930’s indicated, however, that this species exists at a rate of not over 500 to 1000 per square mile (LINDQUIST, 1955 [2]).

b. Screw-worm eradication on an area basis

The use of the sterile-male technique in elimination of the screw-worm, C. hominivorax, from the Southeastern area in the United States in 1959 is an outstanding achievement. The successful eradication project was the result of a research programme that included a few small-scale field trials conducted over a period of several years. Research on ecology and behaviour of this pest suggested certain sterilization experiments which were reported by BUSHLAND and HOPKINS in 1951 and 1953 [3, 4]. They found the optimum time for sterilizing this insect to be five to six days after pupation at 80°F. A dose of 2500 r caused sterility of males and 5000 r, of females without interfering appreciably with their normal behaviour. When 100 sterile males were introduced into cages containing 10 normal males and 10 females, approximately 75% of the resulting egg masses did not hatch.

Eradication in the Southeast was thought to have a good chance of success, because the screw-worm overwintered in Florida, a peninsular area, and the only source of reinfection was from the Southwest.

The eradication programme was begun in August 1958 when the United States Department of Agriculture joined with the State of Florida to provide funds for an eradication project. The U.S.D.A. Animal Disease Eradication Division was given the administrative responsibility for the project, and the Florida Livestock Board carried out the State’s obligations.

Because of the complexity of the programme, several entomologists from the Entomology Research Division were asked to assist in its technical direction.

An enormous rearing facility was completed at Sebring, Florida. Production was aimed at rearing 50 million screw-worm flies (half of them males) for release each week. For prevention of reinfestation from the Southwest a quarantine line was set up for inspection and treatment of infected animals along the Mississippi River.

The sterile flies were released systematically in specially designed cardboard containers by aircraft over the entire State of Florida and parts of Georgia and Alabama. After a period of 17 months no screw-worm infestations or fertile adult flies could be found in these states. Approximately 3.5x10⁹ reared sterile flies were released. This has resulted in an annual saving to the livestock industry of more than $20 million. The savings paid for the cost of the programme in several months.

c. Eradication attempt in Texas and the Southwest

The great success of the Southeastern screw-worm eradication project stimulated much interest among livestock growers and others in Texas and the Southwestern States. The livestock interests felt a similar programme might be successful in the Southwest. Numerous conferences between Federal and State research and regulatory personnel and livestock industry leaders were held. Research leaders were well aware of the climatological and other differences importance, however, was not and could be e was then to determine to prevent the fly from existed.

Serious consideration about 100 miles wide Mexico. If successful part of New Mexico, inhabiting Texas, sterilized zone. The calculated evidence that such a fly migrating into uninsect might want to join in e fly the south, perhaps

The demand from eradication programme co-operative endeavour. Western Animal Health Research an eradication project and staff employed. T a small temporary re, and release sterile fil pest was low. This p’ about 20 million flies; the overwintering are release programme w operational in July (Fig. the screw-worm.) The barrier zone of r’ the spring to determine and 4 show some of the of screw-worms in the

III. FACTORS INFLUENCING ERADICATION PROGRAMME

One of the major release technique is ss other respect. The us everse effects, the ma factors.

a. Developmental sta

The optimum stage difference in sensitivity
and other differences between the Southeast and the Southwest. Of greater importance, however, was the fact that Florida was a peninsula while Texas was not and could be easily reinfested from adjoining Mexico. The problem was then to determine if some natural barriers in Mexico could be utilized to prevent the fly from migrating into Texas. Apparently no suitable barrier existed.

Serious consideration was given to a continuously treated barrier zone about 100 miles wide along the Rio Grande River separating Texas from Mexico. If successful, the barrier line would be extended to the southern part of New Mexico, Arizona and California. Once the species was eradicated in Texas, sterile flies would be released on a year-around basis in this zone. The calculated cost would not be prohibitive. There is some evidence that such a zone would be effective in preventing fertile flies from migrating into uninsected territory. There is a possibility also that Mexico might want to join in an eradication programme which would eliminate the fly to the south, perhaps to the Isthmus of Panama.

The demand from Texas livestock interests to begin a screw-worm eradication programme in that State gradually grew to the initiation of a co-operative endeavour early in 1962. The U.S.D.A. joined with the South-west Animal Health Research Foundation and other Texas groups to set up an eradication project. A screw-worm rearing plant had to be constructed and staff employed. This took several months. In the meantime, however, a small temporary rearing plant was set up at Kerrville, Texas, to rear and release sterile flies during March and April when the incidence of the pest was low. This plant did not have the capacity to produce more than about 20 million flies per week, which was not enough to cover adequately the overwintering area in Texas. However, there was evidence that the release programme was partially effective. The large new plant became operational in July (Fig. 1), and it is expected that an all-out effort to eradicate the screw-worm in Texas will be under way during late 1962 and 1963. The barrier zone of released flies will be tested at that time and during the spring to determine if migration from Mexico can be prevented. Figs. 2, 3 and 4 show some of the operations of mass rearing and handling of millions of screw-worms in the Mission, Texas, plant.

III. FACTORS INFLUENCING THE INDUCTION OF STERILITY IN INSECTS

One of the major requirements in the successful use of the sterile-male release technique is that the insect should be sterile but normal in every other respect. The use of radiation to sterilize an insect can produce adverse effects, the magnitude of which will be influenced by a number of factors.

a. Developmental stage

The optimum stage for irradiation is when there is the greatest difference in sensitivity between the somatic and gametic tissues. This is
found in the pupal or adult stage when the imaginal tissues have differentiated and cell division is most active in the gonads.

b. Species

There are wide variations in the susceptibility of species to both the lethal and the sterilizing effects of radiation. In a number of adult beetles infesting stored products, doses which produce 99% sterility also produce considerable mortality within four weeks of treatment; complete sterility also is accompanied by 100% mortality in about three weeks (BULL, 1962 [5]). Mature pupae and adults of Lepidopteran pests, e.g. Anagasta kühniella Zell, Carpocapsa pomonella L., Cadra cautella, are highly resistant to the lethal effects of radiation, doses of up to 50,000 rad having no effect upon longevity. A dose of 50,000 rad produces a high degree of sterility. Dipteran species such as C. hominivorax, Lucilia sericata (Meig.) and certain of the fruit flies have susceptibilities rather lower than do either beetles or moths. Irradiation inhibits egg development and prevents oviposition but also reduces longevity and mating activity. There is, however, a considerable difference between a dose which produces 100% sterility and one which gives

100% mortality; this difference is small.

c. Sex

Susceptibility of more resistant than kühniella Zell., Ca being more resistant Tribolium castaneum.

d. Dose rate

It is well known than is acute irradiation 250,000 rad/h reduces. Reduction of the LD was about 1000 rad w. The number of eggs
Fig. 2

Screw-worm egg masses scraped from egg tray preparatory to being placed in large vats containing a mixture of meat and blood for rearing of the larvae (U.S.D.A. photograph).

100% mortality; this contrasts sharply with the effects on beetles, where the difference is small.

c. Sex

Susceptibility of the sexes varies from species to species, males being more resistant than females in Oryzaephilus surinamensis (L.), Anagasta kühniella Zell., Carpocapsa pomonella L. and L. sericata, but females being more resistant in Sitophilus granarius (L.), C. Hominivorax and Tribolium castaneum (Herbst).

d. Dose rate

It is well known in radiobiology that chronic irradiation is less effective than is acute irradiation. An increase in dose rate from 4000 rad/h to 250,000 rad/h reduced the LD 50 of S. granarius from 6000 rad to 5150 rad. Reduction of the LD 50's for Tribolium confusum (Duve) and O. surinamensis was about 1000 rad when the dose rate was increased from 2000 to 4000 rad/h. The number of eggs laid and percentage hatch were markedly higher at a
low dose rate than at a high dose rate when *Anastrepha ludens* (Loew) were given a dose of 2000 rad.

e. Temperature

Survival of adults is markedly influenced by temperature before, during and after irradiation. Experiments on *S. granarius* showed that insects maintained at 30°C before irradiation were more sensitive than were those at 15°C; this situation was reversed when insects were irradiated at these two temperatures. Survival after irradiation was considerably higher at 15°C than at 30°C. No effect on progeny production could be found with any temperature combination.

f. Dose fractionation

Experiments with the grain weevil *S. granarius* showed that, if a radiation dose is given in a number of fractions separated by various time intervals, insects could recover from the effects of the dose, the amount of recovery being a function of the dose, the time lapse between doses, the number of fractions and the time between doses. Thus after irradiation, recovery in reproductive capacity and re-development of larvae were affected.
of fractions and the temperature at which insects were kept in the intervals between doses. The rate of recovery was greatest in the first few hours after irradiation. Weevils irradiated as eggs, larvae and pupae showed recovery in reproductive capacity when doses were fractionated, the reproductive capacity of adults subjected to similar treatment did not recover, and redevelopment of fertility did not occur.

g. Culture environment

Experiments, again with *S. granarius*, showed that conditions of rearing can affect radiation susceptibility. The dose for 50% kill of adults reared in jars fell from 6750 rad to 5000 rad when the initial inoculation density was increased from 10 adults per 800 g wheat to 1000 adults per 800 g. This increase in susceptibility was largely associated with high temperatures induced by the metabolic activity of the immature stages.
b. Gas tension

Irradiation under anoxic conditions can increase survival and progeny production in the grain weevil. In the limited experiments carried out, no differential could be demonstrated between increased survival and increased progeny production. The deleterious effects of radiation can be mitigated by judicious choice from the factors outlined above. Irradiation studies should be restricted to mature pupae and adults and the susceptibility of both sexes examined in detail by cross-mating experiments. An insect with a short life cycle and a "batch" type of oviposition is unlikely to have the extended range of fertility found in the beetles and may thus be a more favourable insect for use in the exploitation of the sterile-male technique. Dose rate should be standardized and doses administered under controlled conditions of aeration; fractionation of a dose into two or three parts with a minimum of one hour between fractions might increase survival and leave sterility unchanged. Rearing of insects at low temperatures might improve survival, but this would need to be balanced against the economics of producing massive numbers at high temperatures. Irradiation at a high temperature might allow the maximum recovery of somatic tissues but leave sterility unchanged. Maintenance of insects at a high temperature in the intervals between dose fractions could aid the recovery process.

The best balance between these factors needs considerable research, but improvements in longevity and maintenance of normal behaviour are worth while, since the result is an increase in the effective overflooding ratio.

IV. SOME ASPECTS OF NUTRITION CONCERNED WITH THE MASS CULTURE OF INSECTS

One of the prime requisites in the use of the sterile-male technique for pest control is the availability of a continuous supply of a large number of insects that are relatively standard. If a male sterilization programme is not possible by manipulation of field populations, the species to be controlled must be mass-cultured in the laboratory or insectary. Some insect species can be mass-cultured on their natural hosts in the laboratory, but in most cases it will be necessary to rely on a prepared or artificial medium (HAGEN, 1952 [8]).

Natural insect host material that is inexpensive and available throughout the year, such as dried foods, tubers, some fruits, meat or fish, may be satisfactory food for mass culturing certain insects. However, most insects that are foliage, fruit or root feeders as well as many sucking insects are difficult to culture continuously on their natural hosts, for it is often difficult to find, produce, store or present such material in its natural form the year round.

a. Nutritional requirements

The nutritional problems that will arise in the development of a medium for mass culture will not mainly be provision of the nutritional requirements (chemical factors or requirements are quite different from the major nutrients). The chief p further from the national requirements in order to satisfy the chemist, such as the feed may disrupt the...
(chemical factors essential to the adequacy of the ingested diet) since these requirements are quite similar for all insects; but it may be necessary to consider the ratio of one nutrient to another and the extent of hydrolysis of the major nutrients presented, for these conditions may vary interspecifically. The chief problems, however, will be encountered as one departs further from the natural hosts, since "odd" chemicals which are not nutritional requirements in the strict sense must be present in the diet of some insects in order to obtain a feeding response. Such chemicals are necessary to satisfy the chemical feeding requirements. The physical feeding requirements, such as the texture of the medium, are important and if not satisfied may disrupt feeding and development. The addition of some natural host material or an extract from the host in a prepared medium may satisfy the chemical feeding requirements. There are, however, insects that can be cultured without any of their host material included in a medium, and often the adult stage of holometabolous insects will feed if some sugar is present in their food.

b. Physical form of the medium

Perhaps the most difficult problem in developing a medium is providing the food in a physical form which will permit the insect to eat and live under optimum conditions. Besides permitting ingestion, the medium must not interfere with respiration and locomotion. Not only is the coarseness of medium important, which can be regulated by grinding or homogenization to obtain good particle size of the fibre, but the amount of water and oil to be used will differ between species. The insects that will feed and develop upon relatively dry solid foods are the simplest types to culture. The larvae of species which will tolerate a soupy type medium are also rather easy to culture. The addition of agar to rather fluid diets may permit borers to develop. The most difficult type of insect to culture on an artificial diet is the foliage feeder, for to date no satisfactory artificial substrate that simulates the physical nature of a leaf has been developed.

