Radiation Induced F₁ Sterility in Lepidoptera for Area-Wide Control

PROCEEDINGS OF THE FINAL RESEARCH CO-ORDINATION MEETING
PHOENIX, ARIZONA, 9-13 SEPTEMBER 1991
ORGANIZED BY THE JOINT FAO/IAEA DIVISION
OF NUCLEAR TECHNIQUES IN FOOD AND AGRICULTURE
The cover picture shows a mating pair of *Helicoverpa zea*, corn earworm. By courtesy of United States Department of Agriculture.
RADIATION INDUCED F₁ STERILITY
IN LEPIDOPTERA
FOR AREA-WIDE CONTROL

PROCEEDINGS OF THE
FINAL RESEARCH CO-ORDINATION MEETING
ON RADIATION INDUCED F₁ STERILITY
IN LEPIDOPTERA FOR AREA-WIDE CONTROL
ORGANIZED BY THE
JOINT FAO/IAEA DIVISION OF NUCLEAR TECHNIQUES
IN FOOD AND AGRICULTURE
AND HELD IN PHOENIX, ARIZONA, 9–13 SEPTEMBER 1991

INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA, 1993
Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria.

© IAEA, 1993

VIC Library Cataloguing in Publication Data
Research Co-ordination Meeting on Radiation Induced F_{1} Sterility in Lepidoptera for Area-Wide Control (1991 : Phoenix, Ariz.)
Radiation induced F_{1} sterility in Lepidoptera for area-wide control : proceedings of the Final Research Co-ordination Meeting on Radiation Induced F_{1} Sterility in Lepidoptera for Area-Wide Control organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Phoenix, Arizona, 9–13 September 1991. — Vienna : International Atomic Energy Agency, 1993. p. ; 24 cm. — (Panel proceedings series, ISSN 0974-1876) STI/PUB/929
ISBN 92-0-101793-6
Includes bibliographical references.

1. Insect radio sterilization. 2. Lepidoptera. I. International Atomic Energy Agency. II. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. III. Title. IV. Series.

VICL 93-00060

Printed by the IAEA in Austria
May 1993
STI/PUB/929
FOREWORD

Caterpillars or larvae belonging to the order Lepidoptera are among the most damaging pests of food crops, forests and stored products throughout the world. Currently, most of these species are controlled largely by applying chemical insecticides. In many instances this practice has induced insecticide resistance. In addition, the frequent use of chemicals often destroys both natural enemies that keep a variety of pests in check and pollinating insects and other beneficial organisms.

Non-chemical methods of controlling lepidopterous pests are being developed and, in some instances, are being widely used. These alternatives include resistant crop varieties, insect pathogens, predators, parasites, use of pheromones or other semiochemicals for mating disruption and trapping, use of trap crops and toxic baits, and cultural methods.

Genetic control of lepidopterous pests includes the use of the sterile insect technique. This technique has been used since 1968 to protect 0.4 million hectares of cotton in the San Joaquin Valley of California, United States of America, from the pink bollworm. Another form of genetic control in Lepidoptera is the use of inherited sterility, which is especially pronounced in the first filial (F1) generation following the exposure of the parents to substerilizing doses of ionizing radiation. Lepidoptera are unusual among the insects in that very high doses (300 to 500 Gy) of radiation are required to induce sexual sterility. These high doses impair mating behaviour and reproductive physiology. However, at lower rates, normally 80 to 150 Gy, the irradiated insects are partially sterile; their F1 progeny are almost completely sterile although still competitive.

In addition, the F1 generation can be reared in the field. This may be important because the rearing of most lepidopterous species is costly. On the other hand, certain other species can be mass reared at almost any time of year in factories, stockpiled in diapause, irradiated and activated for release in synchrony with the wild population.

It is likely that substantial cost reductions may be gained by combining the use of F1 sterility with various methods of control. Resistant crop cultivars should be planted if available. In addition, high level populations of lepidopterous pests may first be reduced by using pathogens, parasites or predators, and then prevented from rebuilding to damaging levels by means of F1 sterility.

A co-ordinated research programme on Radiation Induced F1 Sterility in Lepidoptera for Area-Wide Control was organized in accordance with the recommendations of a consultants group that met in Vienna in November 1984. Research Co-ordination Meetings have been held at Otis, Massachusetts, USA, Beijing, China, and finally in Phoenix, Arizona. Special thanks are in order for D.A. Lindquist, B.A. Butt and L.R. LaChance for organizing this programme and for leading the meetings.
EDITORIAL NOTE

The Proceedings have been edited by the editorial staff of the IAEA to the extent considered necessary for the reader's assistance. The views expressed remain, however, the responsibility of the named authors or participants. In addition, the views are not necessarily those of the governments of the nominating Member States or of the nominating organizations.

Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights.

Material prepared by authors who are in contractual relation with governments is copyrighted by the IAEA, as publisher, only to the extent permitted by the appropriate national regulations.
CONTENTS

INTRODUCTION ... 1

Effect of substerilization doses of radiation on the biology of
diamondback moth .. 3

* D. Omar, M. Mansor *

Studies on F₁ radiation sterilization of diamondback moth and
mulberry wild silkworm .. 11

* Rongxing Yang, Darong Xia, Weiping Cu, Jiming Chu, Yanjun Zhang *

Radiation induced F₁ sterility in diamondback moth, *Plutella xylostella* L.,
and tropical army worm, *Spodoptera litura* F. .. 23

* S. Surisno, M.S. Hoedaya, D. Sutardji, A. Rahayu *

Radiation induced F₁ sterility in *Helicoverpa zea* (boddie):
Potential for area-wide control ... 37

* J.E. Carpenter *

Computer model for predicting the effect of inherited sterility
on population growth .. 49

* J.E. Carpenter, R.C. Layton *

Rearing and gamma radiation effects on mature pupae of pink bollworm
and their F₁ progeny .. 57

* Z.A. Qureshi, N. Ahmed, T. Hussain *

Effect of gamma radiation at pupal stage on fall army worm parent
and F₁ generation reproduction .. 73

* V. Arthur, F.M. Maximiliano Wiendl, J.A. Duarte Aguilar, R.E. Domarco *

Inherited sterility in progeny of gamma irradiated male cotton
leafworm, *Spodoptera littoralis* (Boisd.) ... 81

* H.A. Sallam, S.M. Ibrahim *

Possibilities of using radiation induced F₁ sterility for control of
European corn borer in Romania .. 101

* A. Barbulescu, I. Rosca *

Studies on chromosomal aberrations and inherited sterility in
Asian corn borer, *Ostrinia furnacalis* (Guenée) ... 117

* H.R. Zhang, Y.Y. Li, W. Kang, H.S. Wang, W. Zhang *

Gypsy moth F₁ sterility programme: current status ... 125

* V.C. Mastro *

Crossing experiments between European corn borer, *Ostrinia nubilalis*
(Hübner) and Asian corn borer, *Ostrinia furnacalis* (Guenée),
to explore the possibility of hybrid sterility ... 131

* H.S. Zhang, Y.Y. Li, Q.R. Liu, H. Wang, W. Kang *
Study of the mechanism and possibilities of using F₁ sterility for
genetic control of codling moth .. 135

A.I. Anisimov

CONCLUSIONS AND RECOMMENDATIONS 157

LIST OF PARTICIPANTS ... 161
INTRODUCTION

Very high doses of ionizing radiation are required to induce full sexual sterility in Lepidoptera. Fully sterilizing doses are detrimental to the behaviour and reproductive physiology of Lepidoptera. Such damage greatly diminishes the ability of irradiated males to compete for mates with wild males. The undesirable effects of such high doses of radiation include failure of irradiated males:

(a) To disperse strongly, to seek out appropriate niches or to behave in synchrony with wild males,
(b) To respond to calling females and/or to mate,
(c) To form the spermatophore, to include both eupyrene and aphyrene sperm in the spermatophore or to position the spermatophore stalk at the opening of the seminal duct,
(d) To transfer eupyrene sperm in sufficient quantity via the seminal duct to the spermatheca.

It appears that inherited sterility can be induced in all species of Lepidoptera by means of doses of ionizing radiation that induce only low levels of sterility in irradiated individuals. Moreover, inherited sterility appears to be manifested in a similar pattern throughout the Lepidoptera family as follows:

(1) The level of sterility is much higher in the F₁ generation than in the treated parent;
(2) The level of sterility in the F₂ generation is lower than that in the F₁;
(3) The number of male progeny in the F₁ generation is normal or nearly normal, whereas the number of female progeny is very low or absent depending on the dose.

Since relatively low doses of radiation are sufficient to induce inherited sterility, many of the detrimental effects of fully sterilizing doses can be partially or completely avoided, so that the irradiated males and their partially sterile descendants are able to compete with wild males. In addition, the detrimental effects of irradiation are least when the dose is delivered to pupae just prior to the emergence of the adults.

An important question is the selection of the dose to induce inherited sterility. A number of factors must be considered in selecting the dose. If a high dose is selected to induce a correspondingly high level of sterility in the F₁ generation, then the released and F₁ individuals will have a very strong suppressive effect on the wild population (provided that their competitiveness is not badly impaired). However, in this case the suppressive effect of F₂ descendants will be greatly dampened, and that of subsequent generations will be insignificant. On the other hand, if the rate of increase of the pest population is low so that sufficient suppression can be exerted by F₁ individuals that have a moderate level of fertility (e.g. 15 or 20%), then a relatively low dose may be used and significant suppressive effects will persist in the F₂ generation and perhaps even in the F₃ generation.
EFFECT OF SUBSTERILIZATION DOSES OF RADIATION ON THE BIOLOGY OF DIAMONDBACK MOTH

D. OMAR
Department of Plant Protection,
Universiti Pertanian Malaysia,
Serdang, Selangor

M. MANSOR
Department of Genetics,
Universiti Kebangsaan Malaysia,
Bangi, Selangor

Malaysia

Abstract

EFFECT OF SUBSTERILIZATION DOSES OF RADIATION ON THE BIOLOGY OF DIAMONDBACK MOTH.

The pupae of the diamondback moth, Plutella xylostella, were exposed to four sub-sterilizing doses (100, 150, 200 and 250 Gy) of gamma radiation. The fecundity, sterility and progeny development of parental crosses and certain F₁ backcrosses (progeny of irradiated males) were studied in the laboratory. All doses caused sterility in the parental crosses and F₁ backcrosses. Doses above 20 Gy greatly affected the development of larvae in parental crosses of irradiated females with normal males and of irradiated males with irradiated females, as no pupation was observed. The study indicated that a dose between 150 and 200 Gy would be suitable for inherited sterility of the diamondback moth. However, the backcross of progeny from irradiated males showed no significant increase in inheritance of deleterious effects.

1. INTRODUCTION

The diamondback moth (DBM), Plutella xylostella, is one of the most important pests of cruciferous crops in Malaysia. The insect was first recorded in Fraser’s Hill, Pahang, in 1925 and became a major pest of cabbage in the Cameron Highlands in 1934 [1]. Since then, it has been widely recognized as a serious pest of crucifers in both highland and lowland areas. Without chemical control, damage caused by the DBM on cruciferous crops could reach a level of 70-90% destruction.

Insecticides have become the main method of control for this insect. The heavy reliance on, and indiscriminate use of, insecticides have caused the DBM to become
resistant to most of the insecticides available on the market [2, 3]. The need for other control methods has risen following the failure of insecticides to control this pest. Among other control measures, biological control looks very promising [4]. In the development of pest management for DBM, other possible control methods need to be explored, including the sterile or partially sterile insect technique.

The technique of partial sterility or inherited sterility is preferred for the control of lepidopterous pests as complete sterilization tends to induce physiological disturbances such as reduction of mating competitiveness, lack of sperm transfer, etc. The progeny of the irradiated parents at substerilizing doses have also been shown to be more sterile than the parents. The potential of inherited sterility in pest control was demonstrated by Knipling [5] through a mathematical model. Numerous studies have been conducted on lepidopterous pests such as *Helicoverpa zea*, *Spodoptera frugiperda* and *Trichoplusia ni*. Inherited sterility was reviewed extensively by LaChance [6]. The DBM has been suggested as a potential candidate for inherited sterility [7]. Earlier work indicated that 300 Gy of gamma irradiation is a sterilizing dose for DBM, causing more than 90% sterility of both P1 male and female adults [8]. The objective of the following study was to evaluate the effect of doses of gamma irradiation below 300 Gy on the development of DBM from various possible parental crosses and selected F1 crosses.

2. MATERIALS AND METHODS

Diamondback moths were collected from Serdang in Selangor and cultured on sawi leaves in the laboratory at 27 ± 2°C and 80 ± 15% relative humidity. The larvae were given fresh leaves daily while adults were fed with 5% honey solution soaked into cotton wool pads. The pupae were collected and irradiated for 1 d before emergence by using a gamma cell (60Co) irradiator that had a dose rate of about 60 Gy/min. The pupae were irradiated at 100, 150, 200 and 250 Gy. The males were then separated from the females. The emerging males (m) and females (f) were paired for the following parental crosses (I, irradiated; N, normal; A, progeny of the cross I_m × I_f):

\[I_m \times I_f \]
\[I_m \times N_f(A) \]
\[N_m \times I_f \]
\[N_m \times N_f \]

The male and female adults emerging from the parental cross of

\[I_m \times N_f(A) \]
were then paired with normal female and male adults, respectively, for F₁ back-
crosses and designated as follows:

\[
\begin{align*}
A_m \times N_f \\
A_f \times N_m
\end{align*}
\]

and the development of the F₂ generation was then studied.

Five pairs of DBMs were placed in a 2.5 L plastic cylinder for mating and
oviposition. The adults were provided with 5% honey solution. A sawi leaf was
placed in the plastic cylinder for oviposition. After 2 d, the leaf was removed and
replaced with another leaf for a further 2 d. The total number of eggs deposited on
both leaves was counted to assess the relative fecundity of females from different
crosses. The number of eggs hatched was recorded and fresh leaves were supplied
daily to the larvae. The larvae were then allowed to complete their development. The
number of larvae used in this study is given in Table I. The numbers of fourth instar
larvae and pupae were recorded. The percentages of fourth instar larvae and pupae
obtained from the eggs hatched were used for a statistical analysis. The treatments
were subjected to an analysis of variance and the means were compared using the
Duncan multiple range test (SAS Institute test, 1982).

3. RESULTS AND DISCUSSION

The development of DBMs obtained from the parental crosses was found to
be dependent on dose. A dose above 200 Gy greatly affected oviposition, egg hatch
and development of the larvae (Tables II, III and IV). At doses of 200 and 250 Gy,

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>(I_m \times I_f)</th>
<th>(N_m \times I_f)</th>
<th>(I_m \times N_f)</th>
<th>(A_f \times N_m)</th>
<th>(A_m \times N_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>58</td>
<td>572</td>
<td>1057</td>
<td>359</td>
<td>870</td>
</tr>
<tr>
<td>150</td>
<td>21</td>
<td>207</td>
<td>1696</td>
<td>580</td>
<td>431</td>
</tr>
<tr>
<td>200</td>
<td>—</td>
<td>105</td>
<td>288</td>
<td>797</td>
<td>719</td>
</tr>
<tr>
<td>250</td>
<td>—</td>
<td>160</td>
<td>346</td>
<td>—</td>
<td>175</td>
</tr>
<tr>
<td>Radiation dose (Gy)*</td>
<td>Total number of eggs**</td>
<td>Egg hatch (%)</td>
<td>Fourth instar larvae (%)</td>
<td>Pupae (%)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Control (11)</td>
<td>404^a</td>
<td>79.4^a</td>
<td>70.0^a</td>
<td>47.7^a</td>
<td></td>
</tr>
<tr>
<td>100 (4)</td>
<td>231^b</td>
<td>6.3^b</td>
<td>18.0^b</td>
<td>3.1^b</td>
<td></td>
</tr>
<tr>
<td>150 (4)</td>
<td>221^b</td>
<td>2.6^b</td>
<td>0.0^c</td>
<td>0.0^b</td>
<td></td>
</tr>
<tr>
<td>200 (4)</td>
<td>47^c</td>
<td>0.0^c</td>
<td>0.0^c</td>
<td>0.0^b</td>
<td></td>
</tr>
<tr>
<td>250 (4)</td>
<td>53^c</td>
<td>0.0</td>
<td>0.0^c</td>
<td>0.0^b</td>
<td></td>
</tr>
</tbody>
</table>

* Values in brackets are the number of replicates.
** Means followed by the same letter are not significantly different (p = 0.05).

<table>
<thead>
<tr>
<th>Radiation dose (Gy)*</th>
<th>Total number of eggs**</th>
<th>Egg hatch (%)</th>
<th>Fourth instar larvae (%)</th>
<th>Pupae (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (11)</td>
<td>404^a</td>
<td>79.4^a</td>
<td>70.0^a</td>
<td>47.7^a</td>
</tr>
<tr>
<td>100 (8)</td>
<td>350^a</td>
<td>20.3^b</td>
<td>40.0^b</td>
<td>18.5^b</td>
</tr>
<tr>
<td>150 (5)</td>
<td>388^a</td>
<td>10.5^c</td>
<td>70.9^4</td>
<td>34.7^a</td>
</tr>
<tr>
<td>200 (4)</td>
<td>26^b</td>
<td>0.0^d</td>
<td>0.0^c</td>
<td>0.0^c</td>
</tr>
<tr>
<td>250 (4)</td>
<td>40^b</td>
<td>0.0^e</td>
<td>0.0^c</td>
<td>0.0^c</td>
</tr>
</tbody>
</table>

* Values in brackets are the number of replicates.
** Means followed by the same letter are not significantly different (p = 0.05).

Parental crosses of \(I_m \times I_f\) and \(N_m \times I_f\) failed to produce pupae (Tables II and III). In those crosses the number of eggs deposited was also greatly reduced compared with the lower doses and the control \((p = 0.05)\), indicating that a dose above 200 Gy reduced female fecundity. However, the numbers of eggs deposited after doses of 100 and 150 Gy were not significantly different when compared with the control \(N_m \times I_f\) crosses (Table III). The proportion of the eggs hatched was significantly reduced, indicating that these doses caused female sterility.
Parental crosses of irradiated males with normal females showed no apparent loss of fecundity of females but significantly reduced the egg hatch (Table IV). However, the percentages of eggs hatched and larvae surviving to pupae from these crosses appeared to be higher compared with the other parental crosses. The F₁ backcross of either male or female from Iₘ × Nₜ showed no significant decrease in fecundity but significant reductions in egg hatch and development of F₂ generation larvac and pupae compared with control crosses \((p = 0.05)\) (Tables V and VI).

TABLE IV. EFFECT OF GAMMA IRRADIATION OF DBM PUPAE ON REPRODUCTION OF P₁ ADULTS \((Iₘ \times Nₜ)\)

<table>
<thead>
<tr>
<th>Radiation dose (Gy)*</th>
<th>Total number of eggs**</th>
<th>Egg hatch (%)</th>
<th>Fourth instar larvae (%)</th>
<th>Pupae (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (11)</td>
<td>404<sup>a</sup></td>
<td>79.4<sup>a</sup></td>
<td>70.0<sup>a</sup></td>
<td>47.7<sup>a</sup></td>
</tr>
<tr>
<td>100 (6)</td>
<td>301<sup>b</sup></td>
<td>58.9<sup>b</sup></td>
<td>47.4<sup>bc</sup></td>
<td>26.8<sup>b</sup></td>
</tr>
<tr>
<td>150 (6)</td>
<td>571<sup>c</sup></td>
<td>49.7<sup>c</sup></td>
<td>53.6<sup>b</sup></td>
<td>42.1<sup>c</sup></td>
</tr>
<tr>
<td>200 (6)</td>
<td>469<sup>bc</sup></td>
<td>39.6<sup>d</sup></td>
<td>25.1<sup>d</sup></td>
<td>9.5<sup>c</sup></td>
</tr>
<tr>
<td>250 (2)</td>
<td>475<sup>c</sup></td>
<td>40.3<sup>d</sup></td>
<td>41.0<sup>c</sup></td>
<td>26.7<sup>b</sup></td>
</tr>
</tbody>
</table>

* Values in brackets are the number of replicates.
** Means followed by the same letter are not significantly different \((p = 0.05)\).

TABLE V. EFFECT OF GAMMA IRRADIATION ON REPRODUCTION OF F₁ ADULTS \((Aₚ \times Nₘ)\)

<table>
<thead>
<tr>
<th>Radiation dose (Gy)*</th>
<th>Total number of eggs**</th>
<th>Egg hatch (%)</th>
<th>Fourth instar larvae (%)</th>
<th>Pupae (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (11)</td>
<td>404<sup>a</sup></td>
<td>79.4<sup>a</sup></td>
<td>70.0<sup>a</sup></td>
<td>47.7<sup>a</sup></td>
</tr>
<tr>
<td>100 (3)</td>
<td>340<sup>bc</sup></td>
<td>35.9<sup>c</sup></td>
<td>55.5<sup>bc</sup></td>
<td>25.4<sup>bc</sup></td>
</tr>
<tr>
<td>150 (3)</td>
<td>444<sup>bc</sup></td>
<td>46.7<sup>bc</sup></td>
<td>43.5<sup>bc</sup></td>
<td>19.8<sup>c</sup></td>
</tr>
<tr>
<td>200 (3)</td>
<td>567<sup>a</sup></td>
<td>49.7<sup>b</sup></td>
<td>34.4<sup>c</sup></td>
<td>15.8<sup>c</sup></td>
</tr>
</tbody>
</table>

* Values in brackets are the number of replicates.
** Means followed by the same letter are not significantly different \((p = 0.05)\).
TABLE VI. EFFECT OF GAMMA IRRADIATION ON REPRODUCTION OF F\textsubscript{1} ADULTS (A\textsubscript{m} × N\textsubscript{f})

<table>
<thead>
<tr>
<th>Radiation dose (Gy)*</th>
<th>Total number of eggs**</th>
<th>Egg hatch (%)</th>
<th>Fourth instar larvae (%)</th>
<th>Pupae (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (12)</td>
<td>404*</td>
<td>79.4*</td>
<td>70.0*</td>
<td>47.7*</td>
</tr>
<tr>
<td>100 (4)</td>
<td>436*</td>
<td>51.7*</td>
<td>73.4*</td>
<td>41.3*</td>
</tr>
<tr>
<td>150 (3)</td>
<td>378*</td>
<td>37.0*</td>
<td>49.3*</td>
<td>19.6*</td>
</tr>
<tr>
<td>200 (4)</td>
<td>359*</td>
<td>50.9*</td>
<td>30.6*</td>
<td>8.9*</td>
</tr>
<tr>
<td>250 (2)</td>
<td>253*</td>
<td>35.2*</td>
<td>28.3*</td>
<td>9.2*</td>
</tr>
</tbody>
</table>

* Values in brackets are the number of replicates.
** Means followed by the same letter are not significantly different (p = 0.05).

TABLE VII. ADULT EMERGENCE FROM IRRADIATED PUPAE OF DBM

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Number of pupae (not separated)</th>
<th>Normal (%)</th>
<th>Deformed (%)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>80</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
<td>75</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>65</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>200</td>
<td>170</td>
<td>62</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>250</td>
<td>190</td>
<td>55</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

It appears from the results of parental and F\textsubscript{1} crosses that the dose of 100 Gy may not be suitable for inherited sterility because of the significantly lower sterility demonstrated. Preliminary results on the female progeny from A\textsubscript{m} × N\textsubscript{f} backcrossed with normal males showed almost no difference in the percentage of eggs hatched (≈67%) compared with the control. However, the F\textsubscript{2} male progeny from the same cross backcrossed with normal females still exhibited sterility (hatchability of about 45%).

We propose that a dose of between 150 and 200 Gy should be used for further study in the development of the DBM inherited sterility programme. A dose of 250 Gy may not be suitable, since it caused deformities in 30% of the emerged adults (Table VII). It should be noted that at a radiation dose of either 150 or 200 Gy,
no increase in sterility in the backcross generation was observed. The dose of 100 Gy, however, has been shown to have greater inherited deleterious effects for the progeny of irradiated males of fall army worms [9]. A similar dose was also used to sterilize corn earworms partially [10]. It could be that the DBM may require a higher dose of radiation for inherited sterility as it has a relatively short lifecycle in the tropics and has developed a resistance to almost all the insecticides available on the market. Further studies are required to investigate the inheritance of deleterious effects caused by radiation doses of between 150 and 200 Gy to the DBM.

ACKNOWLEDGEMENTS

This work was funded by IRPA, Ministry of Science and Technology, Malaysia, and the IAEA. The authors wish to thank the Nuclear Energy Unit for radiation facilities and Siti Aishah Johan for technical assistance.

REFERENCES

STUDIES ON F\textsubscript{1} RADIATION STERILIZATION OF DIAMONDBACK MOTH AND MULBERRY WILD SILKWORM

Rongxing YANG, Darung XIA, Weiping CU, Jiming CHU, Yanjun ZHANG
Department of Pest Control,
Institute for the Application of Atomic Energy,
Zhejiang, Academy of Agricultural Sciences,
Hangzhou, China

Abstract

STUDIES ON F\textsubscript{1} RADIATION STERILIZATION OF DIAMONDBACK MOTH AND MULBERRY WILD SILKWORM.

The study began in 1988 under the aegis of the FAO/IAEA co-ordinated research programme on Radiation Induced F\textsubscript{1} Sterility in Lepidoptera for Area-Wide Control. During the following four years the control of the mulberry wild silkworm (*Bombyx mandarina* Moore) and the diamondback moth (*Plutella xylostella* L.) by means of radiation induced sterility was studied.

1. CONTROL OF THE MULBERRY WILD SILKWORM BY THE STERILE IRRADIATION TECHNIQUE

The mulberry wild silkworm (MWS) (*Bombyx mandarina* Moore) is one of the main phytophagous pests of mulberry trees. This species occurs in the mulberry growing regions throughout China and causes severe damage. The MWS eats mulberry leaves at the same time that farmers collect leaves to feed domestic silkworms (*Bombyx mori* L.). The damage cannot be effectively controlled by using chemical pesticides. The MWS has the characteristics of weak flight and a single host. Mulberry gardens are usually well isolated. All these factors favour the application of the sterile insect technique (SIT) to control MWSs. From 1984 to 1988, we conducted studies on the effects of radiation on the MWS, field studies and studies on artificial diet rearing of the MWS. The principal results were:

(a) *Studies on the radiation dose required to sterilize the MWS.* The mature pupae are treated with *Co gamma rays. The emergence rate (Y) of the adults decreases with increasing dose (x). The correlation formula is

\[Y = 87.26688e^{-0.0844x} \]
TABLE 1. EFFICIENCY OF F₁ STERILITY INHERITANCE OF WILD SILKWORM INDUCED BY RADIATION

<table>
<thead>
<tr>
<th>Parental</th>
<th>Pairs</th>
<th>Eggs plated</th>
<th>Hatched eggs</th>
<th>Hatching rate (%)</th>
<th>Sterile rate (%)</th>
<th>Corrected sterile rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ F₁ crosses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 Gy to P₁ ♂ × N ♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₁ ♀ × N ♂</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N ♀ × F₁ ♂</td>
<td>1</td>
<td>81</td>
<td>7</td>
<td>8.6</td>
<td>91.4</td>
<td>89.9</td>
</tr>
<tr>
<td>250 Gy to P₁ ♂ × N ♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₁ ♀ × N ♂</td>
<td>2</td>
<td>241</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N ♀ × F₁ ♂</td>
<td>4</td>
<td>228</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Control N ♀ × N ♂</td>
<td>5</td>
<td>353</td>
<td>320</td>
<td>85.6</td>
<td>14.4</td>
<td>0</td>
</tr>
</tbody>
</table>

FIG. 1. Curves of the third generation larvae in Zhejiang Province.
The morphological deformity rate increases with increasing dose, following the formula

\[Y = 1.6921e^{-0.7809x} \]

The egg sterility increases with increasing dosage, following the formula

\[Y = 93.0068e^{-1.0388x} \]

The study on the effect of sterile inheritance of F1 treated by radiation indicated that the appropriate substerile dosage for the MWS was 250 Gy (Table I).

(b) Studies on the biology and ecology of the MWS. Wild silkworms have three or four generations per year and the eggs overwinter in diapause. The fourth generation is the most damaging. The larvae population in 1988 was as high as 10.2/plant. The moths of wild silkworms emerged during daytime and became active at night, but flew only a short distance to find mating partners. The trend of a natural MWS population is shown in Fig. 1.
FIG. 3. Relationship between photoperiod and mating rate in the wild silkworm.
\[Y = 0.61525x + 65.165. \]

FIG. 4. Relationship between the mating rate and hatching rate in the wild silkworm.
\[Z = 1.0586Y - 18.136. \]

FIG. 5. Relationship between the hatching rate and photoperiod in the wild silkworm.
\[Z = 0.65625x + 50.805. \]
(c) The possibility of using the SIT to control wild silkworms. The wild silkworm is the most important insect pest on mulberry trees. The larval population reaches as high as 12.2/plant with 114 750/ha at the time of heavy infestation. It is difficult to use conventional methods to control the MSW. This is because the natural infestation usually coincides with the time of artificial silkworm rearing. The isolated or separated mulberry fields, and inactive migration and oligophagous habits of the insect, indicate that the application of SIT may serve as a new approach (Fig. 2).

(d) Effect of temperature and photoperiod on mating and oviposition of the wild silkworm. The mating rate of wild silkworms is 78.4%, with an average oviposition of 179.3 eggs per female. The hatching rate is 61.3% under the suboptimum temperature, 25°C, with five different photoperiod treatments. The mating and hatching rates increase with the increasing illumination time. Their correlations are indicated by the formulas

\[Y = 0.61625x + 65.165 \]
and
\[Z = 0.65625x + 50.805. \]

The statistical test showed that the correlation coefficients were highly significant (Figs 3–5).

(e) **Mating habits and competitive ability of sterile wild silkworms.** The mating time of the wild silkworm is from 08.00 to 05.00 the next day during which the mating is at its peak from 13.00 to 23.00. It was found that 89.53% of mated wild silkworms mated once and the rest (10.4%) two to four times (Fig. 6). Compared with the natural wild silkworm, there was no difference in mating competitive ability after being treated by 250–500 Gy of radiation.

2. **CONTROL OF THE DIAMONDBACK MOTH BY F₁ STERILITY**

The diamondback moth (DBM) is one of the main pests of cruciferous vegetables. It causes the most severe damage in the southern Chang Jiang River Valley of China. After a Research Co-ordination Meeting on Radiation Induced F₁ Sterility in Lepidoptera for Area-wide Control was held in Beijing in May 1989, the research object of the co-ordination research programme was changed from the MWS to the DBM. Since 1989 studies on controlling the DBM by using the SIT have been proceeding, including DBM artificial mass rearing, quality control, sterile DBM marking and field cage release tests as well as observations on the parasitization and population changes of DBMs at different times in Hangzhou over one year. The main results are as follows.

2.1. **System for mass rearing the DBM**

(a) An amount of 13.89 kg of No. 83–28 semisynthetic diet was divided into 120 rearing boxes maintained at a temperature of 23 ± 1°C and a relative humidity of about 70%. A total of 130,000 normal DBM larvae were successfully reared. On average 9.33 larvae were reared on 1 g of diet. Three generations were reared continuously with this diet (Tables II, III).

(b) **Comparison among different rearing systems.** Five methods using three rearing systems for the DBM reported in recent years were compared. The three rearing systems are:

(i) Germinating vegetable seeds [1, 2],

(ii) Artificial synthetic diet [3, 4],

(iii) Semisynthetic diet made by the present authors.

The comparison of results shows that, although the system of rape seedling rearing is simple, with no mould fungus appearing during the process of rearing, it is not convenient to renew the diet. The system of radish seedling
TABLE II. MASS REARED DBM

<table>
<thead>
<tr>
<th>Quantity of semisynthetic diet (kg)</th>
<th>Rearing boxes</th>
<th>Eggs put on diet</th>
<th>Pupae obtained</th>
<th>Pupae obtained per gram of diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.89</td>
<td>120</td>
<td>300,000</td>
<td>129,600</td>
<td>9.33</td>
</tr>
</tbody>
</table>

*a Plastic boxes were used for rearing (22 cm × 15 cm × 5 cm), with covers that had 13 holes (with diameters of 1 cm).

TABLE III. CONTINUOUS REARING OF DBM FOR THREE GENERATIONS WITH No. 83–28 DIET PRESCRIPTION

<table>
<thead>
<tr>
<th>Rearing generation</th>
<th>Larval developing period (d)</th>
<th>Pupal weight (mg)</th>
<th>Adult longevity (d)</th>
<th>Ovipositions (eggs/♀)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>♀</td>
<td>♂</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.2</td>
<td>5.1</td>
<td>15.0</td>
<td>21.5</td>
</tr>
<tr>
<td>2</td>
<td>11.6</td>
<td>4.8</td>
<td>21.3</td>
<td>20.4</td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
<td>5.2</td>
<td>16.8</td>
<td>25.1</td>
</tr>
</tbody>
</table>

TABLE IV. STERILE EFFECT OF TWO GROUPS OF DBMs PAIRED IN DIFFERENT CROSSES

<table>
<thead>
<tr>
<th>Pupal length (mm)</th>
<th>Pupal weight (mg)</th>
<th>Sterile DBM (♀) × normal DBM (♂) (% egg hatch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0–5.4</td>
<td>4.30</td>
<td>U♀ × U♂</td>
</tr>
<tr>
<td>5.5–5.9</td>
<td>5.30</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.4</td>
</tr>
</tbody>
</table>
TABLE V. EFFECTS OF SUDAN BLUE II DYESTUFF FED TO DBM IN ARTIFICIAL DIET

<table>
<thead>
<tr>
<th>Concentration of Sudan Blue II dyestuff (%)</th>
<th>Larval development period (d)</th>
<th>Pupal weight (mg)</th>
<th>Pupae produced (%)</th>
<th>Number examined</th>
<th>Number marked</th>
<th>Resolving rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>11.3</td>
<td>4.6</td>
<td>18.6</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.017</td>
<td>10.8</td>
<td>5.2</td>
<td>33.7</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.044</td>
<td>11.6</td>
<td>4.7</td>
<td>22.4</td>
<td>21</td>
<td>17</td>
<td>81</td>
</tr>
<tr>
<td>0.051</td>
<td>13.2</td>
<td>4.9</td>
<td>14.1</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>0.058</td>
<td>15.0</td>
<td>5.0</td>
<td>6.3</td>
<td>13</td>
<td>13</td>
<td>100</td>
</tr>
</tbody>
</table>

Rearing used by Ke et al. [1] can meet the needs of the larvae throughout all their stages, but the diet moulds easily and is time and labour intensive, and the water content in the diet is also difficult to control. The effects of the three artificial diets were observed. Under the same feeding conditions, with no diet being renewed, the number of moths using the Biever and Hsiao diet [3, 4] is fewer than the number reared by the semisynthetic diet prepared by us.

2.2. Quality control of sterile DBMs

DBM pupae were graded according to the pupae length and then irradiated. The biological data, mating competitiveness and flying ability were determined after the pupae of each grade had emerged as adult moths. All of these factors are involved in Table IV.

2.3. Marking methods for the DBM

(a) **Dye marking method.** The marking dyestuff, made from an emulsification mixture of Sudan Blue II and double Tween-40, was mixed homogeneously in the agar of the semisynthetic diet for the DBM. The larvae were marked after eating the diet. The test results are as follows:

(i) The marking has relations with dyestuff concentration. Table V shows that the weight of pupae was increased to different degrees after the Sudan Blue dyestuff was added to the diet.

(ii) The resolving power of marked insects increased with the increase of dyestuff concentration. As the concentration reached 0.051 and 0.058%, the resolving power was up to 100%, while the larvae growth period was prolonged and the pupae rate was decreased.
(b) *Radioactive isotope 32P method for marking the insects.* A colourless and transparent solution of NaH$_2$PO$_4$ was added to the semisynthetic diet. The 32P radioactivities in the diet were 7.4, 17.76 and 25.16 kBq/g. DBMs were labelled after they ate the diet. Table VI indicates that when the radioactivity was 7.4 kBq/g in the diet, the marked insects could live 12.5 d; meanwhile, the radioactivity in each adult insect was 148.8 counts/min. Therefore, a 7.4 kBq/g diet reached the targeted aim for permanent insect marking. The radioactivity of 32P, 7.4 kBq/g, has no obvious influence on the longevity of the marked DBM.

2.4. Experiments on radiation sterilized DBMs in field cages

In order to compare the effects of 150 and 350 Gy radiation doses for DBMs, net cage release tests of the two dosages were done in 1990 and 1991. The tests were performed in nine net cages, each cage having an area of 2×4 m2. There were three treatments, 350, 150 Gy and 0 (control) and three repetitions with a release ratio of sterile moths to normal ones of 8:1 (9:1 in 1990). Population trends were studied for two generations.

The test results show that the population density of DBMs treated with 350 and 150 Gy for the first generation is 28.8 and 82.2%, respectively, compared with the control, and the level of control is 71.2 and 17.8%, respectively, which is similar to the result achieved from the test in a 300 m2 cage. It shows that the treated sterile DBMs have a mating capacity similar to normal ones, and that the controlling effect of 350 Gy for the first generation is better than that of 150 Gy. For the second generation, the controlling effect of 150 Gy increases up to 60.8%, close to the value of

![Graph](image)

FIG. 7. Growth and decline curves of DBM larvae in different cages: --- 0 Gy (CK); --- 150 Gy; ----- 350 Gy.
<table>
<thead>
<tr>
<th>Radioactivity of synthetic diet (kBq/g)</th>
<th>Pupae number of determination</th>
<th>Radioactivity (counts·min⁻¹·head⁻¹)</th>
<th>Adult insects</th>
<th>Mean radioactivity (counts·min⁻¹·head⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Range</td>
<td>No. of determination</td>
</tr>
<tr>
<td>7.4</td>
<td>30</td>
<td>396.7</td>
<td>297.7-571.7</td>
<td>10</td>
</tr>
<tr>
<td>17.76</td>
<td>30</td>
<td>1089.1</td>
<td>668.0-1526</td>
<td>10</td>
</tr>
<tr>
<td>25.16</td>
<td>30</td>
<td>1314.9</td>
<td>797.0-1985.3</td>
<td>10</td>
</tr>
</tbody>
</table>
FIG. 8. Comparison of the highest densities of insect populations after different treatments.

69.5% for 350 Gy, which indicates that the 150 Gy treatment has an obvious inherited sterility effect. Tests are still in progress: present indications are that they will yield results very similar to those found in previous years (Figs 7, 8).

2.5. Field studies on the DBM

The field studies on the DBM began in January 1991 using the fixed point and random sampling methods. Observations were made every three days and will be finished by the end of 1991. The results that have been achieved are as follows:

The percentage of wild silkworms that mate once in their lifetime is 89.53%, the percentage that mate twice is 8.14% and the percentages that mate two or three times are both 1.16.

(a) DBM incidence in the field. In the past, DBMs in the vegetable fields of Hangzhou have had 9-14 generations per year for many years, with an insect density peak usually in May. However, the density peak was delayed until June in 1991. The studies show that the incidence of the DBM from January to April is very low, but the insect density rises during the middle of April, and reaches its peak at the end of June. Cold, wet and stormy weather has influenced the DBM incidence (Fig. 9).

(b) Parasitic natural enemies of DBM and other vegetable pests. Through the observations and calculation on the DBM pupae collected in the field and their emergence indoors, the DBM in the Hangzhou vegetable fields have a parasitization ratio of 15.46% in late spring and early summer. The main parasites are wasps, mainly braconids, ichneumonids and chalcids. In addition to the DBM, the other crucifer vegetable pests in Hangzhou — cabbage aphids, cabbage butterflies and the owl moth species — are most harmful to vegetable production. Aphids cause severe harm and are very numerous. May is the month of peak incidence for cabbage butterflies, while the larvae of the owl moth species appear in June and increase in numbers very rapidly.

REFERENCES

RADIATION INDUCED F₁ STERILITY IN DIAMONDBACK MOTH, *Plutella xylostella* L., AND TROPICAL ARMY WORM, *Spodoptera litura* F.

S. SUTRISNO, M.S. HOEDAYA, D. SUTARDJI, A. RAHAYU
Centre for the Application of Isotopes and Radiation,
National Atomic Energy Agency,
Jakarta, Indonesia

Abstract

RADIATION INDUCED F₁ STERILITY IN DIAMONDBACK MOTH, *Plutella xylostella* L., and TROPICAL ARMY WORM, *Spodoptera litura* F.

A 300 Gy dose of gamma irradiation can be used as the sterilizing dose for the diamondback moth (DBM). This caused 90% sterility of the moths. Releases of irradiated moths into the normal populations (nine irradiated to one normal) in laboratory cages, field cages and small field plots reduced the F₁ population by 61, 55 and 42%, respectively. The effects of substerilizing doses of 175 and 200 Gy to the irradiated parents caused 26 and 36% sterilities, respectively. The dose of 175 Gy caused the levels of sterility of the male and female F₁ progeny to be 54 and 74%, respectively, while the dose of 200 Gy caused 56% sterility of the F₁ male and 71% of the F₁ female. The sterility of the F₂ population was nearly the same as that of the irradiated parents. At a radiation dose of 175 Gy the sterility of F₂ males was about 11% and of females 37%. At a dose of 200 Gy the levels of sterility of the males and females were 9 and 14%, respectively. Gamma irradiation did not affect the fecundity of the irradiated parents or of the F₁ and F₂ progeny. The average number of eggs produced by one pair of DBM moths was 180. The viabilities of unirradiated pupae, irradiated parents, F₁ and F₂ at a dose of 200 Gy were 94, 89, 54 and 65%, respectively. The effect of releasing F₁ sterile moths into untreated populations at a ratio of 45:1 could be a reduction in the population by 22%. Delta traps baited with the sex pheromone Sj showed the highest trapping efficiency. The highest population of DBMs in the dry season is in May and the lowest point is in July. The longevity of the tropical army worm was slightly affected by gamma irradiation. The dose of irradiation did not affect the viability of the pupae. A substerilizing dose of 100 Gy caused 43% parental sterility, 76% F₁ sterility and 54% F₂ sterility.

1. INTRODUCTION

The diamondback moth (DBM), one of the most important pests of cruciferous crops [1, 2], attacks many varieties of cabbage. The other important insect pests of cabbage are cabbage webworm, *Crocidolomia binotata* (Zell), and cabbage looper, *Diachrysia (Plutia) orichalcea* L. [3]. The economic loss of cabbage crops caused
by DBMs occurs especially in the dry season when control measures using insecticides are not very effective [4]. The use of insecticides as a control measure has caused the development of resistance in several species of insects. Soekarna et al. [5] proved that the Lembang strain of DBM has developed up to an 11-fold resistance to permethrin.

The tropical army worm (TAW) Spodoptera litura F. is a polyphagous insect known to attack at least 19 species in Indonesia [1]. It is a common pest of tobacco both in nurseries and in the field. If adequate control measures are not maintained throughout the season, serious damage can be inflicted on the important tobacco crop cultivated for cigar wrappers in Sumatra and Java. Damage can also be incurred after harvest when the tobacco leaves are dried in barns for several weeks. Some studies on the radiation effects on the sterilities of DBM and TAW have been reported in Refs [6] and [7], respectively.

In developing the sterile insect technique to control DBM and TAW, experiments have been carried out to determine the sterilizing and substerilizing doses of gamma radiation. The preliminary experiments on the use of various kinds of traps and pheromones to study the DBM populations in commercial cabbage fields were also carried out. This paper reviews the results previously obtained and describes the progress of current activities.

2. MATERIALS AND METHODS

2.1. Diamondback moths

The insects used in this study were obtained from a laboratory colony that had been maintained on cabbage plants.¹

Doses ranging from 0 to 500 Gy were used to study the effects of radiation on the sterility of male moths. A dose of 300 Gy was then selected for the study of the way in which the F₁ population reduction was affected by the release of irradiated moths. Irradiated moths were released into the normal populations at a ratio of 9 irradiated to 1 normal under laboratory, field cage and field conditions. The degree of population reduction was calculated from the total F₁ population found in release cages and plots as compared with that found in cages and plots without sterile insect release.