However, *Plutella maculipennis* (Curtis), an important pest of cruciferous crops, has been fed on agar gels containing powdered dehydrated plants alone and in combination with glucosides, mustard oil and myrosin (THORSTEINSON, 1953 [7]). There may be no special difficulty in rearing leaf-feeding insects on such artificial foods.

c. Contamination of the medium

Preventing spoilage of a medium by harmful micro-organisms will be necessary if non-aseptic techniques are used, and it is more practical in mass culture to work under non-aseptic conditions. If aseptic techniques are employed, this will involve autoclaving of the media; and after the eggs are sterilized chemically and carefully placed on the substrate, such a system remains closed until pupation. Under non-aseptic conditions an inclusion of a mould inhibitor and adjustment of the pH of the medium toward the acid side will often control harmful contaminants. Mould inhibitors such as sodium benzoate, "Butoben" (n-buty 1 para-hydroxybenczoate), "Nipagin"
(methyl p-hydroxybenzoate), sodium propionate and sorbic acid can be tested alone or in combination in a medium. It must be determined which of the inhibitors the species to be cultured will tolerate.

The pH of the medium when acidic will often control the bacteria. Hydrochloric acid or citric acid can be used. Some insects will tolerate pH 3.5, but usually a pH 4 or 4.5 is satisfactory if the species being cultured develops within a week or two. Antibiotics can be used for bacterial suppression, but this method is more costly and may interfere with symbiotes if they are involved. Since many adult insect foods contain rather high concentrations of sugar, no special treatment of such foods is necessary.

d. Food for adult insects

Mass culture is only possible if a good continuous supply of fertile eggs can be obtained. Many insects in the adult stage do not require a complex diet for ovogenesis. Others require only water or water plus a carbohydrate which lengthens longevity and hence permits more eggs to be deposited. There are, however, some insects in which the adult receives little metabolite transfer from the larval stage. In such species a complex diet has to be ingested for egg production.

If such species will ingest carbohydrate solutions or eat solid foods, an enzymatic protein hydrolyzate of yeast could be added to the carbohydrate or exposed separately. Such a hydrolyzate is often effective since it contains not only protein in a digested state but also has B vitamins and salts which may be required. A carbohydrate should either accompany or be mixed with the hydrolyzate, and if a sterol-like cholesterol is added to this mixture, it then contains nearly all the nutrients required by insects for growth and development.

e. Obtaining eggs

The method of obtaining eggs will, of course, vary with each species; but if artificial substrates are tested, it may be advisable to include some of the natural host for emission of perhaps attractant odours. It is most important that some control of the number of eggs placed in or on the medium be observed, either by natural oviposition directly on the substrate for a definite period of time at one temperature or measurement of the eggs volumetrically or by weight and the placing of definite numbers on a certain volume of media.

Although not necessarily a nutritional problem, mating must of course occur in the laboratory. Therefore, since daily diurnal light conditions may induce a mating response, the insectary should have some exposure to normal lighting. Also, if cages are crowded and mating involves odour gradients, it may become necessary to flush the air periodically to permit directional gradients to exist.

If there is no medium known for a species that is under consideration for laboratory culture, it may pay to attempt homogenization of the natural host material and supplement this material with about 5 to 15% brewers' yeast, adding a mould inhibitor as well as adjusting the pH to around 4.0. This type of medium will support species that will tolerate rather a soupy medium. If a bore to the homogenate v

It is always adv newly hatched larva

V. SPECIES BE IN

a. The Australian sheep strike is wool or on the skin extensive wounds an associated largely with The flies involved in can initiate an attack an attack but closely those which follow a are native to Australia. L. sericata. Of all its observed and occur WATERHOUSE [2] on many blowflies and L. 60 yr ago, has been tropical and semi-ar South Wales.

(i) Comparison of the lar in their life history alkaline wound reactions temperatures, and the Natural populations of is sustained by wounds Matting habits, fail but the sterilization do are sterilized by 300C of the sexes being the dose for L. cuprina wa

(ii) Suitability of the year and could be exp for screw-worm could (2) Dispersal can worm dispersal.
medium. If a borer is involved, a 3% boiling agar solution can be added to the homogenate while it is being blended.

It is always advisable to place on the medium eggs close to hatching or newly hatched larvae.

V. SPECIES BEING CONSIDERED OR BEING USED IN PROGRAMMES OF STERILE-MALE RELEASE

a. The Australian sheep blowfly

Sheep strike is a problem caused by flies which lay their eggs in the wool or on the skin of live sheep; the young larvae can develop and cause extensive wounds and may cause death in untreated animals. Strike is associated largely with Merino sheep, which constitute 75% of Australian flocks. The flies involved in strike can be divided into primary flies - those which can initiate an attack on sheep, secondary flies - those which cannot initiate an attack but closely follow infestation by primary flies, and tertiary flies - those which follow and supplement attack by secondary flies. All species are native to Australia with the exception of Lucilia cuprina (Wied.) and L. sericata. Of all species, L. cuprina was present in 95% of 732 strikes observed and occurred alone in 57% of strikes. Both Fuller (3) and Waterhouse (9) concluded that measures should be directed against primary blowflies and L. cuprina in particular, which, since its establishment 60 yr ago, has become widespread and is particularly abundant in the subtropical and semi-arid regions of southern Queensland and northern New South Wales.

(i) Comparison of the sheep blowfly and the screw-worm

The two species, L. cuprina and C. hominivorax, are remarkably similar in their life histories: both feed gregariously as larvae and produce alkaline wound reactions (Bull [5]). Adults have maximum activity at similar temperatures, and the highest infestations are found following wet weather. Natural populations of blowflies are maintained by carrion, but screw-worm is sustained by wounds on wild animals.

Mating habits, flight range and longevity of the two species are similar, but the sterilization dose for L. cuprina is unknown. Females of L. sericata are sterilized by 3000 r and males by 4000 r, the relative susceptibilities of the sexes being the reverse of those of the screw-worm. The sterilization dose for L. cuprina would probably be between 4000 and 10000 r.

(ii) Suitability of the sheep blowfly for sterile-male release

(1) Mass rearing of L. cuprina has been carried out for a number of years and could be expanded to any desired extent. The techniques developed for screw-worm could be applied with very little modification.

(2) Dispersal could be accomplished similarly to that used for screw-worm dispersal.
(3) Sterility would probably be best achieved by irradiation of mature pupae since adults of other species irradiated at this stage retain near-normal longevity and mating behaviour.

(4) Females normally mate once, but this is unimportant so long as sterile sperm competes effectively with fertile sperm.

(5) Density of adults varies widely with season and latitude. The low densities found in the spring correspond approximately to the initial densities of screw-worm found on Curacao.

(6) Non-destructive adults mean that released sterile flies would not cause additional damage: also L. cuprina only forms a small fraction of the total blowfly population.

Sheep blowfly fulfills the primary requirements for control by sterile male release. The major factor limiting its use is the vast area to be controlled and the concomitant cost of the operation. Even if the method is applied efficiently, other species of blowfly may become increasingly important; many of the control measures already applied are essential to good sheep husbandry.

Additional information would be required on a number of points:

(1) Flight range and distribution of adults under "release" conditions;
(2) Behaviour of laboratory strains in the field;
(3) The effect of protein and season on adult nutrition;
(4) The relative importance of sheep and carrion in the maintenance of the wild population;
(5) Effect of radiation on pupae:
 (a) Susceptibility of sexes,
 (b) Mobility and flight range,
 (c) Age of pupae,
 (d) Mating behaviour both in small cages and under dynamic conditions,
 (e) Effect of different swamping ratios,
 (f) Dose required to inhibit oviposition,
 (g) Interactions of temperature and oxygen on susceptibility;

(6) Interaction of sterile and fertile females at oviposition sites.

(iii) Use of the technique for the control of sheep blowfly in Australia?

(1) Since two-thirds of Australia is infested, i.e. 2 million square miles, the cost would be about £200 million (based on Florida costs).
(2) Total costs of blowfly control in Australia by cultural practices and insecticides average £8 million per annum; but, since cultural practices are desirable, actual cost of blowfly control is estimated at £4 million.
(3) Eradication of L. cuprina would reduce crutch strike to 15-25%, but incidence of body strike would remain unchanged.
(4) Cordones sanitaires of at least 25 miles would be required since no natural barriers impede blowfly dispersal.
(5) The effect of density-dependent factors on population of flies would complicate the use of this technique.

(ii) Economic importance

The total cattle in Australia about 180 million in 1960. Dermatobia is ge...
b. The New Guinea screw-worm

The possibility of eradication of the New Guinea screw-worm, Chrysomya bezziana Villen, has been considered. This African and Asiatic species is an important pest in New Guinea and New Britain, and there is fear that it could establish itself permanently in Australia (WILSON [10]). Its eradication in New Guinea and New Britain would therefore be an important quarantine step for Australia. It seems this insect could probably be mass-cultured, and further basic ecological information is being sought on matters relevant to its control or to an eradication campaign; its distribution in the islands north of Australia, its mass culture, mating habits, flight range, population densities, hosts, etc. The importance of C. bezziana in retarding the development of the cattle industry in New Guinea cannot be over-emphasized, and its invasion of northern Australia would be disastrous for the cattle industry there under present conditions. However, the eradication of screw-worm from New Guinea and New Britain by the sterile-male technique seems virtually impossible under present circumstances because of the size of the infected areas, the problems of fly production and distribution and other difficulties. Local eradication might perhaps be practicable.

c. The tropical ox warble

Dermatobia hominis (Linn.), "tóraxo" or the "tropical warble fly", is an insect which causes damage in many Latin American countries, mainly in cattle. It has not been recorded in any part of the world outside Latin America. The parasitic larvae of Dermatobia are the causal agent of a cutaneous myiasis which clinically resembles largely the condition caused by the Hypoderma species.

(i) Economic importance

The total cattle population is about 12 million in Central America and about 160 million in South America. Dermatobia is generally considered a major economic problem. Ticks and Dermatobia are the most important external parasites of cattle in Latin America. The value of the skins of Dermatobia-infested animals is considerably reduced, the hides of heavily infested animals being valueless. In some parts of Latin America the incidence of damaged skins is so high that the development of a leather industry cannot even be envisaged. In heavily infested herds the indirect losses resulting from lowered production and lowered resistance against other diseases are certainly even more important than the direct losses.
As in the case of most animal diseases, data are too scarce to permit an assessment of the total economic damage. A few attempts have, however, been made. Estimates in Costa Rica show that one-third of the cattle population is infested and 30-35% of the skins are damaged [11]. Losses in Central America and Panama are approximately estimated at more than US $4 million annually [12, 13], while estimates in heavily infested areas show Dermatobia is responsible for 30% losses in production, i.e. losses of US $50-70 per animal [14].

(ii) Distribution and incidence

Dermatobia hominis occurs in most Central and South American countries. Chile is the only South American country from which Dermatobia has not been reported. In each of the infested countries the distribution is limited to certain areas. The intensity of infestation differs in the various areas, and there are also remarkable seasonal fluctuations. In Central America average larval counts in cattle vary from figures like 32 [13] or 64 [15] up to 846 [16] per animal. In the heavily infested areas of South America infestations of more than 1000 larvae per animal are not uncommon during the season of highest incidence. Other areas of Latin America are free and remain free even if heavily infested animals are brought into the area: the warbles of the imported animals heal spontaneously after some time, and the parasite does not spread to other animals.

Areas at high altitudes are usually free from infestation above 5000 feet [17] or above 4000 feet [11]. In some countries also the low coastal areas, up to 1000 feet, are free: in other countries Dermatobia occurs at sealevel as well. In continental Central America some work has been done to determine the exact geographic distribution [18]. In many parts of South America, however, detailed information is lacking. The causes which prevent the spread of Dermatobia in the free areas are not fully explained at the present time. Laboratory investigations [19] suggest that the temperature and relative humidity requirements of the pupae are the factors which determine its distribution.

(iii) Biology and life cycle

Image

In captivity the life span of the adult fly ranges from 1 to 18 d. Pairing begins the day after emergence: oviposition, three days later.

Oviposition and vectors

Several workers have published information on the biology and life cycle [17, 19, 20, 21]. A single female produces about 200 eggs. A most peculiar biological feature of Dermatobia hominis is the transmission of its eggs to the mammalian host by intermediary insect vectors; as far as is known, this is unique among the parasitic insects. The female Dermatobia catches a mosquito or small fly and releases it after attaching 20 to 60 eggs to its abdomen. Oviposition has also been observed on ticks and, exceptionally, on the host animal. The vector insects are either mammalian blood suckers - mostly mosquitoes - warm-blooded animal vectors in seven Lat which induces ovip

Larval stage

The young larva host. Near the site by the vector-mosquito or bud, Dermatobia larvae d warble around each but will vary accord

Pupal stage

The mature larva. Duration of the pupa mainly temperature.

Host

The bovine spec. present time, but no hosts.

It is interesting Dermatobia in cattle century, Dermatobia in São Paulo, Brazil, with Dermatobia in 1 duced to Latin America consid the original certainly possible the development, which velocp may result or to a relative increase cattle.

The epizootical i in the various infecte scarce to be conclusi

(iv) Control

During the last 50 development of new conti sides [2]. At present can be obtained by re- nent, e.g. sprays, authors agree that the
mostly mosquitoes - or non-parasitic small flies, which usually approach warm-blooded animals; 38 species of insects have been observed as egg vectors in seven Latin American countries. The nature of the stimulus which induces oviposition in the female Dermatobia is entirely unknown.

Larval stage

The young larvae emerge from the egg when the vector alights upon a host. Near the site of deposition, using a hair follicle or the puncture made by the vector-mosquito, the larva penetrates into the skin of the host and lodges in the subcutaneous tissue. In contrast to Hypoderminia species, Dermatobia larvae do not migrate. The reaction of the host is a pus-filled warble around each larva. The duration of the larval stage in dogs is 33 d but will vary according to host and other conditions.

Pupal stage

The mature larvae leave the host, drop to the ground and pupate. The duration of the pupal stage seems to depend on environmental factors, mainly temperature, and may last from 20 to 60 d. Humidity is essential.

Host

The bovine species appear to be the main hosts of Dermatobia at the present time, but many species of mammals, including man, can act as hosts.

It is interesting to note that no reference to the importance of Dermatobia in cattle is found in the early literature. In the beginning of this century, Dermatobia was still considered mainly a human health problem. In São Paulo, Brazil, 44% of 819 persons examined were found to be infested with Dermatobia in 1927 [15]. In fact, the bovine species, which was introduced to Latin America not more than about 400 yr ago, can hardly be considered the original and natural host reservoir of Dermatobia. It is certainly possible that the prevalence in cattle represents a relatively new development which perhaps has not yet even reached its peak. Such development may result from changes in the predilections of Dermatobia itself or to a relative increase of those species of vector insects which approach cattle.

The epizootical importance of host species other than cattle may differ in the various infected areas, but the information available at present is too scarce to be conclusive.

(iv) Control

During the last twenty years much progress has been made in the development of new control methods, all based on the use of chemical insecticides [2]. At present it seems that a considerable decrease of incidence can be obtained by regular treatment of cattle, either by external treatment, e.g., sprays, or by oral or parenteral systemic treatment. Most authors agree that the treatment should be given at intervals of 15 d over.
a period of 5 or 6 months. Recently it was suggested that treatment at monthly intervals over a period of 5 months could also have highly beneficial effects.

(v) Promising aspects of sterile-male release

The sterile-male technique offers promising prospects. It could be effective even in areas where the Dermatobia population is maintained by reservoirs in free-living host animals or where part of the parasitized domestic livestock is not accessible to individual treatment.

At the present stage it seems not impossible that a sterile-male technique for the control of Dermatobia might be developed. There is certainly only one species involved. During certain seasons the incidence is low; with available chemical methods it would be possible even in heavily infested areas to decrease the population density sufficiently to come within the reach of the sterile-male technique. The release of large numbers of sterile males would have no adverse effect, because the adult Dermatobia as such does no harm.

Another favourable circumstance is the fact that Dermatobia occurs in limited areas and that it occurs on one continent only. The economic damage done by Dermatobia is certainly high enough to justify the expense required for developing and applying the sterile-male technique.

(vi) Research problems

Whenever the use of the sterile-male technique is envisaged, certain specific research problems have to be resolved. In the case of Dermatobia the situation is different in that not only do the usual specific research problems have to be dealt with but also a considerable amount of basic research has to be done.

From the purely scientific point of view, the biology of Dermatobia is fascinating; certainly Dermatobia is one of the most interesting insects. There will be no difficulty in enlisting the services of the most highly qualified entomologists for research on it once the necessary funds have been made available.

In view of the possible use of the sterile-male technique, many problems of ecology which till now have seemed to be of academic interest only have to be investigated. It will also be necessary to investigate the distribution and the role of the various hosts in the various areas. Some of the "free areas" may be free only in the sense that the prevalence of Dermatobia in cattle is too low to constitute an economic problem. For purposes of using the sterile-male technique, however, it will be essential to know which areas are entirely free in the strict biological sense. It will also be important to investigate the nature of the limiting factors, the normal flight range, seasonal migrations, environmental physiology, etc. Even the life cycle and factors influencing the duration of the various stages have thus far not been adequately investigated.

The specific research problems are the same as in other insects: methods of mass-culturing on an artificial medium, methods of sterilizing without affecting longevity and ability in competitive mating, methods of releasing the sterile and trapping in order to problem found in individuals has to be eliminated. Use of mates only once or: eliminate the use of the technique.

At the present resolvable; there Dermatobia might be used with expected accidentally that 1 principle.

...The tsetse fly

Trypanosoma flagellate, trypanosoma flies, in South America, Rhodius approximately 25 m efficient vectors of...

(i) West African trypanosomiasis

This is the typical Trypanosoma gambi, Glossina palpalis. The virus reser...swine can keep these any harm or symptomatic.

(ii) East African trypanosomiasis

This is an acute trypanosomiasis in nature the...t. It is very difficult to many morphological groups.

(iii) Animal trypanosomiasis

Very many different important is T. brucei T. congolense T. vivax and T. simiae
releasing the sterile flies under optimal conditions, methods of marking and trapping in order to follow up the progress of eradication, etc. A specific problem found in Dermatobia is that oviposition in genetically normal individuals has to be induced under laboratory conditions which, of course, eliminates the use of vector insects. It is not known whether Dermatobia mates only once or repeatedly. Repeated mating would not necessarily preclude the use of the sterile male technique but would affect certain details.

At the present stage none of the existing problems appears to be unresolvable; there is no indication that the nutritional requirements of Dermatobia might be specially complicated ones and none that sterilization would meet with exceptional difficulties; it has already been demonstrated accidentally that sterilization by chemical means is possible [22], in principle.

d. The tsetse fly

Trypanosomiasis is an illness in man and animals caused by a blood flagellate, trypanosome, and transmitted in Africa through the bite of tsetse flies, in South America through the excretions on the site of a bite by a triatoma, Rhodinus. There are 25 species of Glossina in Africa infesting approximately 25 million square miles of area, but only a few species are efficient vectors of trypanosomiasis.

(i) West African trypanosomiasis in man

This is the typical sleeping sickness - a chronic disease caused by Trypanosoma gambiense and transmitted in nature through the tsetse fly, Glossina palpalis R.-D., of the riverine forest type of situation.

The virus reservoir seems to be man himself although wild and domestic swine can keep these trypanosomes in their blood for a long time without any harm or symptoms.

(ii) East African trypanosomiasis in man

This is an acute disease caused by Trypanosoma rhodesiense and transmitted in nature through the Savannah tsetse flies, especially Glossina morsitans Westw. and pallidipes Aust. Wild deer can act as virus reservoir. It is very difficult to differentiate T. rhodesiense from T. gambiense on morphological grounds.

(iii) Animal trypanosomiasis in Africa

Very many different animals are infected with trypanosomes. Only the most important are worth mentioning here:

T. brucei especially dogs and horses
T. congolense
T. vivax and T. uniforme especially cattle and sheep
T. simiae especially swine
These trypanosomes can be transmitted through the bite of different Glossinae of the palpalis, morsitans or fusca groups. Besides the Glossinae, other bloodsucking insects such as Tabanidae seem to be able to transmit the infection mechanically.

The tsetse flies present interesting biological features which suggest that the sterile-male technique might be feasible for eradication. However, a great deal of research is needed especially to determine the conditions under which radiation sterilization can be achieved without undue injury to the insect and whether sterilized flies are competitive with normal flies. POTTS (1958) [23] published preliminary information on radiation effects on tsetse flies.

Tsetse flies, both males and females, are exclusively bloodsucking species. They are fast, noiseless, flying insects that can, however, be captured in fairly large numbers by means of simple mechanical traps. The females copulate the first few days after emergence. The spermatophores are stored in special sperm receptacles so that the ovulating eggs are fertilized throughout the life of the fly after only one successful copulation. Only one larva is extruded at a time. The first larva is deposited approximately 20 d after copulation, and an overall larval production averages about 12 to 20 in the life of the fly. The larvae migrate into sandy soil along streams and under decaying trees. Flies emerge from the pupae in about 25 to 40 d. Non-fertilized females will readily copulate with males at any time during life and will eventually become fertilized. However, females copulating for the first time at the age of 8 to 10 d rarely survive because of the extensive wounds inflicted on the hardened anal plates during copulation.

The possibility of sterilizing trapped flies by exposure to gamma radiation or chemicals and releasing the treated specimens in the area could alter period of time bring about a remarkable reduction of the insects. However, in time, the trapping operations would reduce the number of flies, and the final eradication would have to be made by the release of reared sterile specimens or by some other means such as, possibly, insecticides.

e. The Mediterranean fruit fly

The Mediterranean fruit fly, Ceratitis capitata (Wiedman), is one of the most damaging insects affecting fruit in the world. It is widespread and is especially important as a pest of tropical fruits in the Mediterranean area. Efforts to control the pest include the use of insecticides and parasites, neither of which is entirely satisfactory. Insecticides have created problems of residues in foods and in some cases preclude the usefulness of the beneficial parasites and predators. The possibility of using the sterile-male technique is promising since this technique offers the possibility of complete eradication, which is preferable to partial control. Much more experimental work needs to be done before the method is practicable.

(i) Hawaii

Studies on the use of the sterile-male method were initiated at the United States Department of Agriculture's Hawaiian fruit laboratory several years ago. STEINER and CHRISTENSON (1956) [24] discussed the possibilities of the method for the Mediterranean fruit fly with emergence, to 10000 cages the reproduction of eggs reduced even millions of sterile flies.

(ii) United Arab Republic

M. HAIFEZ (1962) appeared to reduce the in a non-replicated experiment. The Mediterranean the species can be eradicated. The species has parasites used in special situations more precise. F. insects to be adjusted to the waste of sterile insects.
of the method for tropical fruit fly eradication. It was found that the Mediterranean fruit fly was made sterile when exposed as pupae, 3 or 4 d before emergence, to 10,000 r of gamma radiation from a cobalt-60 source. In cages the reproduction of normal flies was strongly inhibited and fertility of eggs reduced even though these flies mated frequently. Releases of many millions of sterile flies in a pilot test in a semi-isolated area in Hawaii appeared to reduce the wild fly population and prevented normal infestations in a non-replicated experiment.

The Mediterranean fruit fly can be reared economically in vast numbers on a special carrot medium. Biological and sterility studies suggest that the species can be eradicated by this technique in certain types of isolated areas. The species has the advantage of being attracted to powerful artificial lures used in special traps, which makes field studies on population densities more precise (Fig. 5). This information permits the release of sterile insects to be adjusted to the density of the natural population, thereby avoiding waste of sterile insects.