Substerilizing doses of 0 to 200 Gy were used to study the sterility of irradiated pupae and of their F₁ and F₂ progeny. Observations were also made on other biological parameters such as the viabilities of pupae and adults, fecundity and adult malformations.

¹ Sexed 3- to 4-day-old pupae were exposed to gamma radiation from a ⁶⁰Co source.
A preliminary study on population fluctuations of DBMs during the dry season was conducted by using various kinds of traps and pheromone baits. This experiment was conducted at a commercial cabbage field at Cipanas, west Java, about 200 km southwest of Jakarta. Three kinds of traps (delta type, wing type and cup type) were compared in this experiment. The pheromone baits Fr and Sj produced by Takeda Chemical Industries, Ltd were tested. Both baits have the same chemical composition, the only difference is the technique of preparation. Pheromone baits were loaded with (z)-11-hexadecenyl acetate, (z)-11-hexadecenal and (z)-11-hexadecenol.

2.2. Tropical army worms

The insects used in this test were obtained from a laboratory colony. The larvae of TAWs were reared on soybean leaves to develop the laboratory colony. Adult moths were fed with a 10% honey-water solution.

In an attempt to determine the substerilizing dose of the radiation for TAWs, 6-day-old male pupae were irradiated in a Gamma Cell 220 Irradiator at doses of 0, 50, 75, 100, 125 and 150 Gy. Fifty pupae were exposed to each dose to study the effects of gamma radiation on the malformations of the emerging moths and on their longevity. The number of insects used to study the sterility of irradiated moths and of subsequent generations were five pairs of crosses between irradiated moths, or their progeny, with unirradiated moths of the opposite sex. Two hundred first instar larvae from each treatment were reared to study the effects of irradiation on the viability of larvae and pupae.

3. RESULTS AND DISCUSSION

3.1. Diamondback moths

In general, increasing levels of gamma irradiation applied to DBM pupae resulted in increased levels of sterility (Table I). The fecundity of irradiated moths was slightly affected by doses of 400 and 500 Gy. The number of eggs produced between moths treated with high doses of radiation was less than in control matings. A dose of 300 Gy caused 90% sterility while nearly complete sterility was achieved with a dose of 500 Gy.

The results of releasing sterile insects into normal populations are presented in Table II. The release of 450 irradiated moths into a laboratory cage containing 50 unirradiated moths reduced the F₁ population by 61.1%. In the field cage test the F₁ population decreased from 378 moths in the unreleased cage to 180 moths in the released cage. This indicated a reduction of 55.6%. In the field test the ratio of irradiated to unirradiated moths of 14:1 reduced the F₁ population by 42.4%.
TABLE I. STERILITY OF MALE DBM IRRADIATED AS PUPAE

<table>
<thead>
<tr>
<th>Radiation dose (Gy)</th>
<th>Number of eggs collected (x)</th>
<th>Male sterility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>365 ± 77</td>
<td>21.1 ± 8.3</td>
</tr>
<tr>
<td>100</td>
<td>320 ± 93</td>
<td>47.6 ± 1.1</td>
</tr>
<tr>
<td>200</td>
<td>331 ± 152</td>
<td>73.2 ± 4.2</td>
</tr>
<tr>
<td>300</td>
<td>276 ± 49</td>
<td>90.0 ± 1.8</td>
</tr>
<tr>
<td>400</td>
<td>118 ± 97</td>
<td>94.9 ± 3.6</td>
</tr>
<tr>
<td>500</td>
<td>86 ± 47</td>
<td>98.9 ± 1.1</td>
</tr>
</tbody>
</table>

* The average ± standard deviation of three replications produced by five pairs of moths.

TABLE II. REDUCTION OF F₁ POPULATION OF DBM AS AFFECTED BY RELEASE OF RADIOSTERILIZED MOTHS (pupae irradiated with a dose of 330 Gy)

<table>
<thead>
<tr>
<th>Type of test</th>
<th>Parental (P) population (moths)</th>
<th>F₁ population (moths)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unreleased</td>
<td>Released</td>
<td>Unreleased</td>
</tr>
<tr>
<td>Laboratory</td>
<td>50U</td>
<td>50U + 450I</td>
<td>1141</td>
</tr>
<tr>
<td>Field, cage</td>
<td>50U</td>
<td>50U + 450I</td>
<td>378</td>
</tr>
<tr>
<td>Field, plot</td>
<td>50U</td>
<td>338U + 482I</td>
<td>809²</td>
</tr>
</tbody>
</table>

* U, unirradiated; I, irradiated.

³ Average of five tests.
² Average of three tests.
⁴ First instar larvae.

3.1.1. The effect of substerility doses on moth malformation, fecundity and sterility of male pupae of DBMs

A smaller proportion of male pupae exposed to gamma irradiation eclosed. In the central group 94% of the pupae developed to normal moths and 2% were malformed. However, at a dose of 200 Gy the percentage of normal moths emerging
TABLE III. MALFORMATION, FECUNDITY AND STERILITY OF IRRADIATED MALE PUPAE OF DBM
(number of pupae at each radiation dose)

<table>
<thead>
<tr>
<th>Radiation dose (Gy)</th>
<th>Emerged moths (%)</th>
<th>Number of eggs</th>
<th>Sterility (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Malformation</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>94</td>
<td>1984</td>
</tr>
<tr>
<td>100</td>
<td>4.66</td>
<td>91.33</td>
<td>1467</td>
</tr>
<tr>
<td>125</td>
<td>5</td>
<td>90</td>
<td>1834</td>
</tr>
<tr>
<td>150</td>
<td>6.66</td>
<td>89.33</td>
<td>2161</td>
</tr>
<tr>
<td>175</td>
<td>3.33</td>
<td>90</td>
<td>1936</td>
</tr>
<tr>
<td>200</td>
<td>4.66</td>
<td>89.33</td>
<td>1918</td>
</tr>
</tbody>
</table>

^a Produced by 10 pairs of moths, the average of 3 replications.

TABLE IV. VIABILITY, FECUNDITY AND STERILITY OF F₁ IRRADIATED DBM MALE PUPAE

<table>
<thead>
<tr>
<th>Radiation dose (Gy)</th>
<th>Viability<sup>a</sup> (%)</th>
<th>Fecundity<sup>b</sup></th>
<th>Sterility<sup>c</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pupae</td>
<td>Moths</td>
<td>Male</td>
</tr>
<tr>
<td>0</td>
<td>74.33</td>
<td>71.66</td>
<td>1826.00</td>
</tr>
<tr>
<td>100</td>
<td>58.66</td>
<td>57.66</td>
<td>1614.66</td>
</tr>
<tr>
<td>125</td>
<td>46.66</td>
<td>41.00</td>
<td>1638.66</td>
</tr>
<tr>
<td>150</td>
<td>54.66</td>
<td>52.66</td>
<td>1541.00</td>
</tr>
<tr>
<td>175</td>
<td>46.00</td>
<td>38.66</td>
<td>1534.66</td>
</tr>
<tr>
<td>200</td>
<td>54.66</td>
<td>49.66</td>
<td>1852.00</td>
</tr>
</tbody>
</table>

^a The average percentage of 100 neonatal larvae, 3 replications.

^b The average number of eggs produced by 10 pairs of each sex, 3 replications.

^c The average of 10 pairs of moths of each sex, 3 replications.
TABLE V. VIABILITY, FECUNDITY AND STERILITY OF F₂ IRRADIATED DBM MALE PUPAE

<table>
<thead>
<tr>
<th>Radiation dose (Gy)</th>
<th>Viabilityᵃ (%)</th>
<th>Fecundityᵇ</th>
<th>Sterilityᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F₁σ × U Qᵃ</td>
<td>F₁σ × U σ</td>
<td>F₁σ × U Q</td>
</tr>
<tr>
<td></td>
<td>Pupae Moths</td>
<td>Pupae</td>
<td>Male Female</td>
</tr>
<tr>
<td>0</td>
<td>74.33 69.66</td>
<td>1395</td>
<td>1395</td>
</tr>
<tr>
<td>100</td>
<td>76.66 75.00</td>
<td>1186 1683</td>
<td>951 1072</td>
</tr>
<tr>
<td>125</td>
<td>61.00 51.00</td>
<td>1382 1113</td>
<td>1096 1222</td>
</tr>
<tr>
<td>150</td>
<td>69.66 65.00</td>
<td>1108 1147</td>
<td>977 1328</td>
</tr>
<tr>
<td>175</td>
<td>37.00 29.33</td>
<td>1139 1074</td>
<td>1015 696</td>
</tr>
<tr>
<td>200</td>
<td>62.33 56.33</td>
<td>1465 1119</td>
<td>1223 1376</td>
</tr>
</tbody>
</table>

ᵃ The average percentage of 100 neonatal larvae, 3 replications.
ᵇ Number of eggs produced by 10 pairs of moths of each sex, 2 replications.
ᶜ Ten pairs of moths, 2 replications.
ᵈ U, unirradiated
TABLE VI. PERCENTAGE* OF POPULATION REDUCTION OF DBM AS AFFECTED BY RELEASE OF F1 MOTHS OF IRRADIATED MALE PUPAE

<table>
<thead>
<tr>
<th>Treatment (number of released moths),</th>
<th>Replication</th>
<th>Total</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>pairs</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5Ub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5U + 45(I-1)c</td>
<td>8.93</td>
<td>2.37</td>
<td>22.16</td>
</tr>
<tr>
<td>5U + 45(I-2)d</td>
<td>14.43</td>
<td>16.91</td>
<td>17.66</td>
</tr>
<tr>
<td>5U + 45(I-3)e</td>
<td>25.43</td>
<td>20.47</td>
<td>33.53</td>
</tr>
</tbody>
</table>

* Calculated value, [(u - R)/u] × 100 %, where u is the offspring population (moths) in the unreleased cage/control and R is the offspring population (moths) in the released cage.

b U, unirradiated.
c I-1, irradiated with a dose of 100 Gy.
d I-2, irradiated with a dose of 150 Gy.
e I-3, irradiated with a dose of 200 Gy.

was still 89.3% and the percentage of malformation was 4.6%. The fecundity was not affected by gamma irradiation. The higher the dose pupae were exposed to, the higher the sterility of the emerging moths. Comparison of the results of earlier tests (Table I) with the current results (Table III) shows differences in the percentage of sterility induced. The dose of 200 Gy produced 73 and 36% sterility in the earlier and current studies, respectively. The difference might be due to strains and radiation dose rates. However, control matings in the first test produced high degrees of sterility (21%). When these values are compared relative to control mating, the results are in closer agreement.

3.1.2. Viability, fecundity and sterility of F1 irradiated DBM male pupae

The viability of irradiated pupae and moths was much different from that of the unirradiated ones (Table IV). The viability of unirradiated pupae was 74% as compared with 55% for ones irradiated with 200 Gy. Similar results were also found in moth emergence. Fecundity was not affected by the doses of radiation. The sterility of F1 moths was affected by irradiation. Increasing doses of irradiation slightly increase the male sterility. The average sterility of the F1 male and female moths was about 64% at 175 Gy and 63% at 200 Gy, respectively. These two substerilizing doses can be considered for the irradiation of DBMs.
TABLE VII. USE OF VARIOUS KINDS OF TRAPS AND PHEROMONES FOR TRAPPING DBMs IN THE CIPANAS AREA, WEST JAVA

<table>
<thead>
<tr>
<th>Trap–bait</th>
<th>Number of DBM caught in traps</th>
<th>Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta–Sj</td>
<td>192</td>
<td>241</td>
</tr>
<tr>
<td>Delta–Px</td>
<td>163</td>
<td>250</td>
</tr>
<tr>
<td>Delta–Vf</td>
<td>76</td>
<td>114</td>
</tr>
<tr>
<td>Wing–Sj</td>
<td>160</td>
<td>167</td>
</tr>
<tr>
<td>Wing–Px</td>
<td>189</td>
<td>174</td>
</tr>
<tr>
<td>Wing–Vf</td>
<td>157</td>
<td>169</td>
</tr>
<tr>
<td>Cup–Sj</td>
<td>22</td>
<td>79</td>
</tr>
<tr>
<td>Cup–Px</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>Cup–Vf</td>
<td>50</td>
<td>64</td>
</tr>
</tbody>
</table>

* Average of three replications
Least significant difference between: p=0.05, p=0.01
- factor traps 100.51, 138.49
- factor baits 100.51, 138.49
- factor traps and baits 174.09, 239.86

3.1.3. Viability, fecundity and sterility of F_2 irradiated DBM male pupae

The viability of the F_2 progeny of irradiated male pupae was slightly lower than that for control matings (Table V). The average viability of F_2s (all doses) and unirradiated pupae was 61 and 71%, respectively. The fecundity of F_2 moths was not affected by the gamma irradiation doses applied. The effect of the gamma irradiation on the sterility of the F_2 generations was reflected in the declining level of sterility of the F_1. The level of sterility in the F_2 generation was close to that of the irradiated pupae (P). The highest sterility obtained in the F_2 generation was 26% at 175 Gy. At the highest dose tested, 200 Gy, it was 11%.

3.1.4. Impacts of releases of F_1 sterile moths on population reduction

The releases of F_1 moths, the progeny of pupae that were irradiated with doses of 100, 150 and 200 Gy, into field cages showed various levels of population
reduction (Table VI). F₁ progeny from a dose of 200 Gy reduced the population by about 23%. The doses of 100 and 150 Gy only caused reductions of about 10 and 19%, respectively. The results of releasing F₁ progeny of either 175 or 200 Gy are similar (Table IV). Either dose could be considered for programme use.

3.1.5. Efficiency of various kinds of traps and pheromone baits and preliminary study of population fluctuations of DBMs in dry season

The combination of delta traps and Sj pheromone baits was significantly \(p < 0.01 \) more efficient than other trap-bait combinations (Table VII). The number of moths caught during eight weeks for delta traps baited with Sj dispensers was 1259. The delta trap was significantly different \(p < 0.01 \) from the wing trap or

![Graph](image)

FIG. 1. Effects of baits on DBM caught at various times of the day and night. — Pp, --- Sj, ---- virgin female.
cup trap when the traps were baited with Sj and Px baits. There was no significant difference between the trap designs when they were baited with virgin female moths (Vf). The Sj bait only showed a significant difference compared with other baits when these were combined with the delta trap.

The same test was also conducted at various times during the day. Every 4 h the moths in the traps were observed. Similar results were obtained in this experiment. The delta trap and Sj pheromone caught significantly more insects than the other treatments. The delta trap baited with Sj and Px formulations caught 80 and 77 moths, respectively (Fig. 1). The number of moths caught in the delta trap, wing trap and cap trap were 87, 81 and 29, respectively (Fig. 2).

The preliminary experiment to study population fluctuations of DBMs was conducted in a commercial cabbage field, Cipanas, west Java. This experiment was
conducted for six months during the dry season. The number of DBMs caught on the first week of March was 49, in the second week of March, 145, in the third week of April, 47, in the second week of May, 62, and in the first week of June, 51 (Fig. 3). These were the highest points of DBM capture during the dry season. The lowest point of moth capture was in the fourth week of July, when the number of DBM trapped was only three.

3.2. Effects of gamma irradiation on sterility of irradiated TAW moths and the subsequent F₁ and F₂ generations

The sterility of unirradiated moths and 50 and 150 Gy irradiated male moths was 27, 33 and 60%, respectively (Table VIII). A radiation dose of 150 Gy reduced the longevity of the emerged moths. The maximum age of unirradiated moths was 10 d, while that of 150 Gy irradiated moths was 8 d. The pupal viability of the irradiated group was not affected by gamma irradiation. The moth emergence of unirradiated moths was 82% as compared with 83% for the 150 Gy irradiated pupae. The viability of F₁ larvae slightly decreased with the increasing dose of radiation. The viability of F₁ larvae was 37, 22 and 20%, respectively, for the unirradiated and 50 and 150 Gy irradiated pupae. The higher the doses applied, the higher the sterility of the irradiated pupae. The sterility of unirradiated and 50 and 150 Gy irradiated
TABLE VIII. EFFECTS OF GAMMA IRRADIATION ON THE STERILITY OF EMERGED MALE (P), F₁ AND F₂ GENERATIONS OF TAW

<table>
<thead>
<tr>
<th>Radiation dose* (Gy)</th>
<th>Normal pupae (%)</th>
<th>Malformed pupae (%)</th>
<th>Sterility (%)</th>
<th>Longevity (d)</th>
<th>Larva viability (%)</th>
<th>F₁</th>
<th>F₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sterility (%)</td>
<td>Male</td>
</tr>
<tr>
<td>0</td>
<td>82.3</td>
<td>3.7</td>
<td>27.54</td>
<td>3–10</td>
<td>37.00</td>
<td>32.95</td>
<td>32.95</td>
</tr>
<tr>
<td>50</td>
<td>76.7</td>
<td>2.7</td>
<td>33.40</td>
<td>2–10</td>
<td>22.50</td>
<td>40.86</td>
<td>38.20</td>
</tr>
<tr>
<td>75</td>
<td>78.0</td>
<td>7.3</td>
<td>32.41</td>
<td>1–9</td>
<td>29.50</td>
<td>76.91</td>
<td>54.49</td>
</tr>
<tr>
<td>100</td>
<td>77.3</td>
<td>6.0</td>
<td>43.62</td>
<td>1–9</td>
<td>33.50</td>
<td>96.71</td>
<td>56.70</td>
</tr>
<tr>
<td>125</td>
<td>82.3</td>
<td>3.0</td>
<td>51.33</td>
<td>1–9</td>
<td>20.75</td>
<td>99.09</td>
<td>88.46</td>
</tr>
<tr>
<td>150</td>
<td>83.3</td>
<td>5.7</td>
<td>60.04</td>
<td>1–8</td>
<td>20.25</td>
<td>100</td>
<td>97.66</td>
</tr>
</tbody>
</table>

* Exposed to six-day-old male pupae.

b The average of male progeny of both F₁ males and females, three replications.

c The average of female progeny of both F₁ males and females, three replications.
males was, respectively, 27, 33 and 60%. The F₁ sterilities of both males and females, however, were greater than those of the unirradiated ones. A radiation dose of 100 Gy caused F₁ male and female sterilities of about 96 and 56%, respectively. The sterility was nearly 33% for both unirradiated control male and female treatments. Gamma irradiation of male pupae also reduced the viability of their F₂ larval progeny. In the control (unirradiated) about 35% of larvae developed to moths. At a dose of 125 Gy only 12% of F₂ larvae developed to adult moths. The sterility of the F₂ generation tends to be correlated positively with that of the parental generation. Doses of 100 to 150 Gy should be considered as the best irradiation doses because there is nearly 100% sterility in the F₁ generation.

4. CONCLUSIONS

A sterilizing dose of 300 Gy in these studies does not show promise for use in developing the sterile insect technique (SIT) for DBM control. The reduction of F₁ populations by releases of irradiated moths was quite low, particularly in the test field. Lower substerilizing doses are, however, promising for developing the SIT for DBM control. Doses of 175 and 200 Gy result, respectively, in 64 and 63% DBM sterility. However, the reduction of populations as affected by the release of F₁ sterile moths was still low (about 22%). Fluctuations of DBM populations can be monitored by using delta traps baited with sex pheromones.

The 100 Gy dose can be recommended as a substerilizing dose for TAWs. This dose produces 76% sterility in the F₁ generation. The higher, 125 Gy dose, causes higher sterility in the F₁ TAW generation but reduces larval viability and longevity.

ACKNOWLEDGEMENTS

The authors are grateful to the IAEA for supporting this work under Research Contract No. 4619/R1/RB. Thanks are also due to Mr. Hendratmo for reviewing the manuscript.

REFERENCES

RADIATION INDUCED F1 STERILITY IN *Helicoverpa* *zea* (BODDIE): POTENTIAL FOR AREA-WIDE CONTROL

J.E. CARPENTER
Insect Biology and Population Management
Research Laboratory,
Agricultural Research Service, US Department of Agriculture,
Tifton, Georgia, United States of America

Abstract

RADIATION INDUCED F1 STERILITY IN *Helicoverpa* *zea* (BODDIE): POTENTIAL FOR AREA-WIDE CONTROL.

The potential of using F1 sterility as a management strategy for the corn earworm (CEW), *Helicoverpa* *zea* (Boddie), has been revealed through laboratory and field investigations. A 100 Gy dose of radiation induced deleterious effects in CEWs, which were inherited through several generations. Irradiated, laboratory reared CEWs were competitive with non-irradiated, laboratory reared CEWs in attracting and securing mates under field conditions. Females that mated to non-irradiated males and males irradiated with 100 Gy had the same mating propensity and the same intermating interval. Although there was a difference in mortality between larvae from irradiated and non-irradiated parents when reared in the laboratory, this mortality differential was reduced when larvae were reared under natural conditions in the field. Other studies revealed that there was no interaction between inherited sterility and diapause in CEWs when depth of pupation, initiation and termination of diapause, egg hatch, fecundity or survival were investigated. A pilot test that investigated the efficacy of using inherited sterility for suppressing seasonal population increases of CEWs was conducted from 1988 to 1990. Results of the pilot test revealed that irradiated (100 Gy) males released in mountain valleys were competitive with wild males in infusing their genes into the wild population. Analyses of seasonal population curves of wild CEW males calculated from mark-recapture data suggested that seasonal increases in wild CEW males were delayed or reduced in valleys where irradiated males were released.

1. INTRODUCTION

The corn earworm (CEW), *Helicoverpa* *zea* (Boddie), is one of the most destructive pests of field crops in the United States of America. The preferred host of the CEW is maize [1–4]; however, in the USA the greatest economic damage is sustained when the CEW feeds on cotton. Annual agricultural losses and control costs can exceed US $100 million in the southeastern USA alone [5]. Currently, control of the CEW is achieved almost entirely through the use of synthetic organic insecticides on a crop-to-crop basis. Such a management strategy is costly, non-selective, and only effective at the target site for a short period of time. Although
the most successful control measure has been the use of insecticides directed at the larval stage, the CEW has developed relatively high levels of resistance to all generic insecticides available for its control except the pyrethroids [6-8].