(ii) United Arab Republic

M. HAFEZ (1962) [25] reported on the eradication attempt of the Mediterranean fruit fly in a locality in the United Arab Republic. This project is
still in its early stages. Investigations are being made as to the most appropriate areas for releases of sterile males. Gases located in the Western Desert, quite isolated from each other and from the main agricultural areas in the Nile valley, are excellent candidate areas.

The rearing facility has been beset with difficulties in producing large numbers of flies for release. Trouble arose in the production of eggs and in larval rearing. Another problem was contamination of the larval medium by Drosophila. Then there are problems of when and where to release flies so as to study the possibilities of eradication of the species. The problems are gradually being solved, and much useful information is expected to accumulate.

(iii) France

An excellent study of the Mediterranean fruit fly in France has been made by Feron (1952) [28]. In France the overwintering hibernation of Ceratitis has been noted in only two extreme localities near Menton and near Cerbère. In other regions of France and in Europe overwintering hibernations seemed impossible or, at most, very difficult; contradictory observations are poorly explained. Overwintering hibernation of the pupal stage has been made the object of many studies; the conditions for the overwintering of the adults are very inadequately known.

(iv) Israel

In Israel Ceratitis has four generations in the hill areas, with a period of rest from November to May. There are up to eight generations per year in the coastal plains and in the Jordan Valley, where favourable hosts, such as citrus, apples, pears, avocados and guavas, exist all year round because of the sub-tropical climate.

(v) Tunisia

In Tunisia the ecology of Ceratitis is beginning to be particularly well known, thanks to the work of the research staff of the Institut National de la Recherche Agronomique and notably that of F. Soria. The ecology of the cultivated and wild hosts of Ceratitis and knowledge of their relative importance show that there exists a period of very low population density which extends from December to April. During this period the most dangerous host plant is the bitter orange; this plant could be controlled. Tunisia seems to present very favourable conditions for an eradication trial of Ceratitis by the sterile male technique, which, of course, be made in combination with other methods. The borders should not be too difficult to watch; the sea in the north and east, the Sahara in the south and the mountains in the west. This extensive trial could be realised progressively from isolated plantations in cases and thence to the entire territory.

A complementary ecological study would precede these operations, at which time the industrial rearing of Ceratitis would be put into operation. The sterilisation technique could be worked out thanks to the previous work done in the United States agencies.

f. The Mexican fruit fly:

CHRISTENSEN (1)
on tropical fruit flies fruit fly. Anastrepha; emerging adults were more effective at 90 dosage of 2000 r. In 2685 r/min and 42.3 r rate on the emergence when a 5000 r dosage amount after a 24-h i doses up to 7000 r effect; when puparia of fertile eggs were obt.

The release of at the same two locations in The species can be r at Santa Rosa, where hacienda with about c mile of other hosts, a of fruit despite an inf in the previous season averaged 6.8 per pou 1960 and 1961. Releas until June 6 gave a n native fly population infestation.

g. The oriental and

Field tests of th fly, D. dorsalis (He started in late 1960 (Guam. This was a c of flies were reared work with the melon searchers to give atr studies with the orie significance has bee rate was increased to genes supplementing with a ratio as high as age of at least 4 to 1 hosts are most abund was never reached, c lations began to incr
done in the United States of America and with the help of French research agencies.

f. The Mexican fruit fly

CHRISTENSEN (1962) [27] reported some recent research by the U.S.D.A. on tropical fruit flies. After treatment of 12-d-old pupae of the Mexican fruit fly, Anastrepha ludens (Loew), with 5000 r of radiation from cobalt-60, emerging adults were sterile. In a former study, treatment of puparia was more effective at 90 r/min than at 10 r/min at a marginal sterilization dosage of 2000 r. In recent tests after sterilization of puparia at rates of 2695 r/min and 42.8 r/min there was no apparent effect of the higher dosage rate on the emergence or longevity of adults. Both sexes were sterilized when a 5000 r dosage was fractionated, 2500 r being followed by the same amount after a 24-h interval. When 12-d-old puparia were administered dosages up to 7000 r in an N₂ atmosphere, there was little sterilization effect; when puparia were irradiated in an O₂ atmosphere at 7000 r, some fertile eggs were obtained from emergent adults.

The release of sterile Mexican fruit flies was continued in 1961 at the same two locations in Mexico where sterile flies had been released in 1960. The species can be reared rather easily in the laboratory (Figs. 8 and 7). At Santa Rossa, where 838 000 sterile flies were released in a semi-isolated hacienda with about one acre of citrus (mostly grapefruit) and one square mile of other hosts, only 5.5 larvae per pound were recovered from 2 tons of fruit despite an infestation potentially double that of the preceding year. In the previous season, after release of 1 172 000 sterile flies, infestations averaged 6.8 per pound. At San Carlos similar results were obtained in 1960 and 1961. Releases made at San Carlos in February 1962 and continued until June 6 gave a mean 8:1 ratio of non-gravid to gravid flies, but the native fly population was so high that there was little suppression of infestation.

g. The oriental and melon flies

Field tests of the sterile-male release method with the oriental fruit fly, D. dorsalis (Hendel), and the melon fly, D. curcurbitae (Coq.), were started in late 1960 on Rota, a small island located 40 miles northeast of Guam. This was a co-operative U.S.D.A. and U.S. Navy project. Millions of flies were reared and released on Rota (Figs. 8 and 9) until 1961, when work with the melon fly was discontinued because of inability of the researchers to give attention to both species simultaneously. In the continuing studies with the oriental fruit fly a wealth of information with much basic significance has been accumulated. Late in November 1961 the release rate was increased to almost 10 million pupae per week, with ground emergences supplementing aerial drops. Overflying was attained in all areas, with a ratio as high as 5 sterile flies to 1 wild fly in some areas and an average of at least 4 to 1 on the southwest half of the island where preferred hosts are most abundant. However, the target overflying ratio of 10 to 1 was never reached, and the experiment was terminated when wild fly populations began to increase.
Breeding stocks of adult Mexican fruit fly flies maintained to produce eggs.
The eggs are deposited in special wax shelves inserted at the top of the cage.

(Photograph, Rockefeller Foundation, Mexico City)

Losses of flies during processing and distribution and mortality in the field before the flies attained ability to mate, in all accounting for as much as two-thirds of the total production, plus physical limits on experimental fly production accounted for failure in this experiment. The test with the oriental fruit fly indicated that with some species it may be necessary to reduce wild fly populations by other means before applying sterile flies. The importance of the calculation of overfounding ratios on the basis of the number of sterilized flies surviving processing and exposure to field conditions until attainment of sexual maturity was also revealed.

Fruit flies from ground releases distributed themselves satisfactorily throughout most areas, and their survival and longevity may have been better than that of flies released too close to the boxes for delivery, particularly when boxes were out by hand. Although this field could be achieved a great deal of the same programme.

h. The Queensland fruit

Dacus tryoni (From Australia (MONROE)
Rearing of Mexican fruit flies

Mexican fruit flies needed for sterile-fly release experiments are reared in trays containing dehydrated ground carrot medium fortified with special nutrients. Mexican fruit fly eggs on organics pads are being added to carrot larval rearing medium at the U. S. D. A. fruit fly laboratory in Mexico City. Similar techniques are used in rearing Medflies in Hawaii. (Photograph, Rockefeller Foundation, Mexico City)

than that of flies released from aircraft. Some of the flies from airplanes dropped too close to the shoreline of the small island and drifted out to sea, particularly when boxes broke open at plane height. Chutes designed to deliver boxes into the airstream with less shock were tested, but in the best performance from 18 to 20% were ripped open by the air blast. Throwing the boxes out by hand at a higher level through the open door of airplane eliminated most breakup, and this method is now being used.

Although this field trial did not achieve elimination of the oriental fruit fly, a great deal of information was obtained, especially as to pitfalls in such a programme.

h. The Queensland fruit fly

Dacus tryoni (Frogg) is an important pest of cultivated fruits in Eastern Australia (MONROE [28]). Even where it is now found only sporadically,
it may later become established and at present threatens the overseas markets of these areas through quarantine restrictions. First described about 80 yr ago, it has moved from native to cultivated hosts and extended its geographic distribution in a southerly and westerly direction. Populations are self-sustaining along the coastal fringe from Cape York in the north to around Eden in southern New South Wales. Farther west and south, populations are broken up into small pockets whose numbers fluctuate markedly, and in some of these pockets local extinction may occur in some seasons. Larvae transported into these marginal populations in infested fruit are continuously providing candidates for selection of strains adapted to these less hospitable environments. Such geographic strains have been described by BATeman [29]. The geographic range of D. tryoni has increased in the past, and this trend continues.

There may be some hope of using sterile males against D. tryoni on the fringes of its distribution, because populations are small, limited to semi-isolated areas and subject to great fluctuation. Furthermore, in the laboratory at least, female flies mate infrequently during life, with long intervals between matings. The population-dynamics and physiology of

D. tryoni should favor to consist only of attentions reach minimum. Gamma irradiated aphoxide and apholate 4000 rad given to th released in the field used in eradication t sterile to one fertil from laying fertile e than were wild ones were in mating. In amount of stinging of less than do unirradiated.

Methods of mass have been developed achieved. It is not p
Fig. 9

Boxes for dispersal of fruit flies

Fruit fly adults are allowed to emerge from pupae in special boxes containing special food. The boxes containing adults are then dropped from an airplane. (Official photograph, United States Navy)

D. tryoni should favour sterile males, because the winter population seems to consist only of adults, with most females un inseminated, and the populations reach minimum numbers in spring when mating recommences.

Gamma irradiation sterilizes both sexes, and so do the chemoeistants aphoxide and aphpolate. The minimum sterilizing dose of irradiation is about 4000 rad given to the 8-9-old pupae at 25°C, but 5000 rad is given to flies released in the field. Only flies sterilized by irradiation have so far been used in eradication trials. In the laboratory cages a swamping ratio of nine sterile to one fertile male almost completely prevented normal females from laying sterile eggs. In field cages irradiated flies were shorter-lived than were wild ones, but sterile males were as efficient as the wild ones were in mating. Irradiated females are unlikely to increase greatly the amount of stinging of fruit, because in the laboratory they prove fruit much less than do unirradiated females.

Methods of mass rearing which differ little from those used in Hawaii have been developed, and a capacity of 10^6 pupae per week has been achieved. It is not proposed to increase the production beyond 10^6 per week.
during current field trials, because this would require much mechanical equipment and space.

Sterile flies are released in three semi-isolated towns in northeastern New South Wales, as pupae in summer and as adults in winter. Populations of D. tryoni are being observed in these treated towns and in four control towns. Sterile males are detected in samples by their shrunken testes, and some are also "bleached" by gamma radiation applied on the sixth day of pupal life.

The relative numbers of adult flies, the ratio of sterile to fertile males (two independent methods), the proportion of females inseminated with normal sperm and the percentage infestation of fruit are being estimated. The absolute numbers of flies in the towns are not known, releases will have to be adjusted according to the degree of flooding achieved.

They exposed sterile complete control of the test is most encouraging whether practical file

(iii) Greece

The first require insect. The IAEA source in Athens, anticipated [6].

However, an art oil has now been found and been product soy hydrolyzate, oil, and caroten powder. A mixture adjusted in the medium by micro-organisms.

The speed of larval growth in at least twice that covered from the natural varieties between 30 and 60% recoverable range, but further study for the soy hydrolyzate.

Obtaining ovipositor moulds or thick wax

with other Trypetidae an existing hole but.

Therefore an easily plugging point (52-53°C) was found satisfactory (F) were sealed to a piece of 4.

The number of c1 Trypetidae. Even thorough in the laboratory considerably less than the.

Two possible liri shifting satisfactorily generations have been known whether a th of the medium for mass not encountered with limitations should occur.

pupal recovery work.

During the course of testing points concern the larvae require a "fruit flies now being con idation on the eggs influe
They exposed sterile flies on caged olive trees at a ratio of 4:1 and obtained complete control of the species. Fruit of the tree was saved. This pilot test is most encouraging and requires more research for determination of whether practical field trials are indicated.

(ii) Greece

The first requirement was the development of a method of rearing the insect. The I.A.B.A foresaw this need and supported K.S. Hagen in his research in Athens. Rearing of this fly proved to be more difficult than anticipated [6].

However, an artificial diet that permits the culture of D. oleae without olives has now been developed. Two generations of apparently normal flies have been produced on a medium consisting of agar, brewers' yeast, soy hydrolysate, olive oil, Tween 80, sodium benzoate and a dehydrated carrot powder. A mould inhibitor (sodium benzoate) is added, and the pH is adjusted in the medium to 4.1 - 4.4 for control of the growth of undesirable micro-organisms.

The speed of larval and pupal development is normal, and reproduction occurs in at least two generations. However, the number of puparia recovered from the number of fertile eggs placed on the best medium to date varies between 30 and 60%. Further research is required to increase the percentage of recovery. The expense of the medium is now within a practical range, but further research may lead to a cheaper material to substitute for the soy hydrolysate.

Obtaining oviposition in the laboratory presented problems. Plastic moulds or thick wax forms with ready-made punctures used successfully with other Trypetids do not work with the olive fly. It will not oviposit in an existing hole but makes a new one each time it deposits a single egg. Therefore an easily penetrated material must be used. Thin paraffin (melting point 52-53°C) domes about the size of a hen's egg were developed and found satisfactory (Fig. 11). These domes with moist cotton underneath were sealed to a piece of glass by gentle heating of the glass on a hot plate.

The number of eggs produced by the olive fly is less than that by other Trypetids. Even though the olive fly appears to live longer, its total fecundity in the laboratory averages 183, ranging from 99 to 276 (Fig. 12), considerably less than the oriental fruit fly, for example.

Two possible limitations may exist at the moment that will prevent shifting satisfactorily into a mass-culture programme. To date only two generations have been produced on the prepared medium, but soon it will be known whether a third generation will develop. In the use of larger units of the medium for mass culture, some difficulties may also arise which were not encountered with the smaller test units; thus, if either one of these limitations should occur, further research besides attempts to increase puparial recovery would be required.

During the course of development of the larval medium, several interesting points concerning the nutrition of D. oleae were discovered. First, the larvae require a much higher protein concentration than do the other fruit flies now being cultured. Secondly, the use of a copper chloride solution on the eggs influences the longevity and reproduction of the adults pro-
Fig. 11

Upper surface of paraffin dome showing *Dacus oleae* ovipositing
Note the small dark ovipositional punctures in the foreground.

Fig. 12

The average fecundity per female per week and longevity of 20 *Dacus oleae* females exposed to a diet of an enzymatic protein hydrolysate of yeast plus sucrose plus water

... influenced. Thirdly, those which emerge during observations will be un...

(iii) Israel

Excellent research physiology of the olive
Among the interesting
1. Adult longevity
bakers' yeast, enzyme and longevity curve of

(a) a minimum
(b) an optimum
(c) a maximum

Under the same conditions, the adults fluctuated wide
2. The temperature
3. Adults emerge cycle by spanning the when fed on a diet as used in the been fed a carbohydrate the development of an and resume infestative.

4. In the freshly of the larval "fat cell" amino acids were identified of them were identical.

5. In summer sites, and their con always found to have a similar to fly.

6. A carry-over: means of these temperature egg production do not

7. Several free insects present in the citrus mealybug unless diluted by a natural conditions the position is honeydew.

With mass-reared formation obtained, 1 of the olive fly in nat...
fluenced. Thirdly, there seems to be a reproductive diapause in the adults which emerge during the winter months. Further research concerning these observations will be undertaken.

(iii) Israel

Excellent research on developing an artificial diet and the ecology of the olive fly has been carried out in Israel (MCOKE, 1982 [3]). Among the interesting findings were the following:

1. Adult longevity was greatest when flies were fed a diet of sucrose, brewers' yeast, enzymatic yeast hydrolyzate and water. The temperature and longevity curve of females fed this diet exhibited three cardinal points:

 (a) a minimum close to 11°C;
 (b) an optimum near 22°C;
 (c) a maximum at 35°C.

Under the same conditions, males were found to have optimum and maximum temperatures close to those of the females.

2. The temperature and longevity curve of sucrose-plus-water-fed adults fluctuated widely and did not display these cardinal points.

3. Adults emerging in winter were able to close the epidemiological cycle by spanning the period when no olives are available for oviposition when fed on a diet containing a carbohydrate and nitrogen compounds such as the one used in the experiments. As opposed to this, adults which had been fed a carbohydrate plus water, and under conditions not conducive to the development of micro-organisms on that food, were unable to overwinter and resume infestation.

4. In the freshly emerged adult, a substantial proportion of the contents of the larval "fat cells" present in the body is protein. Fourteen different amino acids were identified in the acid hydrolyzate of the protein, and most of them were identical with those of the olive flesh protein.

5. In summer the fat cells disintegrate within 4 d of the adult's emergence, and their contents are freed in the hemolymph. These cells were always found to have disappeared before ovarian development had been initiated. A similar situation exists in the case of the Mediterranean fruit fly.

6. A carry-over of nutrients from the larva to the adult takes place by means of these temporary cells, but the amounts of metabolites needed for egg production do not always reach the required level.

7. Several free amino acids were identified in the honeydews of various insects present in and around the olive groves. The honeydew produced by the citrus mealybug on pumpkin as host was found to be toxic to the flies unless diluted by a fine spray of water designed to imitation dew fall. Under natural conditions the adult food permitting substantial and continuous oviposition is honeydew containing, among other substances, free amino acids.

With mass-rearing techniques almost perfected and much useful information obtained, field trials for evaluation of the effect of sterile males of the olive fly in natural populations will be possible.
j. The codling moth

The codling moth, *Carpocapsa pomonella* (L.), is found in almost all apple-growing areas in the world, and frequently it is the most destructive pest in the orchard (Fig. 13). Furthermore, this insect can be a serious pest of pears, peaches, apricots, prunes and English walnuts. In most possibly localized eruptions it could be the answer, unless technique was o

Since the female method of treatment in the sperm without pete with sperm from the male.

Reproduction in insects at high temperatures the possibility that is by subjecting the insect to high temperatures for short periods and was induced complete or partial sterilization of the insects from the larvae.

Gamma irradiation of eggs to the adult stage can be a means of controlling it.

In experiments it was found that the female eggs were killed and the male eggs were not affected. The irradiated males were used for mating and the fertile females were exposed to the males.

When male pupae were killed in considerable numbers reproducing, the results were not satisfactory. The irradiated males 2% of the eggs hatched and the hatch was further increased to 65,000 rad of radiation killed 66% of the pupae; and, when half were exposed to the males, the degree of sterility was more than one-third as of the adult moths was equal to that of the insect.
possibly localized eradication, by the release of sexually sterile male moths
could be the answer. Work on the feasibility of using the sterile-male re-
lease technique was commenced in British Columbia in 1956.

Since the female codling moth usually mates more than once, some
method of treatment was required which would induce dominant lethality
in the sperm without affecting its activity, for such sperm would have to com-
pete with sperm from normal males.

Reproduction in the codling moth is suppressed when the insect is reared
at high temperatures (PROVERBS, 1962 [32]). Consequently, there was
the possibility that sterility - used in the broad sense - could be induced
by subjecting the insect to abnormally high temperatures. Mature larvae,
pupae at four stages of development and adults moths were exposed to various
high temperatures for different lengths of time. Some of the heat treatments
induced complete or almost complete sterility in both sexes of the moth,
but these treatments also caused prohibitively high larval or pupal mor-
talities or they reduced the frequency of mating.

Gamma irradiation was then investigated as a means of inducing sterility.
The female was killed by a lower dosage of radiation than was the male,
and the female was much easier to sterilize than was the male. Generally
speaking, radiosensitivity decreased as development progressed from the
egg to the adult stage. Also, young eggs were more radiosensitive than
were old eggs, and young pupae were more radiosensitive than were old
pupae.

In experiments for the determination of which stage of the insect should
be irradiated for induction of sterility, it was found that the egg stage was not
satisfactory; dosages that were high enough to cause sterility also caused
prohibitively high mortality during post-embryonic development (PROVERBS
and NEWTON, 1962 [33]). When mature male larvae were irradiated, dos-
ages that were sufficiently high to cause complete, or almost complete,
sterility adversely affected the mating behaviour of the moths that developed
from the larvae.

When male pupae were irradiated early in the pupal stage, the dosage
of radiation required to cause a reasonably high degree of sterility resulted
in considerable pupal mortality (Fig. 14). However, when mature pupae
(pupae from which the adults would emerge within about 18 h) were irradi-
ated, the results were much more satisfactory. When mature male pupae
were exposed to dosages up to 40,000 rad, adult emergence was not affected.
The irradiated males mated satisfactorily with normal females, but only
2% of the eggs hatched. When the dosage was increased to 50,000 rad, the
egg hatch was further reduced (0.5%). The longevity of these 50,000-rad-
treated males was not affected, but the treatment killed a small percentage
of the pupae; and, what is more important, the irradiated males only mated
one-half as frequently as did controls. When the dosage was further in-
creased to 65,000 rad, the egg hatch was zero. However, this high dosage
of radiation killed 66% of the pupae, and the moths that did emerge only
mated one-third as often as did normal control males. As far as irradiation
of adult moths was concerned, it was found that at any one dosage of radi-
ation the degree of sterility produced in the male was approximately the
same as if the insect had been irradiated during late pupal development.
Irradiation of pupae

Pupae, contained in a glass vial, are placed in an aluminium holder for irradiation. The holder centres the pupae at the approximate mid-point of the sample chamber, where the radiation dose rate is most uniform. This particular gamma irradiator, known as a Gammacell 220, is charged with Co60, delivering a dose rate of approximately 100 000 rad/hr.

Sperm from irradiated (40 000 rad) male moths were about two-thirds as competitive as those from normal males. Despite this, the reproductive potential of the moths was reduced about 75% when 50 irradiated male moths (exposed as mature pupae to 30 000 or 40 000 rad) were caged in the laboratory with 5 normal male and 5 normal female moths. The reduction in reproductive potential was less marked when both 50 irradiated (30 000 rad) males and 50 irradiated (30 000 rad) females were added to the normal insects. The reduction was even less marked when 50 irradiated (30 000 rad) females were added to the normal moths.

When irradiated male moths (pupae exposed to 30 000 rad, a dosage inducing dominant lethality in about 90% of the sperm) were caged with an equal number of normal female moths, the sex ratio of the adult offspring was approximately 9 males to 1 female. The female offspring were completely sterile; and the males were mostly so, for, when they were caged with normal female moths, less than 2% of the eggs laid were viable. However, when irradiated male moths were caged with normal male and female moths, in the proportion of 10 : 1 : 1, the sex ratio of the adult offspring was 1 : 1 and both sexes were mostly fertile.

Although not as easy to rear in the laboratory, the codling moth can be reared by the thousands (Figs. 15 und 16). In orchard experiments (cages over dwarf apple trees) in which both irradiated males and females (exposed as pupae to 40 000 rad) were used, the proportion of (a) in the F₁ generation: adults present in the in (b) was reduced to the parent generation with normal male and (d) 20 : 1 : 1, the number of about one-third a adults in the parent generation.

These results in the raising method for the Codling moth are being worked on.

k. Crop insects

Research into the method of population control has been carried out in a number of studies. These exploratory in
as pupae to 40,000 rad) were caged with normal male and female moths, in
the proportion of (a) 10:10:1:1, and (b) 20:20:1:1, the number of adults
in the F₁ generation in (a) remained about the same as the number of normal
adults present in the parent generation, whereas the number of F₁ adults
in (b) was reduced to one-sixth of the number of normal adults present
in the parent generation. However, when irradiated males alone were caged
with normal male and female moths, in the proportion of (c) 10:1:1, and
(d) 20:1:1, the number of adults in the F₁ generation was reduced in (c)
to about one-third and in (d) to about one-tenth of the number of normal
adults in the parent generation.

These results indicate that the release of sterile males may be a prom-
ising method for the control or localized eradication of the codling moth.
The method is being tested in the field.

k. Crop insects

Research into the possible application of the radiation sterilization
method of population suppression is now under way on a number of insects
that attack a variety of plant crops. For the most part, only basic labora-
tory studies have been conducted, and, thus far, field trials are lacking.
These exploratory investigations have shown that ionizing irradiation will
were irradiated at doses was severely depressed as sex were irradiated a were treated, moth e. viable eggs were always non-irradiated females had been treated. Wt ranging from 20,000 to numbers of viable egg of irradiation which re-emergence severely.