Insecticide resistance, the mounting concern over pesticide pollution, and the desire to manage the CEW effectively both within fields and on an area-wide basis have encouraged scientists to identify and develop new methods of control for the CEW. One such method has been the use of inherited sterility. North and Holt [9] induced inherited sterility in the CEW by irradiating males with a 200 Gy dose of radiation and mating them with normal females. They also found that all males that mated transferred a normal ratio of euprene to apyrene sperm. North and Holt concluded that the CEW is an ideal candidate for the use of inherited sterility for population suppression. Knipling [10] and LaChance [11] also cited the CEW as a potential candidate for the use of inherited sterility. North and Holt [9] reported that the largest single problem with the use of irradiated male moths in suppressing the natural population is their lack of competitiveness, primarily due to the inability of irradiated males to transfer sperm successfully. Carpenter et al. [12] stated that the field survival and competitiveness of larvae from the irradiated parents are important considerations when studying inherited sterility because most of the radiation induced deleterious effects are manifested in the F1 generation. Other aspects of competitiveness, such as mating, ability to diapause and ability to resist insecticides as well as normal CEWs, are also important.

2. EFFECTS OF F1 STERILITY

2.1. Reproduction

Carpenter et al. [13] demonstrated the effects of substerilizing doses of radiation and inherited sterility on CEW reproduction. They found that inherited deleterious effects resulting from irradiation of P1 males existed for several generations. A reduced fecundity and egg hatch, together with an increased incidence of larval and adult mortality, were observed. A 100 Gy dose of radiation induced deleterious effects that were inherited through the F1 generation. These radiation induced deleterious effects were similar to those reported in other species of Lepidoptera. Results and analysis of this study indicated that the use of substerilizing doses of radiation and inherited sterility has a much greater potential as a selective management strategy for CEWs than does the conventional 100% sterilizing dosage.

2.2. Survival of F1 larvae

Carpenter et al. [14] compared CEW larvae from selected crosses of irradiated (100 Gy) and normal parents for their ability to survive in the field on whorl stage
sweet corn and in the laboratory on a meridic diet. Survival rates in the field and the laboratory were highest for larvae from normal parents (inbred) and lowest for larvae from irradiated parents (inbred). The mortality for all larvae was greater in the field than in the laboratory. The mortality differential between CEW larvae from irradiated and normal parents was greater in the laboratory than in the field.

2.3. Mating competitiveness

The mating competitiveness of irradiated CEW moths was investigated by Carpenter et al. [15]. They reported that laboratory reared moths irradiated with 100 Gy and released in field cages were competitive with non-irradiated laboratory reared moths. The competitiveness of irradiated moths was not altered by the time interval (5 and 30 h) between irradiation and release, the mating status of the male, or by the time interval (24 and 48 h) between mating and release. Normal and irradiated, laboratory reared, males released in the field in either the presence or absence of laboratory reared females were not significantly different in their nocturnal behaviour and mating competitiveness.

2.4. Influence of irradiation and mating history on mating propensity of female CEWs

Laboratory strain CEW females that were mated with untreated males, irradiated (100 Gy) males, or male progeny from irradiated (100 Gy) males and then held for 24 or 48 h were compared for their ability to lure males into the traps or to attract and mate with a male [16]. The mating propensity of females that had mated with either untreated or irradiated males and held for 24 h was less than the mating propensity of virgin females. Females of the same group that were held for 24 h after mating were as attractive to males as virgin females. The mating propensity of females mated with the male progeny of irradiated males was not significantly different from the mating propensity of virgin females. The percentage of eupyrene sperm found in the spermatheca of females that had mated with the male progeny of irradiated males was significantly lower than the percentage eupyrene sperm found in the spermatheca of females that had mated with the male progeny of irradiated males was significantly lower than the percentage eupyrene sperm found in the spermatheca of females that had mated with untreated or irradiated males. These data suggest that sperm from irradiated (100 Gy) males was competitive with normal sperm, but sperm from F1 males was less competitive than normal sperm because F1 male sperm would be displaced more quickly by sperm from a subsequent mating owing to the shorter intermating interval.
2.5. Diapause

The interaction of inherited sterility and diapause in the CEW was investigated by Carpenter and Gross [17]. Laboratory strain females were crossed with irradiated (100 Gy) and non-irradiated males. The progeny of laboratory crosses were studied to determine the effects of inherited sterility on the ability of CEWs to initiate, maintain and break diapause. The effects of diapause on the fecundity and fertility of emerging adults from different genetic stock were also evaluated. There was no interaction between inherited sterility and diapause when depth of pupation, initiation or termination of diapause, egg hatch, fecundity or survival were investigated. Diapause had no significant effect on the egg hatch; however, the paired moths that emerged from diapauscd pupae produced significantly fewer eggs.

2.6. Chromosomal aberrations

The testes from the progeny of irradiated male CEWs were dissected and examined cytologically to identify the larval stage or age that would ensure the presence of spermatocytes (I) undergoing meiotic division and to determine the lowest dose of radiation necessary to induce visible chromosomal aberrations in 100% of the larvae [18]. The results from this study revealed that cytological examination of chromosomal aberrations could be accomplished best when the larvae were 3- or 4-day old fifth instars. The percentages of F_1 and F_2 males with visible chromosomal aberrations was dependent upon the dose of radiation administered to the F_1 male. A 60 Gy dose was sufficient to induce visible aberrations in all F_1 larvae. Chromosomal aberrations were observed less frequently in F_2 larvae than in F_1 larvae.

2.7. Sperm precedence

Sperm priority patterns in *H. zeae* were studied by sequentially mating females to substerilized (100 Gy) and to normal males [19]. The progeny of substerilized males were identified by the presence of visible chromosomal aberrations in the testes. The sperm from irradiated males was competitive with the sperm from normal males when the intermating interval of the female was 48 h, but the sperm competitiveness of the irradiated male was reduced when the intermating interval of the female was 24 h. The sperm use by twice mated females did not change significantly over time after the second mating. *H. zeae* demonstrated incomplete last male precedence with extensive sperm mixing. The variability in the degree of sperm precedence was high, suggesting that the outcome of sperm competition within each female depends upon the relative competitiveness of all the ejaculates involved.
3. PILOT TEST STUDIES

A pilot test entitled "Efficacy of Using Inherited Sterility for Suppressing Seasonal Population Increases of Heliothis zea (Boddie)" was conducted to assess the impact of inherited sterility on seasonal variations of populations of CEWs in small mountain valleys in western North Carolina, USA, and to determine the effects of inherited sterility as a function of distance from the release sites of irradiated male CEWs. Preliminary studies were conducted in 1985 and 1986 prior to the pilot test to gain information about the seasonal profiles of adult populations of CEWs and the fall army worm, Spodoptera frugiperda (J.E. Smith), on larval infestations of both species of early season annual hosts and corn, and on the relationship between corn phenology and levels of larval infestation by CEWs. Because *S. frugiperda* does not overwinter in North Carolina, the presence of this species in the test area indicated that meteorological and climatic conditions were favourable for transporting migrant insects from the south and that these migrating insects (especially CEWs and *S. frugiperda*) were attracted to the test sites. Primary findings revealed that peak populations of CEW moths were in synchrony with maturing sweet and field corn,

![Graph](image_url)

FIG. 1. Influence of the distance from the release site of irradiated (100 Gy) *H. zea* males on the number of wild *H. zea* males captured in pheromone traps.
FIG. 2. Regression lines for cumulative wild H. zea males captured plotted against time (weeks). Regression lines fit the data significantly (p = 0.05).
FIG. 3. Regression lines for the cumulative estimates of wild H. zea populations plotted against time (weeks). Regression lines fit the data significantly ($p = 0.05$).
suggesting that distinct generations of CEW occurred as if from endemic populations rather than from migrants. Collections of diapausing pupae of CEWs during October 1985 reinforced the idea that spring populations are probably supplied from the local overwintering generation. In addition, a small number of irradiated (100 Gy) males were released in one of the mountain valleys. Traps baited with pheromone lures were positioned at the release site and 2.2, 3.2 and 4.8 km from the release site. A ratio of approximately 3.5:1 sterile:wild males was maintained throughout the growing season. The relationship between the distance from the release site of 100 Gy males and the number of wild males captured (Fig. 1) suggested that as the distance from the release site is increased, the number of wild males captured also increased ($r = 0.965$).

The relationship between the number of larvae collected with chromosomal aberrations and the number of wild CEW males suggested that when the incidence of chromosomal aberrations was high, the number of wild CEW males captured was low, and when the number of wild CEW males was high, the incidence of chromosomal aberrations was low ($\chi^2 = 4.44$, d.f. (degrees of freedom) = 1, $p < 0.05$).

Although these strong correlations suggest that the released 100 Gy males produced a treatment effect, this study lacked a control and was not replicated. The pilot test studies (1987–1990), however, were designed with controls and were replicated over time. Irradiated males were marked and released in one valley (t, treated) and non-irradiated males were marked and released in another valley (c, control). In 1989 and 1990, two pairs of locations (t-1, c-1 and t-2, c-2) were used. The control and treated locations were reversed each year to eliminate any bias due to location. Both marked males and wild males were captured throughout the growing seasons. The mark–recapture data were used to estimate the wild male population at each location. The ratio of irradiated males to wild males, based upon trap capture data, varied throughout the season of each year but usually averaged about 5:1.

Regression analyses of the cumulative wild males captured at the treated and control locations revealed that the population curves were significantly different in slope and curvature (Fig. 2). Regression analyses of the cumulative estimates of wild males from treated and control locations also revealed that the population curves were significantly different (Fig. 3). Only the c-2 and t-2 locations deviated from this trend in 1989.

The treatment efficacy in the pilot test studies was also evaluated by the incidence of chromosomal aberrations in larvae collected from the test locations. Regression analyses of the seasonal incidence of chromosomal aberrations in collected larvae were compared with regression analyses of the irradiated:wild male ratio (1988–1990). These analyses revealed that the percentage of larvae with chromosomal aberrations was significantly different from the irradiated:wild male ratio.
The data obtained from the pilot test provide the information needed to assess the usefulness of inherited sterility for suppressing population increases of CEW. Analyses of seasonal population curves of wild CEW males calculated from mark-recapture data suggested that seasonal increases of wild CEW males were delayed or reduced in valleys where irradiated (100 Gy) males were released. The incidence of chromosomal aberrations in larvae collected from the test sites during the growing seasons indicated that the irradiated males were very competitive in infusing their genes into the wild population. In some cases, it appeared as if the irradiated males were more competitive than the wild males. This apparent increase in competition by the irradiated males is probably a result of wild females emerging as adults one day before wild males emerge as adults, thereby giving any irradiated males present an advantage. The high incidence of chromosomal aberrations in larvae collected in the test sites compared with the irradiated: wild male ratio could also be explained, in part, as a result of a substantial F₁ male moth population. Because F₁ male moths caught in traps were unmarked, the number of wild (normal) male moths could have been overestimated. Also, because the progeny of F₁ males might have visible chromosomal aberrations, the F₁ larval population could have been overestimated.

4. CONCLUSIONS

The desire to manage the CEW effectively on an area-wide basis continues as a primary concern for many scientists. The importance of the sterile insect technique (SIT) in the elimination of incipient invaders, as well as established populations of important pest species, is well documented. More recently, however, laboratory models developed for the CEW suggest that the release of radiation induced sub-sterile moths into endemic populations could be eight to nine times more efficient in its negative impact on populations than the SIT because it promotes the inheritance of detrimentally altered genetic material. These model projections are corroborated in part by the results from laboratory and field data and from a recently completed pilot test which revealed that the seasonal increases of wild CEW males were delayed or reduced in locations where irradiated (100 Gy) males were released, and that irradiated males were competitive in infusing their genes into the wild population.

The full potential of F₁ sterility as an area-wide control strategy for the CEW will be realized only when F₁ sterility is combined with other suppression methods. Unilateral applications of non-insecticidal methods for area-wide control have had limited success in managing the CEW. Therefore, the most desirable management approach for area-wide suppression would necessitate the integration of various control strategies. The demonstrated potential of F₁ sterility to reduce the reproductive ability of the CEW and the compatibility of F₁ sterility with other control strategies suggest that F₁ sterility should be a major component of such an integrated
approach. Future research should fully investigate the potential for integrating F₁ sterility as a primary component with biological control and host plant resistance for managing the CEW.

REFERENCES

COMPUTER MODEL FOR PREDICTING THE EFFECT OF INHERITED STERILITY ON POPULATION GROWTH

J.E. CARPENTER
Insect Biology and Population Management
Research Laboratory,
Agricultural Research Service,
US Department of Agriculture

R.C. LAYTON
Coastal Plain Experiment Station,
University of Georgia
Tifton, Georgia, United States of America

Abstract
COMPUTER MODEL FOR PREDICTING THE EFFECT OF INHERITED STERILITY ON POPULATION GROWTH.

A Fortran based computer program was developed to facilitate modelling different inherited sterility data sets under various paradigms. The model was designed to allow variable input for several different parameters, such as rate of increase per generation, release ratio and initial population levels, reproductive rates and sex ratios resulting from different matings, and the number of nights a female is active in mating and oviposition. The model and computer program should be valuable tools for recognizing areas in which information is lacking and for identifying the effect that different parameters can have on the efficacy of the inherited sterility method.

1. INTRODUCTION

The induction of inherited sterility by using substerilizing doses of radiation produces progeny with varying degrees of sterility at each generation. Therefore, it is difficult to visualize the potential effect of persistent genetic suppressive action through several successive generations unless appropriate calculations are made based on the number and reproductive success of the various types of progeny.

Knipling [1] first used population models to describe suppression of reproduction in insects by the release of sterile insects. Later, Knipling [2] demonstrated the potential advantage of inherited sterility over the sterile insect technique (SIT) through the use of population models. The basic rationale and methods that Knipling used to develop his models guided other researchers to model data obtained from
studies on inherited sterility [3–6]. LaChance [7] found that all theoretical models comparing inherited sterility with the SIT have demonstrated that inherited sterility is more effective in suppressing native populations than an equal number of fully sterile insects.

The population models developed by Knipling were generally based upon the following assumptions:

(a) A normal population increases fivefold each generation,
(b) This is a closed population,
(c) Mortality is not density dependent,
(d) All irradiated insects and their progeny are fully competitive with normal insects in mating and sperm transfer.

Studies by Carpenter et al. [8] revealed that the mating propensity of females mated with the male progeny of irradiated (100 Gy) males was not significantly different from the mating propensity of virgin females. Therefore, the Knipling model was modified to include the effect of the sperm competitiveness of F₁ males on the female mating propensity. The formulas for the Knipling model and the modified model are presented in Carpenter et al. [8].

The modified model uses calculations that require input data for rate of increase per generation, reproductive rate per mating type, sex ratio of progeny from each mating type, and release ratio of irradiated:wild. These calculations are both time consuming and tedious. Therefore, a Fortran based computer program was developed to facilitate modelling different inherited sterility data sets under various paradigms.

2. MODEL PARAMETERS

Many of the model parameters require an input of data from the user. A description of the various parameters within a data file is given as follows.

2.1. Beginning population

The user must designate the beginning population. It is recommended that the normal male (NM) and the normal female (NF) populations begin at about 1000 each to give the model more precision. The amount designated for the treated male (TM) and the treated female (TF) will dictate the release ratio.

2.2. Generation number

The generation number is listed prior to the data for that generation. Generation 01 is the generation in which irradiated insects are released.
2.3. **Number of nights active**

The number of active nights refers to the number of nights a female is available for oviposition and mating. This model allows up to 20 active nights.

2.4. **Number of levels**

The number of levels is equal to the number of different types of matings that are possible. For example, if a population is comprised of normal males, normal females and irradiated males, then only two mating types are possible (normal × normal and normal × irradiated).

2.5. **Fold**

This number refers to the rate of increase for the designated generation.

2.6. **Per cent virgin**

This value is the percentage of females that will remate after 24 h. Two values per generation can be listed in a data file. The first value refers to females that have mated with normal males. The second value refers to females that have mated with irradiated males or their progeny. The 'per cent virgin' values are considered only when the 'number of nights active' is higher than one.

2.7. **Sex ratio for each level**

The sex ratio is expressed as the percentage of progeny from each type of mating that are females.

2.8. **Reproductive rate for each level**

The reproductive rate is expressed as a percentage of the reproduction of normal insects. For example, if a normal female that mated with a normal male produced 1000 progeny, then the reproductive rate would be 100%. If an irradiated female that mated with an irradiated male produced 100 progeny, then the reproductive rate would be 10%.

3. **MODEL PERFORMANCE**

The effectiveness of inherited sterility in reducing pest population levels can be affected by many different parameters. The computer model was employed
FIG. 1. Relationship between rate of increase per generation and the percentage reduction in normal population growth when Helicoverpa zea males are irradiated with 100 Gy and released at an irradiated to wild ratio of 9:1.

FIG. 2. Relationship between the number of nights a female is active and the percentage reduction in normal population growth when H. zea males are irradiated with 100 Gy and released at an irradiated to wild ratio of 9:1. The rate of increase for a normal population is fivefold per generation, and 34% of the females mated with normal males and 76% of the females mated with F₁ males from irradiated fathers will mate again after 24 h.
FIG. 3. Relationship between the release ratio, the number of nights a female is active (○, one night; ■, six nights) and the percentage reduction in normal population growth when H. zea males are irradiated with 100 Gy and the rate of increase for a normal population is fivefold per generation.

FIG. 4. Effect of radiation dose (■, 60 Gy; ○, 80 Gy; ◀, 100 Gy) on a hypothetical S. frugiperda population when irradiated males are released at an irradiated to wild ratio of 9:1 and the rate of increase for a normal population is ninefold per generation.
to quantify the influence of several different parameters on the predicted efficacy of the inherited sterility method. The data for the model were taken from Carpenter et al. [8] unless stated otherwise.

The relationship between the percentage reduction in normal population growth and the rate of increase per generation suggests that the efficacy of inherited sterility is almost constant when the rate of increase per generation is twofold or higher (Fig. 1). Even when there is no population growth (onefold per generation), the increase in the percentage reduction of normal population growth is less than 1%. A substantial increase in treatment efficacy (3%) is observed only when the normal population is in decline (0.5-fold per generation).

The relationship between the percentage reduction in normal population growth and the number of nights a female moth is active was calculated with the following parameters: the normal rate of increase per generation was fivefold; the release ratio of irradiated (100 Gy) males to wild males was 9:1 (Fig. 2). A slight decrease in the efficacy of inherited sterility occurs when the number of nights a female is active is increased from one night to two nights. The treatment efficacy is almost constant from two to seven nights. The number of nights a female is active exerts the greatest influence on the treatment efficacy when the release ratio is low (1:1) and the least influence on the treatment efficacy when the release ratio is high (50:1) (Fig. 3).

An increase in the release ratio has its greatest effect on the percentage reduction in normal population growth when the release ratio is less than 10:1 (Fig. 3). Increasing the release ratio above 10:1 will have little effect on the treatment efficacy.

Data from Carpenter et al. [6] were used to calculate the effect of radiation dose on population suppression (Fig. 4). All three doses were efficacious, but the 100 Gy dose provided the greatest degree of suppression. A wider range of doses must be studied, however, before the model can predict the optimum dose.

4. CONCLUSIONS

Population models are valuable tools for predicting the efficacy of the inherited sterility method. Models aid in recognizing areas in which information is lacking and assist in identifying the effect that different parameters can have on treatment efficacy. As knowledge of inherited sterility and pest biology and ecology becomes more comprehensive, population models should be modified and expanded to accommodate all available information.

The computer model presented here has been designed to allow variable inputs for several different parameters. The use of this model to analyse existing inherited sterility data on *Heliothis zea* (Boddie) and *Spodoptera frugiperda* (J.E. Smith) has revealed that the efficacy of inherited sterility is almost constant when the rate
of increase per generation is twofold or higher. A sharp increase in treatment efficacy resulted when the normal population was in decline. The treatment efficacy was also affected by radiation dose, release ratio and sperm competitiveness.

REFERENCES

REARING AND GAMMA RADIATION EFFECTS
ON MATURE PUPAE OF PINK BOLLWORM
AND THEIR F1 PROGENY

Z.A. QURESHI, N. AHMED, T. HUSSAIN
Division of Entomology,
Atomic Energy Agricultural Research Centre,
Tandojam,
Sindh, Pakistan

Abstract

REARING AND GAMMA RADIATION EFFECTS ON MATURE PUPAE OF PINK BOLLWORM AND THEIR F1 PROGENY.

Pink bollworm larvae were successfully reared in captivity on a casein wheat germ diet. The substitution of casein with soyflour, corn-cob grit and wheat germ, and casein for peanut flour, resulted in delayed development, reduced pupal recovery and fecundity of the adult moths. This reduction was more drastic in corn-cob grit and peanut flour diets. The irradiation of mature pupae at 50–200 Gy resulted in decreased adult emergence with increased gamma radiation doses, and more deformed moths were recorded at a dose of 200 Gy. Adults following irradiation of mature pupae when crossed with untreated males or females or treated individuals crossed to treated exhibited reduced fecundity and fertility with the increasing doses. This reduction was more pronounced when treated males were crossed with treated females. Females were relatively more sensitive to gamma radiation, as a reduced number of eggs was obtained when treated females were crossed with untreated males. At 200 Gy, no F1 progeny were obtained from any cross involving treated parents. The fecundity and fertility were reduced significantly when F1 males or F1 females from male parents irradiated as mature pupae were mated with untreated insects at both 100 and 150 Gy. However, inherited sterility was more pronounced when F1 males were crossed with untreated females than when F1 females were crossed with untreated males. Similarly reduced fecundity and fertility in F1 progeny from female parents irradiated as mature pupae, both at 100 and 150 Gy, were also recorded in crosses as described for male F1 progeny. The fecundity and fertility were the lowest in F1 progeny of both male and female parents irradiated as mature pupae when compared with the F1 progeny of male or female irradiated parents separately.

1. INTRODUCTION

Pink bollworm, Pectinophora gossypiella (Saunders), is a serious insect pest of cultivated cotton (Gossypium spp.) in Pakistan and other countries. Insecticide use for the control of pink bollworm currently ranges from 10 to 17 applications per season [1], which creates problems such as insect resistance to insecticides,
disturbance in biological equilibrium and environmental pollution. Biological (non-insecticidal) methods of controlling the pink bollworm have been emphasized in recent years because of insecticide costs and the pink bollworm's resistance to insecticides [2].