(ii) European corn borer

Studies with the E Iowa), permit the following sterile males as a pos (1) One-day-old males (2) "Sterile males" (either females under laborat be obtained under field test the normal males in: reduced by 39%. (4) pupae, the use of irradiation cost of rearing and tr economically unsound. test. (6) In general, the European corn bor research in small isol.

(iii) Pink bollworm

Radiation studies (Saunders) (Brownsville by irradiation of the margin between the ste narrow. Irradiation of cause of ease of har has been observed in changes. When pupae movement of moths, as used for food. Moths than normal and some at doses greater than haviour. When larvae and colour changes wer.

(iv) Boll weevil

Preliminary studi (Starkville, Miss., an
were irradiated at dosages ranging from 10,000 to 30,000 r, moth emergence was severely depressed. No viable eggs were obtained when pupae of either sex were irradiated at dosages above 15,000 r. When 3- to 6-d-old pupae were treated, moth emergence was not affected severely; however, some viable eggs were always obtained from the cross of irradiated males with non-irradiated females regardless of the dosage rate at which the males had been treated. When pupae older than 6 d were irradiated at dosages ranging from 20,000 to 60,000 r, emergence was not affected, and normal numbers of viable eggs were obtained. These data indicate that any level of irradiation which results in complete male sterility may also reduce moth emergence severely.

(iii) European corn borer

Studies with the European corn borer, Ostrinia nubilalis (Hübner) (Ames, Iowa), permit the following conclusions concerning possible utilization of sterile males as a possible method for controlling the European corn borer: (1) One-day-old male moths can be "sterilized" by exposure to 32,000 r. (2) "Sterile males" can compete equally with untreated males for virgin females under laboratory conditions, suggesting that similar results might be obtained under field conditions. (3) If the irradiated males outnumber the normal males in nature by 2 to 1, the number of viable eggs may be reduced by 39%. (4) Because of erratic results obtained with irradiated pupae, the use of irradiated adults will be preferable in future trials. (5) The cost of rearing and treating large numbers of moths with X-rays may be economically unsound. A cobalt-60 source is desirable for any large-scale test. (6) In general, the use of irradiated-male releases for controlling the European corn borer appears to be promising enough to warrant further research in small isolated fields.

(iii) Pink bollworm

Radiation studies on the pink bollworm, Pectinophora gossypiella (Saunders) (Brownsville, Texas), show that sterilization can be achieved by irradiation of the fourth-instar larvae, pupae and adults. The safety margin between the sterilizing and lethal doses in larvae seemingly is rather narrow. Irradiation of pupae now seems to be the most promising method because of ease of handling and other factors. No morphological changes has been observed in irradiated moths, but there have been behavioural changes. When pupae were exposed to doses above 110 kr, there was little movement of moths, and the latter clustered near the sugar-water solution used for food. Moths from pupae treated with higher doses were darker than normal and some had wing deformities. When larvae were treated at doses greater than 15 kr, there was a marked effect on colour and behaviour. When larvae were treated at doses of more than 10 kr, deformities and colour changes were observed in the adults.

(iv) Boll weevil

Preliminary studies of the boll weevil, Anthonomus grandis Boheman, (Starkville, Miss., and College Station, Texas) permit the following con-
clusions: (1) 2500 r did not affect the longevity or egg-laying capacity of reproducing boll weevils but greatly reduced egg hatch. (2) 5000 r and higher doses greatly reduced longevity, egg-laying capacity and egg hatch of reproducing weevils. (3) Exposure of young, virgin males to 5000 r resulted in very low egg hatch for 20 d after mating with unexposed females, and this was followed by nearly normal egg hatch for the balance of the 30-d test period. (4) Exposure of young, virgin males to 10000 r resulted in transient sterility and rapid mortality. (5) Exposure of young, virgin females to 10000 r or 15000 r virtually eliminated egg laying and resulted in rapid mortality. (6) Thirty-eight sterilized males did not affect egg laying or hatch when they were caged with 10 pairs of unirradiated weevils. (7) There appeared to be little, if any, effect of adult boll weevil age on susceptibility to the lethal effects of gamma rays. (8) Emergence of adults from prepupa, young pupae and old pupae was respectively prevented or greatly reduced or unaffected, following exposure of pupae to 10000 r. All emerging adults died before the 14th day after emergence. (9) Exposure of boll weevil eggs to 150 and 300 r did not affect hatch or subsequent growth and development; a dosage of 2300 r caused a drastic drop in hatch and prevented subsequent development.

(v) Fall army worm

Five- to nine-day-old pupae of the fall army worm, Laphygma frugiperda (J. E. Smith) (Tifton, Georgia), tolerated dosages from 5000 to 25000 r, with mortality equivalent to that in the controls. The mortality of three- to four-day-old pupae was directly proportional to increasing levels of radiation from 10000 to 25000 r (46% at 10000 r; 91% at 25000 r). A few moths emerged with a wing deformity after exposure to 10000 r.

Generally, more egg masses and more eggs per mass were produced from crosses of treated males with untreated females than from crosses of untreated females with untreated males. The percentage of egg hatch was usually inversely proportional to the total irradiation dosages.

(vi) Drosophila

Research by the U.S.D.A. has shown that Drosophila, which are pests of tomatoes and other fruits, can be sterilized at practical dosages of gamma radiation without pronounced effect on behaviour. Certain chemosterilants also produce sterility. Field studies conducted in the summer of 1962 in the vicinity of Beltsville, Maryland, revealed that overflying wild populations of Drosophila in tomato fields may regulate population growth and prevent development of objectionable numbers.

Preliminary laboratory tests were made on the effect of gamma radiation on the fertility of Drosophila melanogaster Meigen. Untreated females mated with males exposed to gamma radiation at 5000 r in the larval stage, 10000 to 20000 r in the pupal stage or 2000 r in the adult stage deposited the normal number of eggs, but none of them hatched. At the same dosages females irradiated in the pupal or adult stage and mated with untreated males produced few or no fertile eggs but in some irradiated in the pupa of those irradiated.

In multiple mating males produced sterile after which they produced female flies mated with males to do so after a union of multiple mating need in limited tests sterilized 60% reductions of the female. The 2000-r dosage of 10 d after emergence nine untreated females in a male repeated the progress in the by chemosterilization have been of Drosophila by suitable males. The ratio of 16 sterilized.

1. The Mediterranean

Investigations have radiosensitivity of Ar to determine the fehm of infestations (BULL), the radiation disinfecting insects in infestations.

(i) Biology and ecology

Development rate of both in the larval stages with high bran The rate of emergent in the mill was most retarded in the machines, ducts and machine processes, so;

Reinfestation control: 10% of returned proportion of infested
Free-flying adults annual fumigation with large test cultures.
Populations increase per month until fumigation.
produced few or no eggs, and females irradiated in the larval stage produced fertile eggs but in smaller numbers. The longevity of males or females irradiated in the pupal or adult stage was not affected while the longevity of those irradiated in the larval stage was reduced.

In multiple mating tests untreated female flies mated with irradiated males produced sterile eggs until a subsequent mating with untreated males, after which they produced viable eggs that developed into adults. Untreated female flies mated with normal males produced viable eggs and continued to do so after a subsequent mating with irradiated males. This effect of multiple mating needs further study before any conclusions can be drawn. In limited tests sterile and normal males in the ratio of 5 to 1 gave 55 to 60% reductions of the progeny of normal females with which they mated. The 2000-r dosage of gamma radiation was effective on adult males 1, 5 and 10 d after emergence. One treated male which mated with five different untreated females in an 8-h period caused each to produce sterile eggs. This male repeated the performance after 5 d and again after 10 d. At Beltville progress in the development of techniques for sterilizing *Drosophila* by chemicals has paralleled that with gamma radiation. Effective dosages of apholate have been developed and exploratory tests initiated on the control of *Drosophila* by sustained releases of sterile males in small isolated fields of tomatoes. The results indicate that population growth may be inhibited by a ratio of 16 sterile flies to one normal wild fly.

1. The Mediterranean flour moth

Investigations have been made at Wantage into the biology, ecology and radiosensitivity of *Anagasta kuhniella* Zell, the Mediterranean flour moth, to determine the feasibility of using the sterile-male technique to control infestations (Bull., 1963 [6]). This technique is not to be confused with the radiation disinfection of grain, which is a promising method of destroying insects in infested grain.

(i) Biology and ecology

Development rate of the moth was examined on numerous milling fractions both in the laboratory and in the mill; fastest growth occurred on fractions with high bran content and slowest growth on good flours (Fig. 17). The rate of emergence was correlated with the total yield. Development in the mill was most rapid in the summer (average temperature, 25°C) and most retarded in the winter (16°C). The degree of infestation in various machines, ducts and elevators was attributed to the type of flour fraction, machine process, screen size and flow sequence.

Reinfestation could occur by means of infested sacks returned to the mill; 10% of returned sacks were infested - smaller firms returned a higher proportion of infested sacks than did large firms.

Free-flying adults were present on the milling floors a few weeks after annual fumigation although treatment had been completely effective against large test cultures.

Populations increased in January, with a subsequent two-fold increase per month until fumigation in July. Changes in the abundance of other
species were also examined. Movements of adult moths were examined by the release/recapture technique; dispersal of males on the milling floors was slow, but some movement occurred between floors. Adults released in machines were able to escape into the body of the mill. Males comprised 70-85% of the catches in light traps.

(ii) Mating behaviour of males

Males offered a virgin female on successive days were able to mate about seven times but only 4.4 matings were fertile. Multiple mating by the males reduced their longevity significantly, and a proportion of females - up to 50% - mated more than once.

(iii) Large-scale rearing

Laboratory culture methods were developed into a method by which 100 000 pupae per day could be reared in two small constant-temperature rooms by one man. Distribution of the corrugated cardboard blocks containing the pupae would also require the services of one man. Flour ground from English wheat proved to be a rearing medium superior to Manitoba wheat, development from egg to adult being two days faster on the former medium than on the latter. No more than 5000 eggs per kilogram of flour should be used in order to avoid excessive culture temperature.

(iv) Radio-sensitivity

Studies in other indicated that pupae: distribution and the pro
however, carried out experiments we.

(v) Emergence

Radiation reduce in cultures up to the was a sharp transitive parent, and emergence stage. The greatest ginning to mount into

More males than but in the pupal stages, largely confined occurred; these deor of mating at high dos-

(vi) Longevity

Male longevity w the physiological star when mature larvae a the effect of radiation with females, but the and longevity. Norm
mated females, but in the fertilized females.

(vii) Fertility

Fertility was assi radiated males and ft stock. The highest ft with normal females, males. The fertility sistaed at low levels up beyond 25 000 rad.

More spermatophy with irradiated males adults. The most no indicates that multiple did not satisfy the fem
(iv) Radiosensitivity

Studies in other species and work on the large-scale rearing of the moth indicated that pupae represented the best stage for ease of handling and distribution and the production of sterility by radiation. Experiments were, however, carried out on all stages of development. The criteria of all radiation experiments were adult emergence, longevity and fertility.

(v) Emergence

Radiation reduced total adult emergence and caused considerable delay in cultures up to the age of 32 d (larval/pupal moult) (Fig. 18). At 34 d there was a sharp transition in the emergence pattern; delay was no longer apparent, and emergence was unaffected by radiation throughout the pupal stage. The greatest sensitivity was shown by young eggs and by larvae beginning to moult into pupae.

More males than females emerged when eggs and larvae were irradiated, but in the pupal stage the sex ratio was approximately unity. Wing deformities, largely confined to adults irradiated in the immature stages, also occurred; these deformities were partly responsible for the low incidence of mating at high doses.

(vi) Longevity

Male longevity was reduced by radiation, but the extent depended upon the physiological stage and dose. The most marked reduction was found when mature larvae and young pupae were irradiated, but with older pupae the effect of radiation was much reduced. Similar effects were observed with females, but the position was complicated by the interaction of mating and longevity. Normal virgin females lived nearly twice as long as did mated females, but irradiated unfertilized females did not live as long as did the fertilized females.

(vii) Fertility

Fertility was assessed as the ability to produce adult progeny. Irradiated males and females were intermated and also mated with virgin stock. The highest fertility was found when irradiated males were mated with normal females, indicating that males were more resistant than females. The fertility of males was markedly reduced by radiation but persisted at low levels up to 45 000 rad. The fertility of females did not extend beyond 25 000 rad.