Amongst the biological methods, the genetic control method utilizing ionizing radiation is one of the potential components of an integrated control strategy that is receiving renewed interest. The establishment of laboratory rearing is one of the foremost prerequisites for the application of sterile insect release methods (SIRM)s to control target insects. Pink bollworm laboratory rearing on an artificial diet was originally accomplished in individual containers with a single insect per container [3-5]. The most successful diets are modifications of a medium based on wheat germ [6]. Mangum et al. [7] modified and expanded pink bollworm rearing to produce millions of insects. The successful use of radiation induced sterility to eradicate the screwworm fly from the southeastern part of the United States of America [8] led to the initiation of radiation studies on the pink bollworm. Knapling [9] reported a theoretical model which indicated that releases of partially sterile male lepidoptera would be more effective in population suppression than releases of completely sterile males. In this case, lower doses of radiation are proposed because partially sterile released males and females will have a minimum of somatic and morphological damage, enhancing their ability to compete with native populations for mating. Released males interbreeding with the native population results in reduced egg hatching and sterile F1 progeny.

Ouye et al. [10] reported that treatment of 5- to 7-day old pink bollworm pupae with 300-600 Gy of gamma radiation induced almost complete sterility in adults but caused reduced male longevity. Graham et al. [11] reported that newly emerged pink bollworm moths exposed to 250 Gy of gamma radiation or more and crossed with untreated insects produced no fertile adult progeny. Cheng and North [12] and LaChance et al. [13] reported similar results. Therefore, it is possible that the production of large numbers of sterile F1 male progeny by males exposed to 50-100 Gy which mated with native females could contribute to the efficiency of a sterile release programme.

The theoretical advantages of releasing partially sterile insects appear promising in this case and others; however, the contribution of F1 sterile pink bollworm progeny in suppressing populations in the field has not been completely documented. Flint et al. [14, 15] indicated that pink bollworm moths treated with 100 Gy and released in field cages were more effective than moths exposed to higher doses of irradiation. Bartlett and Butler [16] found that the few F1 female progeny of irradiated (150 and 200 Gy) females paired with untreated males were more than 90% sterile. The releases of sterile males only, sterile females only (100, 150 or 200 Gy) or mixed sexes (100 Gy) reduced pink bollworm populations by 82.6 to 99.9% over two generations. Henneberry and Clayton [17] found that the number of progeny produced by laboratory reared males exposed to 150 Gy or higher and paired with
untreated females was reduced by over 80% as compared with those produced by untreated pairs. The reproduction of pink bollworm male and female moths from 100 or 150 Gy irradiated pupae mated to untreated females or untreated males was reduced by 88% or more [18].

Pink bollworms irradiated as adults and released at St Croix, USA, were not competitive, and high ratios of sterile to native moths were required to achieve suppression of the population [19]. Bartlett [20] stated that the adult irradiation has two undesirable features, the first is the lack of feeding in the first hours of adult life and the second is the loss of scales, which handicaps the sustained flight and survival capabilities under environmental stresses. However, moths from 5–7 day old pupae exposed to radiation had minimum adult deformities [18]. Furthermore, irradiated pupae are easier to handle for transport for release because there are no problems about mobility, anaesthetization or cooling for treatment. The objective of the following studies was to determine the effects of gamma radiation on mating and reproduction of laboratory reared mature pink bollworm pupae and the inherited effects on mating and reproduction of their F₁ progeny.

2. MATERIALS AND METHODS

2.1. Laboratory rearing on artificial diet

Four different diets were tried for pink bollworm rearing in the laboratory and the composition of each diet is given in Table I. The culture was started with larvae collected from a cotton field that were allowed to pupate in flowers and bolls. The adults emerging from pupae were paired in oviposition cages (circular plastic containers of 0.5 L capacity having a plastic lid fitted with a screen cover). A 10% sucrose solution was provided as food. Paper towelling (two thirds the area of screen cover) was placed over the cover as an oviposition substrate. The towelling was held in place with small metal washers and a piece of cardboard. Eggs were removed daily and kept in conical flasks plugged with cotton until hatching occurred. The neonate larvae after hatching were reared on the respective diet media according to the procedure described by Martin [21]. The observations on various biological parameters were recorded from laboratory rearing at 27 ± 2°C and 70 ± 5% relative humidity (RH) and 14:10 (light:dark) photoperiod.

2.2. Radiation effects on mature pupae

Six 7-day old pupae from the laboratory culture were irradiated with 50, 100, 150 and 200 Gy at a dose rate of 4.35 Gy/min in a ⁶⁰Co gamma irradiator. A similar group of pupae was held as a control. Treated and untreated pupae were held in the same conditions previously described. Data on adult emergence and deformed moths were recorded.
TABLE I. COMPOSITION OF DIFFERENT ARTIFICIAL DIETS USED FOR PINK BOLLWORM REARING

<table>
<thead>
<tr>
<th>Diet ingredients</th>
<th>Composition of diet ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cascin wheat germ</td>
</tr>
<tr>
<td>Agar agar (g/L)</td>
<td>20.0</td>
</tr>
<tr>
<td>Casein (g/L)</td>
<td>40.6</td>
</tr>
<tr>
<td>Wheat germ (g/L)</td>
<td>34.8</td>
</tr>
<tr>
<td>Soyflour (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Peanut flour (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Corn-cob grit (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Sucrose (g/L)</td>
<td>40.6</td>
</tr>
<tr>
<td>Brewer's yeast (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Dextrose (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Alphacel (g/L)</td>
<td>5.8</td>
</tr>
<tr>
<td>Wesson's salt (g/L)</td>
<td>11.6</td>
</tr>
<tr>
<td>Methyl-p-hydroxybenzoate (g/L)</td>
<td>1.9</td>
</tr>
<tr>
<td>Water (mL/L)</td>
<td>774</td>
</tr>
<tr>
<td>Sodium benzoate (g/L)</td>
<td>—</td>
</tr>
<tr>
<td>Acetic acid (25%) (mL/L)</td>
<td>11.6</td>
</tr>
<tr>
<td>Choline chloride (10%) (mL/L)</td>
<td>11.6</td>
</tr>
<tr>
<td>Formaldehyde (10%) (mL/L)</td>
<td>4.8</td>
</tr>
<tr>
<td>KOH (22%) (mL/L)</td>
<td>5.8</td>
</tr>
<tr>
<td>Cotton seed oil (mL/L)</td>
<td>—</td>
</tr>
<tr>
<td>Vitamin mixture (mL/L)*</td>
<td>3.9</td>
</tr>
<tr>
<td>Sorbic acid (g/L)</td>
<td>1.9</td>
</tr>
</tbody>
</table>

* Composition of vitamin mixture (stock solution): D-pantothenic acid, 24.0 g; nicotinic acid amide, 12.0 g; folic acid, 6.0 g; riboflavin, 6.0 g; thiamin hydrochloride, 3.0 g; pyridoxin, 3.0 g; biotin, 0.24 g; B₁₂, 0.012 g; water to make one litre.
2.2.1. Production of P_1 progeny

The fecundity, fertility and number of matings per female of P_1 moths were recorded for the following crosses for each radiation dose:

(a) UTM × UTF (control)
(b) TM × UTF
(c) UTM × TF
(d) TM × TF

where UT stands for untreated, T for treated, M for male and F for female.

Each treatment was replicated four times using 300 mL oviposition cages with five pairs of moths per cage per replicate. All females were dissected after death and examined for the presence of spermatophores to determine the mating occurrence.

2.2.2. Production of F_1 progeny

The moths used in this experiment were obtained from the P_1 crosses of the respective radiation doses, and the F_1 moths of each dose were crossed separately in the following combinations to record their mating frequency, fecundity and fertility:

(a) UTF × UTM (control)
(b) UTF × F_1M
(c) F_1F × F_1M
(d) F_1F × UTM

where F_1F stands for females obtained from P_1 irradiated as mature pupae and F_1M for males obtained from P_1 irradiated as mature pupae.

The procedures adopted to record mating frequency, fecundity and fertility were similar to those described earlier for P_1 progeny. The data were subjected to analysis of the significance of variations according to Duncan’s multiple range test at $p = 0.05$.

3. RESULTS

3.1. Laboratory rearing

The developmental data for various life stages of pink bollworm reared on a casein wheat germ diet, a soybean wheat germ diet, a corn-cob grit wheat germ diet and a peanut flour diet are presented in Table II. The diet composition had a significant impact on the various biological aspects measured. The replacement of casein with soybean flour and corn-cob grits, and the replacement of casein and wheat germ
TABLE II. DEVELOPMENTAL DATA FOR VARIOUS LIFE STAGES OF PINK BOLLWORMS ON DIFFERENT DIETS

<table>
<thead>
<tr>
<th>Biological aspects</th>
<th>Casein wheat germ</th>
<th>Soyflour wheat germ</th>
<th>Corn-cob grit wheat germ</th>
<th>Peanut flour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larval period (d)</td>
<td>19.66<sup>c</sup></td>
<td>23.51<sup>b</sup></td>
<td>33.99<sup>a</sup></td>
<td>34.15<sup>*</sup></td>
</tr>
<tr>
<td>Larval weight (mg)</td>
<td>18.55<sup>d</sup></td>
<td>14.25<sup>b</sup></td>
<td>12.75<sup>c</sup></td>
<td>10.00<sup>c</sup></td>
</tr>
<tr>
<td>Pupal recovery (%)</td>
<td>80.00<sup>a</sup></td>
<td>65.00<sup>b</sup></td>
<td>20.00<sup>c</sup></td>
<td>15.00<sup>c</sup></td>
</tr>
<tr>
<td>Pupal life (d)</td>
<td>9.64<sup>b</sup></td>
<td>10.36<sup>b</sup></td>
<td>12.37<sup>a</sup></td>
<td>12.50<sup>a</sup></td>
</tr>
<tr>
<td>Pupal weight (mg)</td>
<td>12.84<sup>a</sup></td>
<td>11.37<sup>b</sup></td>
<td>10.50<sup>c</sup></td>
<td>9.62<sup>c</sup></td>
</tr>
<tr>
<td>Adult life male (d)</td>
<td>11.75<sup>a</sup></td>
<td>9.85<sup>b</sup></td>
<td>8.97<sup>b,c</sup></td>
<td>7.55<sup>c</sup></td>
</tr>
<tr>
<td>Adult life female (d)</td>
<td>15.75<sup>a</sup></td>
<td>11.75<sup>b</sup></td>
<td>11.32<sup>b</sup></td>
<td>10.67<sup>b</sup></td>
</tr>
<tr>
<td>Number of eggs/female</td>
<td>154.55<sup>a</sup></td>
<td>94.75<sup>b</sup></td>
<td>36.90<sup>c</sup></td>
<td>16.37<sup>d</sup></td>
</tr>
<tr>
<td>Hatch percentage</td>
<td>77.58<sup>a</sup></td>
<td>65.27<sup>b</sup></td>
<td>21.18<sup>c</sup></td>
<td>6.06<sup>d</sup></td>
</tr>
<tr>
<td>Incubation period (d)</td>
<td>4.65<sup>b</sup></td>
<td>5.50<sup>a,b</sup></td>
<td>6.25<sup>a</sup></td>
<td>6.50<sup>a</sup></td>
</tr>
<tr>
<td>Adult emergence (%)</td>
<td>73.92<sup>a</sup></td>
<td>57.71<sup>b</sup></td>
<td>43.33<sup>c</sup></td>
<td>35.41<sup>c</sup></td>
</tr>
</tbody>
</table>

* Each figure is an average of twenty insects with four replications. Means within a row followed by the same letter are not significantly different; Duncan's multiple range (DMR) test, \(p = 0.05 \).

with peanut flour resulted in delayed pupation. The larvae reared on a casein wheat germ diet yielded significantly heavier pupae (12.84 mg) when compared with soyflour wheat germ (11.37 mg), corn-cob grit wheat germ (10.50 mg) and peanut flour diets (9.62 mg).

The pupal recovery was also significantly higher for a casein wheat germ diet (80%) than in a soyflour wheat germ (65%), corn-cob grit wheat germ (20%) and peanut flour diet (15%). The pupal development time was longer in a soyflour wheat germ diet (10.36 d), corn-cob grit diet (12.37 d) and peanut flour diet (12.50 d) as compared with a casein wheat germ diet (9.64 d).

Adults from the larvae reared on a casein wheat germ diet lived significantly longer with a significantly higher fecundity and fertility than the adults from other artificial diets. Although the incubation period was shorter for eggs from the wheat germ casein diet, it was not significantly less than for the eggs from other diets. The results indicated that the substitution of casein and wheat germ with different ingredients resulted in the reduced fecundity and fertility of the adults: however, diets in
which soya flour was substituted for casein were comparatively more economical than the casein wheat germ diet. Efforts are in progress to improve the diet further while keeping in view the economics of rearing.

3.2. Radiation effect on mature pupae

3.2.1. Moth emergence

Moth emergence following irradiation of mature pupae varied significantly with the irradiation doses and a negative correlation existed between adult emergence and radiation doses. Adult emergence was reduced significantly with increased gamma radiation doses. The number of deformed moths was comparatively higher when the pupae were irradiated at 200 Gy (Table III).

3.2.2. Fecundity and fertility of P_2 adults

The fecundity of P_1 moths, following irradiation of mature pupae, decreased with increasing radiation doses (Table IV). Reduced numbers of eggs were produced for all crosses involving treated females (UTM \times TF). This demonstrates that pink bollworm females were comparatively more sensitive to gamma radiation than males. However, the number of eggs per female was significantly greater in TM \times UTF crosses at 50, 100, 150 and 200 Gy doses. The fertility (per cent hatch) of P_1 moths was also significantly higher in TM \times UTF crosses at all doses when compared with UTM \times TF crosses. The per cent egg hatch was significantly

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Moth emergence (%)</th>
<th>Moths deformed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>0</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>100</td>
<td>84</td>
<td>76</td>
</tr>
<tr>
<td>150</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>200</td>
<td>64</td>
<td>60</td>
</tr>
</tbody>
</table>

TABLE III. EFFECTS OF GAMMA RADIATION ON MOTH EMERGENCE OF PINK BOLLWORMS FOLLOWING IRRADIATION OF MATURE PUPAE (50 'males' and 50 'females')
<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Mated (%)</th>
<th>Spermatoaphore/ female**</th>
<th>Eggs/ female**</th>
<th>Hatch (%)</th>
<th>Longevity (d)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>UM × UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>92.0^a</td>
<td>1.18^a</td>
<td>104.85^a</td>
<td>79.48^a</td>
<td>13.18^a</td>
<td>12.14^a,b</td>
</tr>
<tr>
<td>TM × UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>57.41^c</td>
<td>0.71^b</td>
<td>53.71^b</td>
<td>53.32^b</td>
<td>10.00^b</td>
<td>14.71^a</td>
</tr>
<tr>
<td>100</td>
<td>34.16^c</td>
<td>0.34^c</td>
<td>47.99^b</td>
<td>48.22^b</td>
<td>11.43^b</td>
<td>12.02^b, b</td>
</tr>
<tr>
<td>150</td>
<td>31.66^c</td>
<td>0.32^c</td>
<td>28.76^c</td>
<td>36.80^c</td>
<td>10.61^b</td>
<td>11.55^b</td>
</tr>
<tr>
<td>200</td>
<td>33.33^c</td>
<td>0.33^c</td>
<td>6.67^c</td>
<td>10.00^a</td>
<td>9.33^c</td>
<td>11.00^b</td>
</tr>
<tr>
<td>UM × TF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>66.67^b</td>
<td>0.66^b</td>
<td>22.83^c,d</td>
<td>29.19^d</td>
<td>14.50^a</td>
<td>14.83^a</td>
</tr>
<tr>
<td>100</td>
<td>33.33^a</td>
<td>0.33^c</td>
<td>10.44^a</td>
<td>22.61^a</td>
<td>12.44^a,b</td>
<td>10.78^b</td>
</tr>
<tr>
<td>150</td>
<td>41.67^d</td>
<td>0.42^c</td>
<td>14.69^d</td>
<td>12.68^c</td>
<td>8.77^c</td>
<td>9.34^b</td>
</tr>
<tr>
<td>200</td>
<td>33.33^c</td>
<td>0.33^c</td>
<td>4.67^f</td>
<td>7.14^f</td>
<td>9.00^e</td>
<td>12.33^a,b</td>
</tr>
<tr>
<td>TM × TF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>71.43^b</td>
<td>0.71^b</td>
<td>25.00^c</td>
<td>36.57^c</td>
<td>14.57^a</td>
<td>12.57^a,b</td>
</tr>
<tr>
<td>100</td>
<td>40.00^d</td>
<td>0.40^c</td>
<td>5.50^f</td>
<td>17.63^e</td>
<td>8.90^e</td>
<td>9.40^c</td>
</tr>
<tr>
<td>150</td>
<td>32.29^e,f</td>
<td>0.32^c</td>
<td>2.39^f</td>
<td>1.66^f</td>
<td>8.90^e</td>
<td>8.79^c</td>
</tr>
<tr>
<td>200</td>
<td>25.00^f</td>
<td>0.25^c</td>
<td>0.00^a</td>
<td>0.00^a</td>
<td>8.00^c</td>
<td>10.50^a</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different; DMR test, p = 0.05.

** Each figure is an average of three replicates with five pairs/replicate.
reduced when either parent was irradiated with any dose. The egg hatch was dose dependent and at 200 Gy all eggs produced by TF × TM crosses failed to hatch. The F₁ larval survival also decreased as the irradiation dose increased in the F₁ generation. The longevity of the F₁ adult moth was variable. All the crosses involving irradiated moths mated significantly less frequently than the control moths.

3.2.3. Production of F₁ progeny

The results on mating, fecundity, fertility and longevity of the F₁ progeny of pink bollworms obtained from male parents irradiated as mature pupae (Table V) indicated significant variations among various crosses of different radiation doses. The frequency of F₁ matings as measured by the number of spermatophores per female was not affected by the gamma irradiation of mature pupae. The fecundity and fertility was reduced significantly in all the crosses with increasing radiation doses. The number of eggs per female and the percentage egg hatch was significantly lower in F₁M × UTF crosses of all the doses tested when compared with the control (chuck). However, the hatch percentage in F₁M × UTF crosses was significantly lower at 100 Gy (12.57%) and 150 Gy (1.50%) when compared with the crosses, F₁F × UTF at corresponding doses of 100 Gy (4.204%) and 150 Gy (9.12%) of gamma radiation. The fecundity was significantly higher in F₁M × UTF crosses than in F₁F × UTM crosses at all the radiation doses tested. Small numbers of eggs were laid in crosses F₁F × F₁M (7.41) at 100 Gy and 8.05 eggs/female at a dose of 150 Gy. The hatch of eggs from F₁F × F₁M crosses was very low (4.48%) at 100 Gy and all eggs from this cross failed to hatch with the 150 Gy treatment.

The results on mating, fecundity, fertility and longevity of F₁ progeny of pink bollworms obtained from female parents irradiated as mature pupae (Table VI) indicated that the mating frequency was reduced in F₁F × F₁M crosses at all doses tested. The numbers of spermatophores found per female in F₁F × F₁M matings were significantly different from all the other crosses at all the doses tested. The fertility and fertility of all the crosses were significantly less than the control. The mean number of eggs per female and the hatch percentage were comparatively lower in F₁M × UTF crosses than in F₁F × UTM crosses. All eggs failed to hatch in crosses F₁M × F₁F at doses of both 100 and 150 Gy.

Incidence of mating frequency were not affected at 50 Gy; however, the numbers of spermatophores per female were significantly reduced at 100 Gy in F₁F × F₁M and F₁M × UTF crosses. The fecundity and fertility of the F₁ progeny of crosses made with both irradiated parents (Table VII) was significantly lower than the crosses of F₁ progeny when only one parent was irradiated. The longevity of male and female moths from irradiated pupae was in some cases less than the longevity of untreated moths.
TABLE V. MATING, FECUNDITY, FERTILITY AND LONGEVITY OF F₁ PROGENY OF PINK BOLLWORMS OBTAINED FROM MALE PARENTS IRRADIATED AS MATURE PUPAE*

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Crosses</th>
<th>Mated (%)</th>
<th>Spermatophore/ female**</th>
<th>Eggs/ female**</th>
<th>Hatch (%)</th>
<th>Longevity (d)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UTF × UTM</td>
<td>85.40*</td>
<td>0.75*</td>
<td>94.60*</td>
<td>66.01*</td>
<td>13.77*</td>
<td>11.20*</td>
</tr>
<tr>
<td></td>
<td>UTF × F₁M</td>
<td>70.00b,c</td>
<td>0.70*</td>
<td>92.10d</td>
<td>47.56b</td>
<td>13.30*</td>
<td>10.50*</td>
</tr>
<tr>
<td>50</td>
<td>F₁F × F₁M</td>
<td>75.00b,c</td>
<td>0.75*</td>
<td>66.12c</td>
<td>11.15g</td>
<td>15.37*</td>
<td>10.50*</td>
</tr>
<tr>
<td></td>
<td>F₁F × UTM</td>
<td>70.00b,c</td>
<td>0.80*</td>
<td>81.20b</td>
<td>37.44c</td>
<td>14.50*</td>
<td>11.40*</td>
</tr>
<tr>
<td>100</td>
<td>UTF × F₁M</td>
<td>60.00*</td>
<td>0.60*</td>
<td>62.06c,d</td>
<td>42.57d</td>
<td>13.06*</td>
<td>10.17*</td>
</tr>
<tr>
<td></td>
<td>F₁F × F₁M</td>
<td>70.83b,c</td>
<td>0.71*</td>
<td>7.41*</td>
<td>4.48*</td>
<td>11.62b,c</td>
<td>9.08b,c</td>
</tr>
<tr>
<td></td>
<td>F₁F × UTM</td>
<td>70.00b,c</td>
<td>0.70*</td>
<td>51.70d</td>
<td>42.04b</td>
<td>12.13b,c</td>
<td>10.40*</td>
</tr>
<tr>
<td>150</td>
<td>UTF × F₁M</td>
<td>60.00*</td>
<td>0.60*</td>
<td>57.30d</td>
<td>1.50*</td>
<td>11.33b,c</td>
<td>9.63b,c</td>
</tr>
<tr>
<td></td>
<td>F₁F × F₁M</td>
<td>60.00*</td>
<td>0.60*</td>
<td>8.05*</td>
<td>0.00*</td>
<td>8.55*</td>
<td>9.55b,c</td>
</tr>
<tr>
<td></td>
<td>F₁F × UTM</td>
<td>48.33d</td>
<td>0.48*</td>
<td>6.75*</td>
<td>9.12*</td>
<td>9.00*</td>
<td>7.93c</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different; DMR test, p = 0.05.

** Each figure is an average of three replicates with five pairs/replicate.
<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Crosses</th>
<th>Mated (%)</th>
<th>Spermatophore/ female**</th>
<th>Eggs/ female**</th>
<th>Hatch (%)</th>
<th>Longevity (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>0</td>
<td>UTF × UTM</td>
<td>85.40*a</td>
<td>0.75*a</td>
<td>94.60*a</td>
<td>66.01*a</td>
<td>13.77*a</td>
</tr>
<tr>
<td>50</td>
<td>UTF × F1M</td>
<td>75.00*c</td>
<td>0.75*a</td>
<td>35.50*c</td>
<td>35.21*c</td>
<td>13.50*a</td>
</tr>
<tr>
<td></td>
<td>UTF × F1F × F1M</td>
<td>10.00*e</td>
<td>0.10*e</td>
<td>69.00*e</td>
<td>48.21*b</td>
<td>14.00*a</td>
</tr>
<tr>
<td></td>
<td>UTF × F1UTM</td>
<td>80.00*b</td>
<td>0.80*b</td>
<td>54.60*e</td>
<td>52.38*b</td>
<td>14.60*a</td>
</tr>
<tr>
<td>100</td>
<td>UTF × F1M</td>
<td>75.00*c</td>
<td>0.75*a</td>
<td>53.08*d</td>
<td>18.59*d</td>
<td>11.00*a</td>
</tr>
<tr>
<td></td>
<td>UTF × F1F × F1M</td>
<td>10.00*e</td>
<td>0.10*e</td>
<td>6.60*f</td>
<td>0.00*f</td>
<td>9.70*b</td>
</tr>
<tr>
<td></td>
<td>UTF × F1UTM</td>
<td>45.00*d</td>
<td>0.45*b</td>
<td>72.90*b</td>
<td>47.79*b</td>
<td>10.80*a</td>
</tr>
<tr>
<td>150</td>
<td>UTF × F1M</td>
<td>87.00*a</td>
<td>0.87*a</td>
<td>51.67*d</td>
<td>11.75*e</td>
<td>10.87*a</td>
</tr>
<tr>
<td></td>
<td>UTF × F1F × F1M</td>
<td>15.00*e</td>
<td>0.25*b</td>
<td>4.25*f</td>
<td>0.00*f</td>
<td>7.75*c</td>
</tr>
<tr>
<td></td>
<td>UTF × F1UTM</td>
<td>12.00*e</td>
<td>0.12*c</td>
<td>2.00*f</td>
<td>0.00*f</td>
<td>6.87*b</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different; DMR test, p = 0.05.

** Each figure is an average of three replicates with five pairs/replicate.
<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Crosses</th>
<th>Mated</th>
<th>Spermataphore/ female***</th>
<th>Eggs/ female***</th>
<th>Hatch (％)</th>
<th>Longevity (％)</th>
<th>Longevity (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UTF × UTF</td>
<td>85.40<sup>a</sup></td>
<td>94.60<sup>a</sup></td>
<td>66.01<sup>a</sup></td>
<td>66.01<sup>a</sup></td>
<td>11.20<sup>a</sup></td>
<td>13.77<sup>a</sup></td>
</tr>
<tr>
<td>50</td>
<td>UTF × UF</td>
<td>60.00<sup>a</sup></td>
<td>21.80<sup>b</sup></td>
<td>22.02<sup>c</sup></td>
<td>22.02<sup>c</sup></td>
<td>14.50<sup>b</sup></td>
<td>14.50<sup>b</sup></td>
</tr>
<tr>
<td>100</td>
<td>UF × UF</td>
<td>50.00<sup>a</sup></td>
<td>21.25<sup>b</sup></td>
<td>16.47<sup>b</sup></td>
<td>16.47<sup>b</sup></td>
<td>10.25<sup>b</sup></td>
<td>10.25<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>F × F</td>
<td>60.00<sup>a</sup></td>
<td>25.60<sup>b</sup></td>
<td>17.47<sup>b</sup></td>
<td>17.47<sup>b</sup></td>
<td>10.80<sup>b</sup></td>
<td>10.80<sup>b</sup></td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different. DMR test, p = 0.05.

** Each figure is an average of three replicates with five pairs replicate.
4. DISCUSSION

The development of laboratory rearing is one of the major prerequisites leading to the application of sterile insect release methods for the control of target insect species. A major breakthrough was the development of a technique using physical barriers between layers of diet [22]. Pink bollworm rearing methods have been continually improved and modified according to the conditions prevailing in a specific agroecosystem. In the present studies, the pink bollworm was successfully reared on a casein wheat germ diet. The substitution of casein with soy flour, corn-cob grit and wheat germ, and casein for peanut flour, was made to reduce the cost of laboratory rearing. Out of these diets, the soy flour wheat germ diet was better but the pupal recovery, fecundity and fertility were reduced from those found in the casein wheat germ diet. However, the cost of rearing was reduced 50% using the soy flour wheat germ diet compared with the casein wheat germ diet. These results are in close agreement with Shaver and Raulston [23]. The corn-cob grit, wheat germ and peanut diets were found to be unsuitable because the pupal recovery and adult fecundity and fertility were drastically reduced.

Pupal irradiation showed a higher incidence of adult deformity at higher doses (150, 200 Gy) when compared with the control. Graham et al. [11] and Flint et al. [24] reported similar results when both parents were treated with doses ranging from 50 to 170 Gy. In the present studies no adult F1 progeny was obtained when both parents were irradiated and crossed at 200 Gy. These results are in close conformity with those of Ouye et al. [10], who demonstrated that pink bollworm pupae exposed to 250 Gy or more of gamma radiation produced sterile adult moths. The fertility from matings of treated males (50–200 Gy) with untreated females was considerably lower than that from the reciprocal matings. The percentage reduction in the F1 progeny also followed a similar trend when the F1 parents were treated with 100-150 Gy. Henneberry and Clayton [18] reported that the fecundity and fertility of untreated females paired with F1 male moths from 100 or 150 Gy irradiated male parents were reduced as compared with untreated pairs; however, the F1 female progeny were less affected than the F1 male progeny.

The radiation induced sterility of moths that emerged from irradiated pupae was comparable with the F1 sterility [11, 12, 13, 17]. The males from irradiated pupae elicited lower oviposition responses when paired with untreated females. This difference could be attributable to the lack of eupyrene sperm transferred by irradiated males during mating. However, LaChance et al. [25] reported such results in the case of adult radiation. In other lepidoptera, females lacking eupyrene sperm after mating tend to be more receptive to a second mating [26–28]. Therefore, additional studies need to be conducted to determine the relative competitiveness of moths from irradiated pupae and adults in relation to laboratory and native strains. Encouraged by the sterility induced at 100 Gy, field cage studies are in progress to evaluate the feasibility of F1 sterility for the suppression and control of the pink bollworm.
REFERENCES

[27] SNOW, J.W., JONES, R.L., NORTH, D.T., HOLT, G.G., Effects of irradiation on ability of adult male corn earworms to transfer sperm, and field attractiveness of females mated to irradiated males, J. Econ. Entomol. 65 (1972) 906.

EFFECT OF GAMMA RADIATION AT PUPAL STAGE ON FALL ARMY WORM PARENT AND F₁ GENERATION REPRODUCTION

V. ARTHUR, F.M. MAXIMILIANO WIENDL,
J.A. DUARTE AGUILAR, R.E. DOMARCO
Nuclear Energy Centre for Agriculture,
University of São Paulo, Piracicaba,
São Paulo, Brazil

Abstract

EFFECT OF GAMMA RADIATION AT PUPAL STAGE ON FALL ARMY WORM PARENT AND F₁ GENERATION REPRODUCTION.

To induce sterility in the F₁ generation, pupae of the fall army worm, Spodoptera frugiperda (J.E. Smith), were irradiated at the age of five days. The radiation source was a 60Co panoramic irradiator. The pupae were irradiated at the dose rate of 2.60 kGy/h with doses of 0 (control), 50, 75, 100 and 125 Gy. The percentage hatch of eggs laid by adults that originated from pupae irradiated with 125 Gy was 15.0 and 10.0% for males and females, respectively. By crossing this irradiated parent generation, it was found that the egg hatch in the F₁ generation was 4% for descendants of treated males and 10% for descendants of treated females.

1. INTRODUCTION

The fall army worm, Spodoptera frugiperda (J.E. Smith), is indigenous to tropical and subtropical regions of the American continents. Its economic importance derives from its preference for many graminaceous plants, including maize, sorghum, wheat, rice and pasture grasses. In Brazil, Cruz and Turpin [1] calculated that the losses caused by the fall army worm to maize at the six week stage reached a value of 18.7%.

Genetic methods of insect population suppression, after more than forty years of study, appear to be gaining acceptance. In addition, the method of using ionizing radiation to induce sterility in the F₁ generation by irradiating the parents is now a possible alternative. The greatest advantages of using substerilizing doses of radiation are increased competitiveness of the released insects and possible integration with other non-polluting methods to control insect pests in agriculture.

The main objective of the present research was the establishment of procedures to induce sterility into the F₁ generation of the fall army worm S. frugiperda (J.E. Smith) through gamma irradiation of the parent generation with substerilizing doses.
2. LITERATURE REVIEW

In 1964, Ouye et al. [2] published a paper relating the results of irradiation of pupae of the pink bollworm at the ages of 1, 2, 3, 5 and 7 d with a dose of 100 Gy. The authors reported that the susceptibility to radiation decreased with the increase of age, and irradiation of pupae at ages of up to 3 d resulted in sterile adults. In addition, the paper indicates that pupae of a similar condition irradiated at ages of 5 and 7 d reached sterility only with doses of 220 and 300 Gy, respectively.

Also, Flint and Kressin [3] presented the results of irradiating pupae of the tobacco budworm at the age of 36 h before adult emergence. Furthermore, they irradiated adults at the age of 36 h. With a dose of 350 Gy of gamma radiation, both sexes reached 99% sterility, and only 450 Gy induced total sterility.

LaChance et al. [4] irradiated adults of the pink bollworm at ages of up to 24 h with doses of 25, 50, 75, 100 and 125 Gy and crossed irradiated males with virgin females. They observed that at doses of more than 75 Gy a smaller number of eggs was induced. In addition, the radiation induced low reproduction in the F₁ generation with doses higher than 75 Gy.

Carpenter et al. [5] irradiated adults of the fall army worm at ages of 1 to 12 h after emergence with doses of 60, 80 and 100 Gy. After the irradiation they proceeded to cross treated males with normal females, which showed that males irradiated with 100 Gy had a suppressive effect on the number of progeny up to the third generation.

LaChance [6] stated that, in considering the use of inherited sterility, one had to consider all the biological characteristics of the species. Further, inherited sterility has many advantages over the sterile male technique, including higher competitiveness and lower radiation doses to induce sterility.

Carpenter et al. [7] irradiated females of the fall army worm with a dose of 100 Gy and crossed these insects with normal males. They showed that only 58% of the eggs laid by the treated females hatched.

In 1987 Carpenter et al. [8] studied the effects of induced inherited sterility and substerilizing doses of gamma radiation on adults of the corn earworm. They concluded that males irradiated with a dose of 100 Gy were as competitive as normal insects.

Hennetberry and Clayton [9] irradiated pupae of the pink bollworm at ages of 2 to 6 d, with doses of 50, 100 and 150 Gy. The authors found that females were more susceptible to the effects of radiation than males, and that radiation induced sterility in the F₁ generations.

Arthur et al. [10] irradiated pupae of the sugarcane borer at the age of 6 d with gamma radiation at doses from 50 to 500 Gy to induce sterility in the F₁ generation. They concluded that a dose of 400 Gy induced total sterility into the resulting adults, and a dose of 100 Gy reduced the viability of the eggs laid by the females of the F₁ generation by up to 54.9%.
Sallam [11] irradiated pupae of the cotton leafworm, *S. littoralis* (Boisd.), close to the emergence of the adults with doses of 75, 100, 125 and 150 Gy of gamma radiation. The treatment induced the production of non-viable eggs by females of the F₁ generation as radiation doses increased.

Hoedaya [12] irradiated 6 d old pupae of the tropical army worm, *S. litura* (Fabricius), with doses of 50, 75, 100, 125 and 150 Gy. The experiment showed that a dose of 50 Gy induced sterility in 40.86% of males and 38.2% of females in the F₁ generation.

3. METHODOLOGY

The insects utilized in this experiment came from the rearing facility of the Entomology Laboratory of the Nuclear Energy Centre for Agriculture, University of São Paulo, Piracicaba.

After sexing and individual introduction into glass vials 8 cm in height and 2.5 cm in diameter, 24-hour-old pupae were left under controlled environmental conditions of 25 ± 1°C and 70 ± 5% RH until they were 5 d old. At this age, they were irradiated in a ⁶⁰Co source with an activity of 1.62 × 10¹⁴ Bq at a dose rate of 2600 Gy/h. The radiation doses were 0 (control), 50, 75, 100 and 125 Gy. After irradiation, the emerged adults were crossed with normal adults of the same age. Every treatment (dose) had five pairs of insects. The five pairs of insects were maintained in cages made of PVC tubes 20 cm in height and 10 cm in diameter. The inner sides of the cages were covered with a normal sheet of white paper, and the cages set in Petri dishes lined with paper at the bottom. The cage tops were covered with a small mesh screen, held in place with a rubber cord. A solution of 10% bee honey served as food. The laid eggs were collected every two days. After counting, 100 eggs were separated to determine viability. After eclosion, 50 larvae from each treatment were individually held in glass vials and fed with maize leaves until pupation. The pupae were weighed and sexed. After emergence of the F₁ adults, they were crossed with normal untreated adults of the same age.

All experiments were conducted in a climatic chamber at a temperature of 24 to 26°C, RH of 65 to 75%, and a photoperiod of 10 h light and 14 h dark.

4. RESULTS

The effect on egg viability when untreated females were crossed with treated males is shown in Table I. A dose of 125 Gy induced the highest level of genetic damage. The viability of the eggs decreased to 15% when female moths from irradiated pupae were crossed with normal male moths. Similar results occurred when irradiated males were crossed with normal females, resulting in an egg
TABLE I. TOTAL NUMBER OF EGGS LAID AND VIABILITY AFTER DIFFERENT MOTH PAIRINGS OF *S. frugiperda*: PARENT GENERATION (five crossed pairs at each dose)

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Crosses*</th>
<th>Mean number of eggs laid</th>
<th>Percentage of viable eggs</th>
<th>Percentage of non-viable eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(F_N \times M_N)</td>
<td>6142</td>
<td>91.0</td>
<td>9.0</td>
</tr>
<tr>
<td>50</td>
<td>(F_1 \times M_N)</td>
<td>4743</td>
<td>81.0</td>
<td>19.0</td>
</tr>
<tr>
<td>50</td>
<td>(M_1 \times F_N)</td>
<td>6050</td>
<td>77.3</td>
<td>22.7</td>
</tr>
<tr>
<td>75</td>
<td>(F_1 \times M_N)</td>
<td>4431</td>
<td>75.0</td>
<td>25.0</td>
</tr>
<tr>
<td>75</td>
<td>(M_1 \times F_N)</td>
<td>4160</td>
<td>64.0</td>
<td>36.0</td>
</tr>
<tr>
<td>100</td>
<td>(F_1 \times M_N)</td>
<td>3642</td>
<td>53.4</td>
<td>46.6</td>
</tr>
<tr>
<td>100</td>
<td>(M_1 \times F_N)</td>
<td>3156</td>
<td>47.0</td>
<td>53.0</td>
</tr>
<tr>
<td>125</td>
<td>(F_1 \times M_N)</td>
<td>2967</td>
<td>15.0</td>
<td>85.0</td>
</tr>
<tr>
<td>125</td>
<td>(M_1 \times F_N)</td>
<td>2554</td>
<td>10.0</td>
<td>90.0</td>
</tr>
</tbody>
</table>

* \(F_N \), irradiated females; \(F_N \), non-irradiated females; \(M_1 \), irradiated males; \(M_N \), non-irradiated males.

FIG. 1. Percentage of viable and non-viable eggs laid by parent generation irradiated at the pupal stage (irradiated males crossed with non-irradiated females and non-irradiated males crossed with irradiated females): ◯, \(F_1 \) viable; †, \(F_1 \) non-viable; ×, \(M_1 \) viable; □, \(M_N \) non-viable.
TABLE II. TOTAL NUMBER OF EGGS LAID AND VIABILITY AFTER DIFFERENT MOTH PAIRINGS OF *S. frugiperda*: F₁ GENERATION (five crossed pairs at each dose)

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Crossesᵃ</th>
<th>Mean number of eggs laid</th>
<th>Percentage of viable eggs</th>
<th>Percentage of non-viable eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fᵢ × Mᵢ</td>
<td>6142</td>
<td>91.0</td>
<td>9.0</td>
</tr>
<tr>
<td>50</td>
<td>Fᵢ × Mᵢ</td>
<td>2017</td>
<td>64.0</td>
<td>36.0</td>
</tr>
<tr>
<td>50</td>
<td>Mᵢ × Fᵢ</td>
<td>1647</td>
<td>58.0</td>
<td>42.0</td>
</tr>
<tr>
<td>75</td>
<td>Fᵢ × Mᵢ</td>
<td>1240</td>
<td>46.0</td>
<td>54.0</td>
</tr>
<tr>
<td>75</td>
<td>Mᵢ × Fᵢ</td>
<td>1961</td>
<td>32.0</td>
<td>68.0</td>
</tr>
<tr>
<td>100</td>
<td>Fᵢ × Mᵢ</td>
<td>753</td>
<td>17.0</td>
<td>83.0</td>
</tr>
<tr>
<td>100</td>
<td>Mᵢ × Fᵢ</td>
<td>637</td>
<td>8.0</td>
<td>92.0</td>
</tr>
<tr>
<td>125</td>
<td>Fᵢ × Mᵢ</td>
<td>604</td>
<td>10.0</td>
<td>90.0</td>
</tr>
<tr>
<td>125</td>
<td>Mᵢ × Fᵢ</td>
<td>517</td>
<td>4.0</td>
<td>96.0</td>
</tr>
</tbody>
</table>

ᵃ Fᵢ, irradiated females; Fᵢ, non-irradiated females; Mᵢ, irradiated males; Mᵢ, non-irradiated males.

FIG. 2. Percentage of viable and non-viable eggs laid by F₁ generation (males from irradiated pupae crossed with females from untreated pupae and males from untreated pupae crossed with females from irradiated pupae): •, Fᵢ viable; +, Fᵢ non-viable; □, Mᵢ viable; ×, Mᵢ non-viable.
viability of 10%. At a dose of 100 Gy, viability was approximately 50% when either sex was treated.

The results compiled are plotted in Fig. 1, which shows the LD50 dose to be 90 Gy when male parent pupae were irradiated. When females were irradiated, the LD50 dose was calculated to be 105 Gy.

In Table II, we show the egg viability of F1 females. The crossing of irradiated male parents resulted in an LD50 dose in the F1 generation of 60 Gy. For egg viability when female parents were irradiated, the LD50 dose for the eggs laid by the F1 generation was 70 Gy (Fig. 2).

In all cases, parent generation or F1 generation, an increase in the radiation dose resulted in an increase in the number of non-viable eggs. Furthermore, the results showed that males were more susceptible than females to gamma radiation.

5. CONCLUSIONS

The results obtained from this research work showed that the fall army worm moths from pupae exposed to gamma radiation were sterilized. The level of sterility increased with the radiation dose.

Substerilizing radiation doses in the parent generation resulted in a significant reduction in egg hatching in the F1 generation. These results were very close to those obtained by LaChance [6] for the pink bollworm. Also, we can observe that irradiation of males at the pupal stage resulted in a lower percentage of eggs hatching than irradiation of females in the parent generation (number of F1 insects produced), or in the number of eggs laid by moths of the F1 generation (F2 eggs).

REFERENCES

INHERITED STERILITY IN PROGENY OF GAMMA IRRADIATED MALE COTTON LEAFWORM, *Spodoptera littoralis* (Boisd.)

H.A. SALLAM, S.M. IBRAHIM
Radiobiology Department,
Nuclear Research Centre,
Atomic Energy Authority,
Cairo, Egypt

Abstract

INHERITED STERILITY IN PROGENY OF GAMMA IRRADIATED MALE COTTON LEAFWORM, *Spodoptera littoralis* (Boisd.).

The fecundity, egg hatch and mating of normal females of *Spodoptera littoralis* (Boisd.) crossed with males irradiated as 7-day-old pupae with doses of 50, 75, 100, 125, 150 and 200 Gy of gamma radiation were studied. The inherited effects of irradiation were studied until the F₃ generation. Also, the progeny of males treated with 100 Gy were outbred or inbred with untreated individuals for two successive generations and the progeny were observed for any inherited deleterious effects on reproduction. The fecundity of females was significantly reduced by increasing the dosage applied to P₁ males. The egg hatch of P₁ females was significantly reduced at 125, 150 and 200 Gy treatments as compared with the untreated control. The F₁ generation was significantly more sterile than the irradiated parents. The irradiation of P₁ males did not affect their mating, sperm transfer or mating frequency nor were these impaired in the successive generations of the different crosses. However, a detectable reduction in the percentage of mated females with sperm and a significant increase in number of spermatophores per mated female were observed among the P₁ generation at a dose level of 200 Gy. The larval and pupal mortality in the F₁ and F₂ generations were high and dose dependent. The average developmental time from egg hatch to adult emergence was not affected and also the sex ratio of resulting progeny was about normal. Males irradiated with 100 Gy of gamma radiation and released into field cages caused significant reductions in the populations. The population of the cages containing partially sterile males was reduced by about 43% in comparison with control cages. Laboratory mating competitiveness indicated that males irradiated with 100 or 150 Gy and their F₁ sons were fully competitive against untreated males in mating with untreated females.