More spermatophores were found in irradiated females which had mated with irradiated males than when irradiated adults had mated with normal adults. The most marked increases were found with old females, which indicates that multiple mating had taken place and also that irradiated males did not satisfy the females as effectively as did normal males.
Experimental release and that the circumstances, however, favor distribution of the wild of factors, i.e. milk.

Certain portion of sufficient operation of sterile to be complete eradicate milling fractions and carried out over a

Reinfestation sections of the premises.

Adult mobility is even more restricted perusal of released only increase in the small technique is specific treatment every two technique is unsuitable moth.

m. Other grain pests

The pests of grain Lepidoptera and Coleoptera to the mill moth app:

1. Infestations pesting to some degree which might then inc

2. Commodities efficient distribution "hot spots" may occu

3. The majority would be amplified

4. Many species normal longevity:

5. Contaminations may render th

At present, these techniques can be app

n. Recent research

During and follow more basic research effective. Because
(viii) A. kühniella and sterile-male release

Experimental work has shown that large numbers could be reared for release and that the pupae could be sterilized adequately. Ecological circumstances, however, militate against the use of the technique: the distribution of the wild population is exceedingly variable owing to a number of factors, i.e. milling fraction, position in mill flow and temperature.

Certain portions of ducts and elevators are relatively inaccessible; since efficient operation of the technique demands a reasonably uniform ratio of sterile to fertile adults, "hot spots" of infestation could prevent complete eradication. The long life-cycle of stages growing in certain milling fractions and in certain machines would necessitate release being carried out over a considerable period, possibly two or three years.

Reinfestation may also occur via returned sacks and from other portions of the premises which have not been completely treated.

Adult mobility is relatively slow in the body of the mill and is probably even more restricted in the machines and duct systems. The poor dispersal of released adults would, therefore, have to be compensated by an increase in the number of release points. Finally, since the sterile-male technique is specific, other pests would not be eliminated and would require treatment every two or three years. It is concluded, therefore, that the technique is unsuited for the economic control of the Mediterranean flour moth.

m. Other grain pests

The pests of grain and stored foods are confined principally to the Lepidoptera and Coleoptera. To a large extent the arguments which apply to the mill moth apply to other grain pests:

1. Infestations are often of two or more species which may be competing to some degree. Eradication of one species would still leave others which might then increase more rapidly than usual.

2. Commodities are frequently stored in large bulk, which would make efficient distribution of sterile insects very difficult, particularly where "hot spots" may occur.

3. The majority of the adult Coleoptera do extensive damage, which would be amplified by released sterile adults.

4. Many species of beetles are difficult to sterilize while retaining normal longevity. Lepidoptera can be sterilized and still retain normal longevity; doses in the region of 50,000 rad are necessary.

5. Contamination of food materials by large numbers of insect fragments may render them unfit for human consumption.

At present, therefore, it seems unlikely that the sterile-male release technique can be applied effectively for the control of stored products pests.

n. Recent research on the screw-worm

During and following the Southeastern programme it became clear that more basic research was needed to make eradication less costly and more effective. Because the screw-worm and other insects are injured and are
less vigorous following a sterilizing dose of radiation, it was decided to
intensify studies on radiation effects on the reproductive system. Further
research was also initiated on the ecology of this insect and on the develop-
ment of an effective attractant.

At the Kerrville, Texas, laboratory of the Agriculture Research Service
of the U.S.D.A., following an increase in funds, Bushland, LaChance,
Crystal, Baumhower and others intensified investigational work on the screw
worm. LaChance studied radiation effects on the screw-worm. He found
that there are two ways of causing sterility by radiation. In one the
method inhibits the formation or development of mature ova or sperm while
the other does not prevent the production of these cells but rather induces
lethal changes in the hereditary material of the gametes, thus rendering
them incapable of sustaining embryonic growth. Sterility is achieved in
both cases, but the processes involved are different. LaCHANCE and
LEVERICH (1962) [34] showed that newly emerged females can be sterilized
with about 2500 r. However, when females are 24 h of age, 5000 r does
not affect ovarian growth and development. They also showed that in the
screw-worm the nucleus of the reproductive cells is far more sensitive
to ionizing radiation than is the cytoplasm. Demonstrated also was the fact
that adult females 1, 2 and 3 d of age are quite resistant to radiation when
exposed to cobalt-60 and tested for dominant lethals. Large numbers of
eggs are deposited and most of them hatch. However, females 4 and 5 d old
are very sensitive, and complete sterility is caused by low doses. Thus,
sterility can be achieved by induction of dominant lethal changes. With any
insect under study doses of radiation in relation to the stage and age must
be carefully worked out under constant environmental conditions.

In radiation of the male screw-worm it was found that sensitivity varies
according to different stages of development similar to that of the female.
When this sex is irradiated as 4-5-d-old pupae, a dose of 2500 r will induce
dominant lethal changes in the spermatids. Adult males 24 h of age are
resistant, and doses of 5000 to 6000 r have not produced complete dominant
lethality.

The Kerrville workers found that packing and storing screw-worm pupae
before radiation treatment may cause changes in biological effects. Anaerobic
conditions tend to reduce the effectiveness of radiation. They found that
3500 r given to pupae in air reduces egg production and hatchability.
However, the same exposure in pure nitrogen or carbon dioxide has little
effect on egg production and hatchability. Treatment with the same dose
in an atmosphere of 50% air and 50% CO₂ is more damaging than is treat-
ment in air alone. Some gases therefore enhance the biological effect of
radiation while others reduce the effect. These findings may have con-
siderable importance in the sterilization of some species that are injured by
the treatment.

Temperature which affects the growth rate of insects is important in
radiation work. Also, splitting the radiation dose over a period of time
affects damage to tissues. Some workers have found there is no advantage
to splitting the dose so as to reduce somatic tissue damage and yet obtain
sterility.

52

o. Chemosterilant:

There has been a Division of the U.S.
the past two to three
of the ethylenimine
referred to as radic
causing sexual steri-
species of mosquito
LaBRECQUE (1961) [39], WEIDHAAS (1964):
cal small-scale use
reported by LaBRE
refuse dump in the
with a dry granular
sterilant bait was a
for insecticide baits
from 47 per grid co
from female flies co
in four weeks, and
than 90%. A simila
lation of flies throu
shows great promi
under a variety of c

Although the set
in with males prodt
deleterious genetic
Experiments with pc
introduction of steri
mates the population
itive with sperm frot
riles the population b

It seems obvious
up to 90% have a low natural
They are, of course, back on
be overcome. Further
dicate flies could be
ment of powerful lur
point where they can
exposed with a bait r
Sterilizing the i
chemicals, rather th
o. Chemosterilant research

There has been much interesting research in the Entomology Research Division of the U.S.D.A. on the use of chemicals to sterilize insects during the past two to three years (LINDQUIST, 1961 and 1962 [35, 36]). A few of the ethylenimine compounds known as alkylating agents and commonly referred to as radiomimetic chemicals have shown exceptional promise in causing sexual sterility of the housefly, stable fly, screw-worm and several species of mosquito. Several excellent papers have been published by LaBRECQUE (1961)[37], HARRIS (1962)[38], MORGAN and LaBRECQUE (1962) [39], WEIDHAAS (1962)[40], WEIDHAAS and SCHMIDT [41] and others. The practical small-scale use of a chemosterilant for control of houseflies has been reported by LaBRECQUE, SMITH and MEIFERT (1962) [42]. An isolated refuse dump in the Florida Keys was treated for nine consecutive weeks with a dry granular cornmeal bait containing 0.5% of aphoxide. The chemosterilant bait was applied in a manner very similar to that recommended for insecticide baits in such situations. Housefly populations were reduced from 47 per grid count to 0 within four weeks. The number of egg masses from female flies collected at the dump was reduced from 100% to 10% within four weeks, and the hatch of eggs from these flies was reduced more than 90%. A similar, but untreated, refuse area maintained a high population of flies throughout the test period. This preliminary experiment shows great promise for the control of houseflies but needs confirmation under a variety of conditions, including tests in non-isolated areas.

VI. CONCLUSIONS

Although the screw-worm fly mates only once, the principle of sterility in a population should work with polygamous insects, provided that mating is with males producing competitive sperm bearing dominant lethals. The deleterious genetic material should thus be introduced into the population. Experiments with polygamous tropical fruit flies have shown that continued introduction of sterile males in cages of normal males and females decimates the populations of flies. Sperm from sterilized males were competitive with sperm from normal flies, and because of a preponderance of sterile the population in cages was annihilated.

It seems obvious that an insect species with a low natural population would be more desirable, because it would be easier to outnumber the native population by a rearing programme. Apparently the tsetse flies, Glossina, have a low natural incidence of about 200 to 2000 per square mile of area. They are, of course, exceedingly difficult to rear, but this problem might be overcome. Furthermore, it is possible that rather large numbers of native tsetse flies could be trapped, exposed to radiation and released to supplement a rearing and release programme. Another possibility is the development of powerful lures that would attract both sexes of tsetse to a central point where they could be made sterile by radiation. Chemical sterilants exposed with a bait might also be highly effective.

Sterilizing the native population of an insect either by radiation or chemicals, rather than rearing and releasing them, presents exciting pos-
The sterile-male method (a) an insect eradication; (b) a method for crops; (c) a method to caretaker practices. It is obvious that in the evolving from such in

III. Recommendation

A. Field operation

1. Mediterranean

The Mediterranean basin such as Central America or the Middle East, the United Arab Republic and others encourage.

2. Queensland

An action program. Australia. The Panel supported.

3. Olive Fly

Present progress is satisfactory. Supported wherever related to evaluation techniques, and related.

4. Tsetse Fly

As the current tsetse fly trypanosomiasis is a new and promising vector, it is important to initiate and promote.

With this in mind, engaged to develop and
The sterile-male release technique has possible usefulness as
(a) an insect eradication procedure, whether for established or incipient
infestations;
(b) a method for delaying development of damaging infestations until
crops are harvested; and
(c) a method to prevent re-establishment of infestations by using sterile
caretaker populations.

This method may be used alone or in combination with other control
practices. It is obviously not a panacea for all insect problems. An extra
bonus lies in the ecological and biological aspects of pest insects that must
evolve from such investigations.

III. Recommendations

A. Field operations and research

1. Mediterranean fruit fly

The Mediterranean fruit fly is of great economic importance in the
Mediterranean basin. It is also a pest in many of the subtropical areas
such as Central America, Australia and certain islands. Evaluation of
the sterile-male method is under way in Hawaii, Central America and the
United Arab Republic. A programme is in the planning stage in Tunisia.
The Panel encourages support of this type of programme.

2. Queensland fruit fly

An action programme on the Queensland fruit fly is now under way in
Australia. The Panel feels that this type of programme should also be
supported.

3. Olive fly

Present progress in olive fly investigations, particularly in Greece,
has been so satisfactory that such programmes should be encouraged and
supported wherever practicable. Particular areas of support could be re-
lated to evaluation techniques, population estimates, field trials, labelling
techniques, and release and recapture.

4. Tsetse fly

As the current methods aiming at the eradication of human and animal
trypanosomiasis are still not satisfactory, and as the sterile-male technique
is a new and promising approach towards the control and eradication of the
vector, the tsetse fly, the Panel recommends that immediate steps be taken
to initiate and promote the research needed.

With this in mind, the Panel further suggests that a consultant be en-
gaged to develop and present a programme to the Director General. The
problems involved being of an exceptional magnitude and importance for science as well as for humanity, the Panel hopes that the World Health Organization and the Food and Agriculture Organization and other organizations will give their help and support.

5. Tropical ox warble

Dermatobia hominis, the "tropical ox warble" or "tóraxlo", is a parasite of considerable economic importance in Latin America. The present methods of control are unsatisfactory. The sterile-male technique offers promising prospects. The Panel recommends that the Agency encourage and support such research in co-operation with other interested organizations.

6. Other insect pests

The Panel considers that other insects might be controlled by this method. The collection and dissemination of information on such insects is desirable. Eradication of the Australian sheep blowfly is most promising at the present, mainly because of economic considerations. The use of the sterile-male technique cannot be applied economically or efficiently for the control of stored grain insects. However, note was taken of a previous panel report suggesting that irradiation disinfestation of grain was both feasible and practicable.

7. Labelling techniques

Effective means of labelling insects with radioisotopes are extremely important. Work to develop more suitable and standardized methods should be supported and encouraged.