1. INTRODUCTION

The release of sterile males for the control of natural insect populations has not been fully successful with species of Lepidoptera, because they are highly resistant to irradiation [1–3]. Generally, males require at least 300 to 450 Gy to induce full sterility, which causes severe physiological and somatic damage. On the other hand,
Proverbs et al. [4] and Carpenter et al. [5] have reported success in the use of lower substerilizing doses of gamma radiation to control populations of Laspeyresia pomonella and Helioliza zeae, respectively.

Wakid and Hayo [6] and Souka [7] conducted radiation studies with Spodoptera littoralis (Boisd.) and have shown that the progeny of adults treated with substerilizing doses exhibited various degrees of sterility, including a reduction in fecundity and fertility and alterations in sex ratios.

In the present study, the effects of low doses of gamma radiation (ranging between 50 and 200 Gy) on the reproduction of P1 males and their F1 progeny were studied. In addition, field cage studies were conducted to determine the impact of release of irradiated (100 Gy) cotton leafworm males. Additional laboratory tests were carried out on the mating competitiveness of irradiated males and their F1 male progeny.

2. STUDY 1

The objective of the following study was to determine the effects of low doses of gamma radiation (ranging between 50 and 200 Gy) on the reproduction of P1 males and the inherited effects on their F1, F2 and F3 progeny.

2.1. Materials and methods

The test individuals used in this study were obtained from a stock culture of the cotton leafworm maintained for thirty generations in the laboratory of the Radiobiology Department of the Atomic Energy Authority at Inshas. Full grown larvae, obtained from the stock culture were fed on fresh castor oil plant leaves. Mature male pupae (1–2 d before emergence) were irradiated with a gamma cell (60Co source) that had a dose rate of approximately 6.50 Gy/min. The irradiation dosages used were 50, 100, 150 and 200 Gy. Male moths within one day of emergence were paired with unirradiated virgin females; 20 pairs were used for each treatment. Two litre ice cream containers fitted with a vial containing a cotton wick and provisioned with a 10% sugar solution served as mating chambers. The containers were lined with a sheet of white paper to serve as an oviposition substrate and the top was covered with cloth fixed in place with a rubber band. Five pairs of moths were placed in each container. This trial was replicated four times. Eggs from each mating container were collected daily for 7 d after crossing and held until hatch. After 7 d, each female was dissected to determine the number of spermatophores in the bursa copulatrix and the presence of sperm in the spermatheca. The F1 progeny were reared using the method previously described. F1 males were mated with normal females and the resulting F2 males were again mated to normal females.
The holding conditions for all the life stages in this study were 25–32°C and 60–70% relative humidity (RH). The data were analysed using the analysis of variance (ANOVA) technique and the means were separated using Duncan's multiple range test.

2.2. Results

The average number of eggs deposited by females was not significantly affected when they had been mated to males irradiated with 50 and 100 Gy. Crosses with males irradiated with higher doses resulted in significantly fewer eggs. The fecundity was significantly reduced when F₁ male progeny, whose male parents had been exposed to any dose, were mated with normal females. The trend of decreasing fecundity with increasing dose was still apparent when F₂ males were mated to normal females; however, only treatments of 100 Gy and greater produced significantly fewer eggs. The oviposition of normal females was not significantly reduced when they were crossed with male F₁, F₂ or F₃ progeny of any treatment.

2.3. Hatchability of eggs

The proportion of eggs that hatched was significantly lower when F₁ males were treated with 150 and 200 Gy (Table I). F₁ males were more sterile than their parents and significant reductions in egg hatch were found for all irradiation treatments (50 Gy). F₂ males crossed with normal females resulted in greater proportions of eggs hatching than F₁ matings. However, only treatments of 100 Gy or greater produced significantly lower hatch rates. Crosses of F₃ males from all treatments produced normal egg hatch rates. These data indicate that chromosome aberrations present in the F₁ generation produced lower egg hatching rates. Some of these lethal changes were lost and F₂ males were more fertile than their male parents. By the F₃ generation the male fertility was normal and all the inherited sterility affects were apparently lost.

2.4. Mating frequency and sperm transfer

Irradiation of males did not significantly affect the percentage of mated females. Also, there was no substantial difference in the percentage mated females among F₁, F₂ and F₃ progeny.

Sperm transfer by irradiated males and their progeny was high (Table II). Only one treatment, females mated with F₁ males from the 200 Gy group, showed a significant reduction in sperm present in the spermatheca.

In general, the average number of spermatophores per mated female increased with increasing doses for irradiated males and for their F₁ and F₂ progeny. The spermatheca of females mated to F₁ males treated with 150 or 200 Gy contained a
TABLE I. TREATMENT OF MALE *S. littoralis* (Boisd.) WITH SUBSTERILIZING DOSES OF GAMMA RADIATION, AND EFFECT ON FECUNDITY AND HATCHABILITY OF PARENTS (P₁) AND THEIR F₁, F₂ AND F₃ PROGENY

(20 pairs were used in each treatment)

<table>
<thead>
<tr>
<th>Dose to (P₁) male (Gy)</th>
<th>Average number of eggs/female*</th>
<th>Hatchability* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>0</td>
<td>1402a</td>
<td>1585a</td>
</tr>
<tr>
<td>50</td>
<td>1437a</td>
<td>1253b</td>
</tr>
<tr>
<td>100</td>
<td>1299a</td>
<td>968c</td>
</tr>
<tr>
<td>150</td>
<td>985a</td>
<td>651c</td>
</tr>
<tr>
<td>200</td>
<td>924b</td>
<td>566c</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different at $p = 0.05$.

TABLE II. TREATMENT OF MALE *S. littoralis* (Boisd.) WITH SUBSTERILIZING DOES OF GAMMA RADIATION, AND EFFECT ON MATING OF PARENTS (P₁) AND THEIR F₁, F₂ AND F₃ PROGENY
(20 pairs were used in each treatment)

<table>
<thead>
<tr>
<th>Dose to (P₁) male (Gy)</th>
<th>Mating</th>
<th></th>
<th>Mated females with sperm* (%)</th>
<th></th>
<th>Average number of spermatophores/mated female*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P₁</td>
<td>F₁</td>
<td>F₂</td>
<td>F₃</td>
<td>P₁</td>
<td>F₁</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>95</td>
<td>94.73</td>
<td>100.00</td>
<td>100.00*</td>
<td>100.00*</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
<td>100.00</td>
<td>95.00*</td>
<td>100.00*</td>
</tr>
<tr>
<td>100</td>
<td>95</td>
<td>95</td>
<td>100.00</td>
<td>100.00</td>
<td>94.73*</td>
<td>94.73*</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>90</td>
<td>90.00</td>
<td>94.73</td>
<td>100.00*</td>
<td>88.88*</td>
</tr>
<tr>
<td>200</td>
<td>95</td>
<td>90</td>
<td>89.47</td>
<td>90.00</td>
<td>89.47*</td>
<td>81.25*</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different at \(p = 0.05 \).
TABLE III. TREATMENT OF MALE S. litoralis (Boisd.) WITH SUBSTERILIZING DOSES OF GAMMA RADIATION, AND EFFECT ON SURVIVAL, DEVELOPMENTAL TIME AND SEX RATIO OF F₁, F₂ AND F₃ PROGENY
(200 larvae were tested in each treatment)

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Survived to adult stage* (%)</th>
<th>Development time (d)</th>
<th>Sex ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>F₁ generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>85.5⁺</td>
<td>28.78</td>
<td>0.99</td>
</tr>
<tr>
<td>50</td>
<td>41.5ᵇ</td>
<td>28.84</td>
<td>0.86</td>
</tr>
<tr>
<td>100</td>
<td>44.5ᵇ</td>
<td>29.85</td>
<td>1.17</td>
</tr>
<tr>
<td>150</td>
<td>24.0ᵇ⁺</td>
<td>31.44</td>
<td>1.04</td>
</tr>
<tr>
<td>200</td>
<td>35.5ᵇ⁺</td>
<td>30.28</td>
<td>1.95</td>
</tr>
<tr>
<td>F₂ generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>84.0⁺</td>
<td>30.10</td>
<td>1.04</td>
</tr>
<tr>
<td>50</td>
<td>66.5ᵇ</td>
<td>31.40</td>
<td>0.95</td>
</tr>
<tr>
<td>100</td>
<td>73.0ᵇ</td>
<td>31.47</td>
<td>1.08</td>
</tr>
<tr>
<td>150</td>
<td>44.0⁺</td>
<td>31.46</td>
<td>0.93</td>
</tr>
<tr>
<td>200</td>
<td>51.0⁺</td>
<td>30.47</td>
<td>1.12</td>
</tr>
<tr>
<td>F₃ generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>83.0⁺</td>
<td>26.22</td>
<td>1.05</td>
</tr>
<tr>
<td>50</td>
<td>75.5ᵇ⁺</td>
<td>26.94</td>
<td>0.97</td>
</tr>
<tr>
<td>100</td>
<td>72.0ᵇ⁺</td>
<td>25.63</td>
<td>0.93</td>
</tr>
<tr>
<td>150</td>
<td>59.0⁺</td>
<td>26.18</td>
<td>0.87</td>
</tr>
<tr>
<td>200</td>
<td>70.0ᵇ⁺</td>
<td>27.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column in each generation are not significantly different at p = 0.05.

A larger number of spermatheca than those of the controls (not significantly). Significantly greater numbers of spermatophores were found in females paired to male F₁ progeny of 150 and 200 Gy treatments. The mating frequency has not shown any significant effect among F₂ or F₃ treatments.
2.5. Larval survival

Survival of F1 larvae to the adult stage was significantly lower for all irradiation treatments (Table III). The number of surviving larvae was dose dependent and mortality increased as the dose applied to F1 males was increased. Among the F2, the reduction in survival was reduced for all treatments and was significantly lower in the 150 and 200 Gy treatments. The mortality of F3 larvae was reduced compared with that of the F1 and F2, but was still significantly greater than the controls at the three highest irradiation treatments.

2.6. Developmental time

The average developmental time required from egg hatch to adult emergence seemed to be about normal for the progeny of all treatments (doses and generations).

2.7. Sex ratio

Table III also shows that the sex ratio among the progeny of irradiated males seemed about that found in the control group. Generally, as dose increased, the sex ratio in the F1 shifted in favour of the males and at the highest dose (200 Gy) the male to female ratio was nearly 2:1.

3. STUDY 2

The objective of this second study was to characterize the effects of low doses of gamma radiation (ranging between 75 and 150 Gy) on reproduction of F1 males and the inherited effects on the progeny resulting from outcrosses or inbreds.

3.1. Materials and methods

Full grown larvae, obtained from the stock culture, were fed on a broad bean diet, prepared as described by Shorey and Hale [8]. Twenty larvae were reared in 1 L plastic containers, containing 200 mL of diet. Mature male pupae (within a day of emergence) were irradiated using a gamma cell (60Co source) that had a dose rate of approximately 4.5 Gy/min. The irradiation dosages used were 75, 100, 125 and 150 Gy. Other experimental techniques used were the same as those described in the first study.

Two sets of tests were carried out. In the first, newly emerged treated (T) males were paired with normal (N) females. Males of the F1 generation were paired with newly emerged normal females, and this was done again in F2 and F3. In the second set of tests, the F1 and F2 progeny of males treated with only 100 Gy were
TABLE IV. TREATMENT OF MALE *S. littoralis* (Boisd.) WITH SUBSTERILIZING DOSES OF GAMMA RADIATION, AND EFFECT ON FECUNDITY, HATCHABILITY AND MATING OF PARENTS (*P*₁) AND THEIR *F*₁, *F*₂ AND *F*₃ PROGENY (20 pairs were used in each treatment)

<table>
<thead>
<tr>
<th>Generation</th>
<th>Dose to P₁ males (Gy)</th>
<th>Eggs/ female* (%)</th>
<th>Hatchability* (%)</th>
<th>Mating* (%)</th>
<th>Mated females with sperm* (%)</th>
<th>Spermatophores/ mated females*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>0 (Control)</td>
<td>1655ᵃ</td>
<td>84.3ᵃ</td>
<td>100.0ᵃ</td>
<td>100.0ᵃ</td>
<td>2.3ᵃ</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1610ᵇ</td>
<td>77.5ᵇ</td>
<td>95.0ᵇ</td>
<td>94.7ᵇ</td>
<td>2.1ᵇ</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1562ᵃ</td>
<td>68.7ᵃᵇ</td>
<td>100.0ᵇ</td>
<td>100.0ᵇ</td>
<td>2.3ᵇ</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1487ᵇ</td>
<td>63.5ᵇ</td>
<td>100.0ᵇ</td>
<td>90.0ᵇ</td>
<td>2.0ᵇ</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1619ᵇ</td>
<td>60.8ᵇ</td>
<td>49.4ᵇ</td>
<td>100.0ᵇ</td>
<td>2.5ᵇ</td>
</tr>
<tr>
<td>F₂</td>
<td>0 (Control)</td>
<td>1571ᵃ</td>
<td>86.5ᵃ</td>
<td>100.0ᵃ</td>
<td>100.0ᵃ</td>
<td>2.1ᵃ</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1546ᵇ</td>
<td>64.8ᵇ</td>
<td>100.0ᵇ</td>
<td>100.0ᵇ</td>
<td>2.1ᵇ</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1408ᵇᵇ</td>
<td>55.1ᵇᵇ</td>
<td>94.4ᵇ</td>
<td>100.0ᵇ</td>
<td>1.8ᵇ</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1515ᵇᵇ</td>
<td>48.5ᵇᵇ</td>
<td>100.0ᵇ</td>
<td>95.0ᵇ</td>
<td>1.9ᵇ</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1397ᵇ</td>
<td>45.7ᶜ</td>
<td>94.4ᵇ</td>
<td>100.0ᵇ</td>
<td>1.8ᵇ</td>
</tr>
<tr>
<td>F₃</td>
<td>0 (Control)</td>
<td>1722ᵃ</td>
<td>82.7ᵃ</td>
<td>95.0ᵃ</td>
<td>100.0ᵃ</td>
<td>2.5ᵃ</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1587ᵇᵇ</td>
<td>66.5ᵇᵇ</td>
<td>100.0ᵇ</td>
<td>95.0ᵇ</td>
<td>2.5ᵇ</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1561ᵇᵇ</td>
<td>63.8ᵇᵇ</td>
<td>95.0ᵇ</td>
<td>94.7ᵇ</td>
<td>2.1ᵇ</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1463ᵇ</td>
<td>56.5ᵇ</td>
<td>94.7ᵇ</td>
<td>100.0ᵇ</td>
<td>2.6ᵇ</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1608ᵇᵇ</td>
<td>55.7ᵇᵇ</td>
<td>100.0ᵇ</td>
<td>95.0ᵇ</td>
<td>2.2ᵃ</td>
</tr>
<tr>
<td>F_3</td>
<td>0 (Control)</td>
<td>1497<sup>a</sup></td>
<td>85.4<sup>a</sup></td>
<td>100.0<sup>a</sup></td>
<td>95.0<sup>a</sup></td>
<td>2.6<sup>a</sup></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>75</td>
<td>1389<sup>a</sup></td>
<td>79.5<sup>b</sup></td>
<td>94.1<sup>ab</sup></td>
<td>100.0<sup>a</sup></td>
<td>2.2<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1475<sup>a</sup></td>
<td>71.3<sup>b</sup></td>
<td>95.0<sup>ab</sup></td>
<td>100.0<sup>a</sup></td>
<td>2.2<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1417<sup>a</sup></td>
<td>75.6<sup>b</sup></td>
<td>100.0<sup>a</sup></td>
<td>95.0<sup>a</sup></td>
<td>2.5<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1385<sup>a</sup></td>
<td>72.9<sup>b</sup></td>
<td>89.5<sup>b</sup></td>
<td>94.4<sup>a</sup></td>
<td>2.1<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column for each generation are not significantly different at $p = 0.05$.
TABLE V. EFFECTS OF IRRADIATION OF MALE S. littoralis (Boisd.) WITH A SUBSTERILIZING DOSE (100 Gy) ON THE FECUNDITY, HATCHABILITY AND MATING OF FEMALES AMONG THE TREATED PARENTS (P₁) AND F₁ AND F₂ PROGENY RESULTING FROM ALL POSSIBLE CROSSES
(20 pairs were used in each treatment)

<table>
<thead>
<tr>
<th>Generation</th>
<th>Crosses+ -</th>
<th>Eggs/female*</th>
<th>Hatchability +</th>
<th>Mating +</th>
<th>Mated female with sperm* (%)</th>
<th>Spermatophores/mated females*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>(%)</td>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>N</td>
<td>N</td>
<td>1460*</td>
<td>85.2*</td>
<td>99.2*</td>
<td>98*</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>N</td>
<td>1485*</td>
<td>64.1b</td>
<td>100.0*</td>
<td>99*</td>
</tr>
<tr>
<td>F₁</td>
<td>1</td>
<td>1</td>
<td>1608*</td>
<td>86.6*</td>
<td>100.0*</td>
<td>100*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1526ab</td>
<td>50.8b</td>
<td>99.5*</td>
<td>100*</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1495ab</td>
<td>58.7b</td>
<td>100.0b</td>
<td>96*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1410b</td>
<td>25.0c</td>
<td>94.2b</td>
<td>95*</td>
</tr>
<tr>
<td>F₂</td>
<td>A</td>
<td>A</td>
<td>1575a</td>
<td>83.5*</td>
<td>97.1*</td>
<td>97*</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>1611a</td>
<td>64.8b</td>
<td>100.0*</td>
<td>100*</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>1550a</td>
<td>65.4b</td>
<td>95.0*</td>
<td>93*</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>1506a</td>
<td>54.7b</td>
<td>100.0*</td>
<td>98*</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>1442a</td>
<td>52.5b</td>
<td>96.7*</td>
<td>99*</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>1435a</td>
<td>57.8b</td>
<td>92.5*</td>
<td>92*</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>A</td>
<td>1498a</td>
<td>59.7b</td>
<td>95.8*</td>
<td>94*</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>B</td>
<td>1515a</td>
<td>55.9b</td>
<td>93.5*</td>
<td>100*</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
<td>1480a</td>
<td>51.2b</td>
<td>96.7*</td>
<td>97*</td>
</tr>
</tbody>
</table>

* N, normal, T, treated; 1, progeny from P₁N × N; 2, progeny from F₁T × N; A, progeny from F₁1 × 1; B, progeny from F₁1 × 2; C, progeny from F₁2 × 1.
+ Means followed by the same letter in the same column in each generation are not significantly different at p = 0.05.
paired with normal females ($T_{34} \times N_{34}$). The progeny from these matings were inbred or outbred with normal individuals, using all possible crosses between them.

In both studies, twenty pairs were used for each treatment. The biological aspects studied were the number of eggs/female, egg hatch, mating and sperm transfer. Larval survival, developmental time and sex ratio were recorded for the progeny of all mating types. Data were analysed using ANOVA and Duncan’s multiple range test ($p = 0.05$).

3.2. Results

The average number of eggs deposited per female was not significantly affected by any P_1 male treatment (Table IV). The fecundity of females mated with males from the highest treatment group (150 Gy) was significantly lower than that for the control matings. Although the fecundity of F_2 matings was lower than that of the controls for all treatments only the fecundity of F_2 males from a 125 Gy treatment was significantly lower than the control. Among the F_2 generation, there were no substantial differences in egg production.

Table V shows that the egg production among the F_1 generation was significantly affected when $P_1 T \times N$ progeny were inbred (2×2), while the fecundity among other crosses of P_1, F_1 and F_2 was not affected.

3.3. Hatchability of eggs

The hatchability was reduced by increasing the dose to the male parent (Table IV). This effect was more pronounced in the F_1 generation. The F_2 generation was more fertile than the F_1. Doses of 100 Gy or greater produced significantly lower rates of egg hatching than the control. The results on the hatchability of the F_2 generation indicate that an obvious increase in egg hatching occurred at all doses tested when compared with F_1 and F_2. These results indicate that the detrimental effects of irradiation continue in the population through F_1 and to a lesser extent through F_2 and F_3.

The reduction in egg hatch in F_1 was significantly reduced for outcrosses of $P_1 T \times N$ progeny (treatments 2×1 and 1×2) (Table V). When $P_1 T \times N$ progeny were inbred (2×2), the egg hatch was significantly lower than that in the controls. Among F_2, significant reductions in egg hatch were recorded in all crosses, indicating that deleterious factors were still present in the population.

3.4. Mating frequency and sperm transfer

The results indicate that irradiation of males did not significantly affect the percentage of mated females in either test (Tables IV and V) (doses, generations and crosses). Only the matings of F_3 were significantly decreased at 150 Gy.
TABLE VI. EFFECT OF TREATMENT OF MALE S. littoralis (Boisd.) WITH SUBSTERILIZING DOSES OF GAMMA RADIATION ON SURVIVAL, DEVELOPMENTAL TIME AND SEX RATIO OF F₁, F₂ AND F₃ PROGENY

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Survivals* (%) (100 larvae/pupal mortality)</th>
<th>Development time* (d)</th>
<th>Sex ratio</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Fmale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₁ generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>88<sup>a</sup></td>
<td>29.6<sup>a</sup></td>
<td>0.98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>70<sup>b</sup></td>
<td>30.2<sup>a</sup></td>
<td>1.10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>53<sup>c</sup></td>
<td>30.7<sup>a</sup></td>
<td>1.05</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>43<sup>c</sup></td>
<td>31.1<sup>a</sup></td>
<td>1.16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>41<sup>c</sup></td>
<td>31.2<sup>a</sup></td>
<td>1.14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F₂ generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>84<sup>a</sup></td>
<td>31.5<sup>a</sup></td>
<td>1.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>80<sup>a</sup></td>
<td>32.0<sup>a</sup></td>
<td>1.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>73<sup>ab</sup></td>
<td>31.8<sup>a</sup></td>
<td>1.20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>68<sup>bc</sup></td>
<td>32.6<sup>a</sup></td>
<td>1.08</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>59<sup>c</sup></td>
<td>32.7<sup>a</sup></td>
<td>1.21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F₃ generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>85<sup>a</sup></td>
<td>30.2<sup>a</sup></td>
<td>1.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>84<sup>a</sup></td>
<td>30.9<sup>a</sup></td>
<td>0.94</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>79<sup>a</sup></td>
<td>31.3<sup>a</sup></td>
<td>0.96</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>78<sup>a</sup></td>
<td>32.1<sup>a</sup></td>
<td>1.11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>76<sup>a</sup></td>
<td>31.4<sup>a</sup></td>
<td>0.95</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column in each generation are not significantly different at \(p = 0.05 \).
<table>
<thead>
<tr>
<th>Crosses*</th>
<th>Survivals¹ (%)</th>
<th>Development time¹</th>
<th>Sex ratio¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(100 larvae/pupal mortality)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Female</td>
<td></td>
<td>Male</td>
</tr>
</tbody>
</table>

P₁ progeny
- N N 91⁺ 29.2⁺ 1.08⁺ 1
- T N 70ᵇ 29.8⁺ 1.27⁺ 1

F₁ progeny
- 1 1 85¹ 28.5⁺ 0.95⁺ 1
- 2 1 43ᵇ 29.7⁺ 1.00⁺ 1
- 1 2 41ᵇ 29.2⁺ 1.10⁺ 1
- 2 2 18⁺ 31.4⁺ 1.60ᵇ 1

F₂ progeny
- A A 87⁺ 30.4⁺ 1.14⁺ 1
- A B 76ᵇ 31.1⁺ 1.11⁺ 1
- A C 71ᵇ 31.7⁺ 1.25⁺ 1
- B A 80ᵇ 29.9⁺ 1.13⁺ 1
- B B 66ᵇ 32.2⁺ 1.18⁺ 1
- B C 75ᵇ 30.7⁺ 1.28⁺ 1
- C A 74ᵇ 31.5⁺ 1.05⁺ 1
- C B 75ᵇ 30.1⁺ 1.13⁺ 1
- C C 54⁺ 30.6⁺ 1.02⁺ 1

* N, normal; T, treated; 1, progeny from P₁N × N; 2, progeny from P₁T × N; A, progeny from F₁1 × 1; B, progeny from F₁1 × 2; C, progeny from F₁2 × 1.