B. Exchange of information

1. Collection and dissemination

The Panel recommends that:
(a) A scientific report on the work of the Panel be prepared for the internal use of the Agency and for distribution to members of the Panel;
(b) The Agency arrange for a consultant to prepare a fuller account of the Panel's findings, primarily for the information of Governments and similar bodies. In this might be included a description of the principle upon which the sterile-male technique is based together with an objective evaluation of the limitations and potentialities of the procedure. The Agency might consider publishing the report; and
(c) The Agency undertake the publication, at regular intervals, of a scientific information circular containing abstracts from the published literature and summaries of articles in press when these are available. Scientific workers might be encouraged to provide summaries when material is submitted for publication and to provide progress reports at frequent intervals. A current bibliography should also be included. The first issue of the circular might contain the information referred to in (b) above.

2. Co-operation

In the opinion of the Panel, WHO and FAO have a very pronounced interest in this field of research on the sterile-male technique is either well as shorter study programmes are under way and it is hoped that the field is new and that more knowledge of radioactive port requests to ex tran subject when such vi sequence of work.

3. Training

The Panel reco that other insects might be controlled by this method. The collection and dissemination of information on such insects is desirable. Eradication of the Australian sheep blowfly is most promising at the present, mainly because of economic considerations. The use of the sterile-male technique cannot be applied economically or efficiently for the control of stored grain insects. However, note was taken of a previous panel report suggesting that irradiation disinfestation of grain was both feasible and practicable.

7. Labelling techniques

Effective means of labelling insects with radioisotopes are extremely important. Work to develop more suitable and standardized methods should be supported and encouraged.

B. Exchange of information

1. Collection and dissemination

The Panel recommends that:
(a) A scientific report on the work of the Panel be prepared for the internal use of the Agency and for distribution to members of the Panel;
(b) The Agency arrange for a consultant to prepare a fuller account of the Panel's findings, primarily for the information of Governments and similar bodies. In this might be included a description of the principle upon which the sterile-male technique is based together with an objective evaluation of the limitations and potentialities of the procedure. The Agency might consider publishing the report; and
(c) The Agency undertake the publication, at regular intervals, of a scientific information circular containing abstracts from the published literature and summaries of articles in press when these are available. Scientific workers might be encouraged to provide summaries when material is submitted for publication and to provide progress reports at frequent intervals. A current bibliography should also be included. The first issue of the circular might contain the information referred to in (b) above.

2. Co-operation

In the opinion of the Panel, WHO and FAO have a very pronounced interest in this field of research on the sterile-male technique is either well as shorter study programmes are under way and it is hoped that the field is new and that more knowledge of radioactive port requests to ex tran subject when such vi sequence of work.

3. Training

The Panel reco that other insects might be controlled by this method. The collection and dissemination of information on such insects is desirable. Eradication of the Australian sheep blowfly is most promising at the present, mainly because of economic considerations. The use of the sterile-male technique cannot be applied economically or efficiently for the control of stored grain insects. However, note was taken of a previous panel report suggesting that irradiation disinfestation of grain was both feasible and practicable.

7. Labelling techniques

Effective means of labelling insects with radioisotopes are extremely important. Work to develop more suitable and standardized methods should be supported and encouraged.

B. Exchange of information

1. Collection and dissemination

The Panel recommends that:
(a) A scientific report on the work of the Panel be prepared for the internal use of the Agency and for distribution to members of the Panel;
(b) The Agency arrange for a consultant to prepare a fuller account of the Panel's findings, primarily for the information of Governments and similar bodies. In this might be included a description of the principle upon which the sterile-male technique is based together with an objective evaluation of the limitations and potentialities of the procedure. The Agency might consider publishing the report; and
(c) The Agency undertake the publication, at regular intervals, of a scientific information circular containing abstracts from the published literature and summaries of articles in press when these are available. Scientific workers might be encouraged to provide summaries when material is submitted for publication and to provide progress reports at frequent intervals. A current bibliography should also be included. The first issue of the circular might contain the information referred to in (b) above.

2. Co-operation

In the opinion of the Panel, WHO and FAO have a very pronounced interest in this field of research on the sterile-male technique is either well as shorter study programmes are under way and it is hoped that the field is new and that more knowledge of radioactive port requests to ex tran subject when such vi sequence of work.

3. Training

The Panel reco that other insects might be controlled by this method. The collection and dissemination of information on such insects is desirable. Eradication of the Australian sheep blowfly is most promising at the present, mainly because of economic considerations. The use of the sterile-male technique cannot be applied economically or efficiently for the control of stored grain insects. However, note was taken of a previous panel report suggesting that irradiation disinfestation of grain was both feasible and practicable.

7. Labelling techniques

Effective means of labelling insects with radioisotopes are extremely important. Work to develop more suitable and standardized methods should be supported and encouraged.

B. Exchange of information

1. Collection and dissemination

The Panel recommends that:
(a) A scientific report on the work of the Panel be prepared for the internal use of the Agency and for distribution to members of the Panel;
(b) The Agency arrange for a consultant to prepare a fuller account of the Panel's findings, primarily for the information of Governments and similar bodies. In this might be included a description of the principle upon which the sterile-male technique is based together with an objective evaluation of the limitations and potentialities of the procedure. The Agency might consider publishing the report; and
(c) The Agency undertake the publication, at regular intervals, of a scientific information circular containing abstracts from the published literature and summaries of articles in press when these are available. Scientific workers might be encouraged to provide summaries when material is submitted for publication and to provide progress reports at frequent intervals. A current bibliography should also be included. The first issue of the circular might contain the information referred to in (b) above.
circular might contain reference to this panel and a copy of the account referred to in (b) above.

2. Co-operation

In the opinion of the Panel, the IAEA should work co-operatively with WHO and FAO and with any other interest bodies in the development of research on the sterile-male release procedure.

3. Training

The Panel recommends that the IAEA support requests for training of scientists from countries where research on the radiation sterilization technique is either in progress or contemplated. Long-term training as well as shorter study periods in laboratories where active research or field programmes are under way are highly desirable. This is important because the field is new and highly technical. Effective studies require an adequate knowledge of radiation and its effect on insects. The IAEA should also support requests for exchange visits by scientists engaged in research on this subject when such visits could be expected to facilitate progress or are considered desirable to reconcile differences between critical experimental data.

4. Future panel meetings

In view of the rapid expansion, fluidity of research results and great interest in this field, the Panel, which represents the first international gathering of its kind, recommends that the IAEA consider in 1964 another meeting of research scientists engaged in studies on this method to review progress and exchange new information.

REFERENCES

[34] LINDQUIST, A. W., New ways to control insects, Pest Control 20: 6 (June 1961).

[37] Labbeque, G. C., Studies with three alkylating agents as house fly sterilants, J. Econ. Ent. 54, 4 (1961) 864-869.

RADIOISOTOPES AND RADI

Proceedings of an IAEA
by authors from nine count
trropical countries. The ope
xii + 397 pp (16 x 24 cm)

RADIOISOTOPES IN TROPIC

Proceedings of an IAEA
discussions from 12 countri
ilities; tropical sprue, haemolytic anaemia, enden
biochemistry, parasitology,
375 pp (16 x 24 cm) - North

In press: RADIATION AND
ceedings of an IAEA

THE APPLICATION OF RADI

This essay, published i
biological Laboratory, Bioph
64 pp (14.8 x 21 cm) - Nort
OTHER IAEA PUBLICATIONS ON RELATED SUBJECTS

PROCEEDINGS SERIES

RADIOISOTOPES AND RADIATION IN ENTOMOLOGY

Proceedings of an IAEA symposium held at Bombay in December 1966. The papers (with discussions) by authors from nine countries deal with radioisotopes as tracers, radiation studies and insect problems in tropical countries. The opening address by H. J. Shahka is also included.

397 pp (18 x 24 cm) - North America, US $6.50; Elsewhere, 39s. stg

RADIOISOTOPES IN TROPICAL MEDICINE

Proceedings of an IAEA-WHO symposium held at Bangkok in December 1966. The 22 papers (with discussions) from 19 countries and WHO cover such subjects as nutrition, protein metabolism and deficiencies, tropical sprue, haematological problems, iron metabolism, blood loss caused by parasites, haemolytic anaemia, endemic goitre, water and electrolytic balance, entomological problems, insect biochemistry, parasitology, helminth life cycles and protozoa.

375 pp (16 x 24 cm) - North America, US $7.00; Elsewhere, 42s. stg

REVIEW SERIES

THE APPLICATION OF RADIOISOTOPES IN BIOLOGY

This essay, published in both Russian and English, was written by A. M. Kanin, Chief of the Radiobiological Laboratory, Biophysical Institute of the Academy of Sciences of the USSR.

64 pp (14.8 x 21 cm) - North America, US $1.00; Elsewhere, 8s. stg
ARGENTINA
Editorial Sudamericana, S. A.,
Almina 604
Buenos Aires

AUSTRALIA
R. W. Barclay
90, Queen Street
Melbourne

AUSTRIA
Georg Frunze & Co.,
Spengergasse 39
Vienna V

BELGIUM
Office International de Librairie
36, avenue Marnix
Brussels 5

BRAZIL
Livraria Kosmos Editora
Rua do Rossio, 136-137
Rio de Janeiro
Agencia Exponente Oscar M. Silva
Rua Xavier de Toledo, 140-1º Andar
(Cais Postal N° 5,614)
São Paulo

BURMA
See under India

BYELORUSSIAN SOVIET SOCIALIST REPUBLIC
See under USSR

CANADA
The Queen's Printer
Ottawa

CEYLON
See under India

CHINA (Taiwan)
Books and Scientific Supplies
Service, Ltd.,
P.O. Box 80
Taipei

DENMARK
Ejnar Munksgaard Ltd.,
6 Norreegade
Copenhagen K

ETHIOPIA
G. P. Glavemopoulos
International Press Agency
P.O. Box 120
Addis Ababa

FINLAND
Akateeminen Kirjakauppa
Keskustie 2
Helsinkki

FRANCE and FRENCH UNION
Office International de Documentation et Librairie
64, Rue Gay-Lussac
Paris, 5e

GERMANY, Federal Republic of
R. Oldenbourg
Rosenheimer Strasse 145
Munich 8

ICELAND
Halldóð Kjossin
Mjóstræli 2
Rekjavik

INDIA
Orient Longmans Ltd.,
17, Chintaranjan Ave.
Calcutta 13

ISRAEL
Helliger and Co.,
3 Nathan Strauss Street
Jerusalem

ITALY
Agnormal Editoriali Internazionali
Organizzazione Universali
(Enel, I.O.U.)
Via Messaglia 16
Milan

JAPAN
Maruzen Company Ltd.,
6, Tori Nichome
Nihonbashi
P.O. Box 605
Tokyo Central

KOREA, Republic of
The East-Yo Publishing Co.
5,2-ka Chang-ro
Seoul

MEXICO
Libreriá Internacional
Av. Sonora 206
Mexico 11, D.F.

MONACO
The British Library
30, Bd des Moulinus
Monte Carlo

MOROCCO
Centre de diffusion documentaire
de B.E.P.I.
5, rue Michaux-Bellaco
(B.P. N° 211)
Rabat

NEPAL
See under India

NETHERLANDS
N.V. Mauritius Nijhoff
Lange Voorhout 9
The Hague

NEW ZEALAND
Whitcombe & Tombs, Ltd.
P.O. Box 1894
Wellington, C.1

NORWAY
Johan Grundt Tan
Karl Johans gate
Oslo

PAKISTAN
Kanishk Educatio
Harrow Chambers
South Napier Rd
P. O. Box No. 48
Karachi, 3

PERU
Agencia de Libro de Salvador Naranjo
Calle Pre. Francisco Asencio
Lima

PHILIPPINES
The Modern Book
509 Rizal Avenue
Manila

POLAND
Otwozki Zasobowa
Wydawnictwo Nauk.
Politechna Akademia
Palac Kultury i N
Warsaw

PORTUGAL
Livrarias Rodrigues
186, Rua de Ouro
Lisbon 2

SOUTH AFRICA
Van Schalkwyk's Book
Libri Building
Church St.
(P.O. Box 724)
Pretoria

SPAIN
Livrería Bosch
Ronda Universidad
Barcelona

IAEA publications can also
be obtained through the
IAEA Distributors

IAEA SALES AGENTS

Distributor