¹ Means followed by the same letter in the same column in each generation are not significantly different at p = 0.05.
The ability of sperm to reach the spermathecae (percentage of mated females with sperm) indicates that there was no obvious effect among the females of P1, F1, F2 and F3 at all tested doses (Table IV). The same results were obtained among the females of P1, F1 and F2 at all crosses (Table V).

3.5. Larval survival

Table VI shows the numbers of F1, F2 and F3 larvae that reached the adult stage. Among F1 treatments, larval survival was significantly lower at all doses tested compared with the control. Among F2, reductions in survival were obvious for all treatments. However, they were only significantly lower than the controls at 125 and 150 Gy. The least mortality was observed among the progeny of the F3 matings.

Table VII shows that the mortality of the progeny of P1 matings increased significantly in comparison with the control group. The inherited deleterious effects in the progeny of F1 matings were more obvious when P1'TM × N progeny were inbred (2 × 2) than when they were outcrossed, i.e. P1'TM × N progeny (2 × 1 and 1 × 2). Among the progeny of F2 matings the reduction in survival was obvious at all crosses. A significant reduction in larval/pupal survival was recorded in the outcross (A × C) and in the inbred crosses (B × B and C × C).

3.6. Developmental time

The average developmental periods (from egg hatch to adult emergence) seemed to be about normal in the progeny of all treatments (doses, generations and crosses).

3.7. Sex ratio

The sex ratios among all treatments studied did not differ from the normal 1:1 observed in the control treatment (Table VI).

Similar results were obtained among the different generations and crosses in Table VII, with the exception of the progeny of P1 inbred (2 × 2) matings. In this case the sex ratio was significantly altered in favour of males.

4. STUDY 3

The objective of this study was to determine the suppressive effects on native populations of releasing irradiated (100 Gy) males in field cages. Further, a laboratory test was carried out on the mating competitiveness of irradiated parental males and their F1 males.
4.1. Materials and methods

During the first week of August 1989, maize was planted inside six field cages 7 m in diameter and 3.5 m high, constructed on an experimental farm near Cairo. The maize received regular irrigation, but no other cultural or insecticidal treatments.

Cage populations were initiated in all six cages by the release of four pairs (one day old) of untreated moths/cage on 5 September. Untreated moths were obtained as egg masses collected from an infested cotton field and reared in the laboratory on fresh castor oil plant leaves for one generation. Maize plants were about 60 cm high when infested, and each cage contained approximately 200 maize plants. At the same time, laboratory reared males (irradiated as full grown pupae with 100 Gy gamma rays at a dose rate of about 3 Gy/min) were released in three of the cages at a ratio of ten treated males for one normal pair (40 treated males/cage). The other three cages served as controls. Laboratory reared moths were fed on a kidney bean diet [9].

Samples of irradiated males were retained in the laboratory and crossed with normal females for egg hatch determination. The average percentage hatch was found to be about 60% (range 32–75%). These findings show that released irradiated \(P_1 \) males were partially sterile and there was considerable variation in sterility induced by irradiation. All six cages were checked every two days and the egg

![Graph](image)

FIG. 1. Populations of two cotton leafworm treatments as indicated by egg masses (average of 3 cages/treatment):
- control \((4N_w + 4N_d)\);
- treatment \((4N_w + 4N_d + 40\text{ irradiated }\sigma)\).
masses deposited on plant leaves were marked and counted. Cage population densities were determined by recording the egg masses for two months (September and October).

4.2. Results

On 7 September we started to mark and count the egg masses deposited on the plant leaves in all cages. The average number of egg masses in the control treatment was 11 egg masses/cage (8, 12 and 13), while treated cages contained 12.3 egg masses/cage (10, 13 and 14) (Fig. 1). At the beginning of October, females of the next generation started to lay eggs. The average number of egg masses was 148 egg masses/cage (88, 161 and 195) for the control group and 84 egg masses/cage (61, 92 and 59) for the treated population.

Populations in the control group increased 13.5-fold during September. Populations in the cages treated with sterile males only increased 6.8-fold. The average number of egg masses deposited by the F₁ generation in control treated cages was significantly higher than those deposited by the treated population. The population in the treated cages was reduced by about 43% in comparison with the control treatment.

The experiment was terminated owing to the lack of green maize leaves and the short duration of the maize plant (110–120 d).

5. FURTHER LABORATORY STUDY: MATING COMPETITIVENESS OF IRRADIATED MALES AND THEIR F₁ MALE PROGENY

The objective of the following study was to determine the numbers of viable eggs laid by normal females after they had been caged either with males irradiated with 100 or 150 kGy plus normal males, or with F₁ males (i.e. progeny of males that had been treated with 100 or 150 kGy) plus normal males. In the various cases the ratios of irradiated or F₁ males: normal males: normal females were 0:1:1, 1:0:1, 1:1:1 and 5:1:1, respectively.

F₁ males were the descendants of irradiated male parents (100 or 150 Gy) and normal females. Each cage was provisioned with a 10% sugar solution and was also supplied with fresh leaves of the ornamental plant, Nerium oleander, to serve as an oviposition site for the females. The egg masses were collected daily and the number of hatched eggs in each population was recorded.

The cotton leafworms used in this study were reared as larvae on a kidney bean diet [9]. The experimental conditions throughout the study were 25–32°C and 60–70% RH.
The competitiveness value and expected egg hatch rates were computed as described by Friid [10]. A competitiveness value (CV) of 1.0 indicates full competitiveness and a CV of between 0.75 and 1.0 indicates good competitiveness.

5.1. Statistical analysis

The Student F test and the Duncan multiple range test were used in the statistical analysis of the data [11].

TABLE VIII. MATING COMPETITIVENESS OF MALES IRRADIATED WITH 100 OR 150 Gy AND THEIR F₁ MALES (AVERAGE OF 4–5 REPLICATES)

<table>
<thead>
<tr>
<th>Cross ratio</th>
<th>Dose (Gy)</th>
<th>Egg hatch (%)</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>P₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:1:1</td>
<td>Control (0)</td>
<td>82.3</td>
<td>-</td>
</tr>
<tr>
<td>1:0:1</td>
<td>100</td>
<td>65.8*</td>
<td>-</td>
</tr>
<tr>
<td>1:1:1</td>
<td>100</td>
<td>71.5</td>
<td>74.05</td>
</tr>
<tr>
<td>5:1:1</td>
<td>100</td>
<td>69.2</td>
<td>68.55</td>
</tr>
<tr>
<td>1:0:1</td>
<td>150</td>
<td>58.5*</td>
<td>-</td>
</tr>
<tr>
<td>1:1:1</td>
<td>150</td>
<td>73.3</td>
<td>70.40</td>
</tr>
<tr>
<td>5:1:1</td>
<td>150</td>
<td>57.3*</td>
<td>62.47</td>
</tr>
<tr>
<td>F₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:1:1</td>
<td>Control (0)</td>
<td>84.1</td>
<td>-</td>
</tr>
<tr>
<td>1:0:1</td>
<td>100</td>
<td>55.2*</td>
<td>-</td>
</tr>
<tr>
<td>1:1:1</td>
<td>100</td>
<td>60.6*</td>
<td>69.65</td>
</tr>
<tr>
<td>5:1:1</td>
<td>100</td>
<td>56.6*</td>
<td>60.02</td>
</tr>
<tr>
<td>1:0:1</td>
<td>150</td>
<td>43.7**</td>
<td>-</td>
</tr>
<tr>
<td>1:1:1</td>
<td>150</td>
<td>50.8*</td>
<td>63.90</td>
</tr>
<tr>
<td>5:1:1</td>
<td>150</td>
<td>44.5**</td>
<td>50.43</td>
</tr>
</tbody>
</table>

* Significantly different from the untreated control ($p = 0.05$).
** Significantly different from the untreated control ($p = 0.01$).
5.2. Results

The results of the mating competitiveness of irradiated parental males and their F₁ males are presented in Table VIII. In cages with males irradiated with 100 or 150 Gy within the two tested ratios, lower egg hatches occurred compared with the untreated control. However, the reduction was significant only at the 5:1 ratio when F₁ males were irradiated with 150 Gy.

The average egg hatch in cages with F₁ males was significantly reduced for all treatments (doses and ratios) when compared with the untreated control (84.1%). The comparison of treatment effects indicates that the ratio of 5 treated:1 untreated consistently gave a greater reduction in the egg hatch than the 1:1 ratio.

The computed CVs were not different for F₁ or F₂ males, for the irradiation treatment or for the ratios of treated:untreated males tested. Thus, it can be concluded that under laboratory conditions, the cotton leafworm males irradiated by low doses of 100 or 150 Gy were fully competitive, and the same was true for their F₁ male progeny.

6. DISCUSSION

In lepidopterous species, the irradiation of males with substerilizing doses is associated with high levels of sterility in their F₁ progeny. Generally, the use of substerilizing doses of irradiation is advised to achieve an effective combination of induced partial sterility and inherited chromosome aberrations to suppress natural populations [3]. Inherited sterility in the F₁ progeny of an irradiated male S. littoralis was reported by Wakid and Hayo [6], Souka [7] and Sallam and Ibrahim [12].

Most of the results from past studies were confirmed by the present studies. No apparent effect on the fecundity of females when crossed with irradiated males was found. However, the fecundity of females crossed with F₁ and F₂ males was reduced, particularly when higher irradiation dosages were administered to F₁ males. The F₁ was more sterile than its irradiated parent. A reduction in egg hatch was recorded at all treatments involving the F₂ progeny of irradiated males, indicating that deleterious factors were still present in the population. Similar results were reported by Souka [7] and El-Naggar et al. [13] on Agrotis ipsilon and Carpenter et al. [5] on Heliothis zea.

Sperm transfer was normal for F₁, F₂ and F₃ progeny of irradiated males. The number of spermatophores per mated female did not exhibit a dose response and was not significantly different from the control group. Similar results were obtained by El-Naggar et al. [13] and Carpenter et al. [5].

The mortality of the larvae and pupae progeny of mating F₁ and F₂ males with normal females was high and dose dependent. However, the average developmental
time of F₁, F₂ and F₃ progeny was about normal. Also, the sex ratio was slightly altered in favour of males. This change in sex ratio was only significant among F₁ progeny when Pᵽ × N progeny were inbred (2 × 2) (Table VII). Similar results were obtained by El-Naggar et al. [13] and Carpenter et al. [5].

Males irradiated with 100 Gy and released into field cages caused significant reductions in population. Laboratory mating competitiveness indicated that males irradiated with 100 or 150 Gy and their F₁ male progeny were fully competitive with untreated males in mating with untreated females.

It could be concluded from the results that inherited sterility is more effective than the sterile insect technique for population suppression and might be useful in an integrated control programme against the cotton leafworm, S. littoralis, in Egypt. Certainly, more studies need to be conducted before making recommendations.

REFERENCES

POSSIBILITIES OF USING RADIATION INDUCED
F₁ STERILITY FOR CONTROL OF
EUROPEAN CORN BORER IN ROMANIA

A. BARBULESCU, I. ROSCA
Department of Plant Protection,
Research Institute for Cereals
and Industrial Crops,
Fundulea, Călărași,
Romania

Abstract

POSSIBILITIES OF USING RADIATION INDUCED F₁ STERILITY FOR CONTROL OF
EUROPEAN CORN BORER IN ROMANIA.

Investigations were undertaken to develop the foundation for control in the future of
the European corn borer, Ostrinia nubilalis (Hübner), with a pest management system based
on sterility expressed to the greatest extent during the F₁ generation of progeny of moths
irradiated with gamma rays. As a basis for the mass rearing of the pest, a diet was developed
from locally available ingredients. The ingredients are bean meal, wheat bran, brewer’s yeast,
milk powder substitute for calves, salt mixture used in poultry production, sugar, ascorbic
acid, sorbic acid, glacial acetic acid, formaldehyde, agar and water. Using this diet,
1000 moths can be reared for as little as one US dollar. Complete sterility induced by exposure
to gamma rays occurs at a lower dose in females than in males. When males that are exposed
as six-day-old pupae to 150 Gy are mated to untreated females, 67.5% of the eggs hatch.
Further, when the sons of treated males are mated to untreated females, 42.8% of the eggs
hatch, when daughters of treated males are mated to untreated males, 40.7% of the eggs hatch,
and when sons and daughters of treated males are mated to each other, 9.1% of the eggs hatch.
The amount of mortality following egg hatch was not recorded. However, in field cage experi-
ments, F₁ larvae damaged 4, 8 and 0% of corn stalks for these respective crosses compared
with the 76% damage by larvae from untreated parents. The corresponding yield of kernels
of corn in grammes per plant was 57, 42, 46 and 27. In order to mark moths for field studies
they were reared on diet containing Calco red dye. Traps baited with the various Ecnatomor
of the sex pheromone were used to study the dispersal of released moths and the dates of adult
moth emergence in various regions of Romania.

1. INTRODUCTION

The European corn borer (ECB), Ostrinia nubilalis (Hübner), is one of the
most damaging maize pests. It covers a huge area in almost all worked zones, es-
pecially in the Northern Hemisphere, since it thrives in a very wide range of climates,
from the Equator to temperate zones. Its economic significance has led to intensive
research on this insect, especially in North America.
In Romania the ECB becomes the most harmful pest after panicle emergence, and is found in all maize culture zones. Losses induced reached up to 40% of grain yield [1]. Multianual data indicated averages of 44% plants attacked, 1.1 larvae per plant, 23 180 larvae per hectare and 550 kg/ha yield loss or 7.5% [2].

Under the ecological conditions prevailing in this country, the insect develops one generation per year, except for zones in the south, where a partial second generation occurs. The population of this second generation is less than 20% of the previous generation. The mass flight of the moths of the overwintering generation commonly takes place a few days before panicle emergence. The main attack sites are the larval tunnels inside the stems. The attack on maize is economically important. However, the pest also feeds on hemp and sorghum crops as well as on various species of wild flora.

Owing to the special significance of ECB in maize, a series of investigations was started in Romania, intended to prevent outbreaks of this pest through chemical [3] and biological means [4–8] and by resistant hybrids [9–15].

During recent years, particular attention was paid to the study of synthetic sex pheromones [16–18] and since 1988 to the investigations on male sterilization by radiation [19, 20].

2. MASS REARING OF EUROPEAN CORN BORER

Because all investigations designed to prevent ECB attack are limited by the availability of large numbers of insects, the mass rearing of this insect was essential. Consequently, a series of experiments was performed that established that all diets that had bean meal as a basic ingredient were satisfactory for the growth of the ECB. Further, the development of the insect was not negatively influenced by any of the ingredients. The diet composed of the ingredients shown in Table I was very practical and was used in all investigations on male sterilization. These ingredients are readily available and inexpensive. Depending on the degree of use of the rearing facilities, the cost of 1000 pupae ranged from US $1 to US $5.

When evaluating the performance of O. nubilalis moths reared on an artificial diet for various numbers of generations, it was found that fecundity and longevity values did not exhibit significant differences between generations. Data obtained in an experiment with the 81st generation and in another with the 106th generation were similar to those achieved in the 8th and 9th generations, respectively [15].

It is worth mentioning that the ECB has been mass reared for 152 successive generations, and this is still in progress. Thus, a mass rearing technique has been developed, fitting the Romanian conditions. On the basis of this technique, using a diet composed essentially of indigenous ingredients, the insect can be reared continuously.

With a continuous supply of ECBs it was possible to perform experiments on sterilization by irradiation.
TABLE 1. INGREDIENTS USED IN THE DIET FOR *O. nubilalis* (Hübner)
(1 batch = 4,500 kg)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean meal</td>
<td>372.0 g</td>
<td>8.20</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>160.0 g</td>
<td>3.53</td>
</tr>
<tr>
<td>Brewer's yeast</td>
<td>136.0 g</td>
<td>3.00</td>
</tr>
<tr>
<td>Milk powder substitute for calves</td>
<td>106.0 g</td>
<td>2.34</td>
</tr>
<tr>
<td>Salt mixture for poultry</td>
<td>40.0 g</td>
<td>0.88</td>
</tr>
<tr>
<td>Sugar</td>
<td>133.0 g</td>
<td>2.93</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>13.6 g</td>
<td>0.30</td>
</tr>
<tr>
<td>Sorbic acid</td>
<td>10.0 g</td>
<td>0.22</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>14.8 mL</td>
<td>0.33</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>8.4 mL</td>
<td>0.19</td>
</tr>
<tr>
<td>Agar</td>
<td>40.0 g</td>
<td>0.88</td>
</tr>
<tr>
<td>Water</td>
<td>3500.0 mL</td>
<td>77.20</td>
</tr>
</tbody>
</table>

3. USE OF IONIZING RADIATION FOR PARTIAL STERILIZATION OF ECB

In order to develop the fundamentals of genetic control through F₁ sterility as a component of an integrated control programme for the ECB, investigations were conducted at the Research Institute for Cereals and Industrial Crops at Fundulea. Our work, related to the technique of sterile insect release, has been conducted under the FAO/IAEA co-ordinated research programme Radiation Induced F₁ Sterility in Lepidoptera for Area-Wide Control.

Application of this technique required knowledge on methodology, dose of radiation and biological effects on the insects exposed to radiation, which would ensure the required degree of substerility with minimum detrimental effects to the irradiated insects.

Treatments were performed at the Institute of Nuclear Physics and Engineering in Magurele, using a ⁶⁰Co source, delivering 18.05 Gy/h, in 23 mm diameter and 125 mm high containers, located 15 cm from the cobalt source. These containers held 300 pupae. Insects used in experiments were taken from a laboratory strain that had been reared according to techniques developed at Fundulea.

The preliminary trials involved studies on the role of pupal age and radiation dose on the emergence rate of moths. Irradiation was applied to one to six-day-old
TABLE II. EMERGENCE PERCENTAGE OF IRRADIATED PUPAE

<table>
<thead>
<tr>
<th>Age of pupae (d)</th>
<th>Control</th>
<th>Radiation dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>96.50</td>
<td>5.50</td>
</tr>
<tr>
<td>2</td>
<td>95.25</td>
<td>12.50</td>
</tr>
<tr>
<td>3</td>
<td>91.50</td>
<td>65.75</td>
</tr>
<tr>
<td>4</td>
<td>93.25</td>
<td>93.00</td>
</tr>
<tr>
<td>5</td>
<td>94.00</td>
<td>92.75</td>
</tr>
<tr>
<td>6</td>
<td>96.25</td>
<td>94.50</td>
</tr>
</tbody>
</table>

TABLE III. EFFECT OF VARIOUS GAMMA RADIATION DOSES ON ECB EGG FERTILITY

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Cross varianta</th>
<th>Egg fertility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Control</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>100</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>200</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>250</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>300</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>400</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>500</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>I</td>
</tr>
</tbody>
</table>

a I, irradiated; N, normal.
TABLE IV. STERILITY INHERITANCE OF ECB IN F1 GENERATION COMPARED WITH P1 GENERATION

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>Egg fertility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>200</td>
<td>30.8</td>
</tr>
<tr>
<td>250</td>
<td>19.1</td>
</tr>
<tr>
<td>300</td>
<td>13.5</td>
</tr>
<tr>
<td>Control (N x N)</td>
<td>91.7</td>
</tr>
</tbody>
</table>

* P1, irradiated male crossed with normal female (I x N).

* F1, male descended from irradiated male and normal female (I x N) crossed with normal female.

* I, irradiated; N, normal.

pupae that were held at 28-30°C and 60-80% RH. Adults emerged from the treated pupae on the seventh to ninth day after pupation.

The experiment with irradiated pupae revealed that emergence depended on their age at the time of treatment and the radiation dose. The older the pupae, the less affected was their emergence, compared with the unirradiated check pupae (Table II). Adult emergence was negatively influenced directly in proportion to the radiation dose.

As a result of these preliminary trials, subsequent investigations used only six-day-old pupae, from which adults emerged within the following 48 h.

An experiment was conducted to establish the degree of sterility induced by different radiation doses. Analysis of the data in Table III shows that the percentage of sterility rose in proportion to the increased radiation dose. The two sexes presented different levels of sterility at the same radiation dose; males were more resistant to radiation than females. Complete sterility of females was obtained with 300 Gy, whereas the males were only 86.5% sterile at this dose.

Because pupal sexing is particularly difficult, it is necessary to irradiate both male and female pupae for sterile insect releases. It is required that the partially sterile males be as competitive as the normal ones. The females are completely sterile and unable to generate larvae that would subsequently attack corn plants.

In order to demonstrate the inheritance of sterility of the ECB in the F1 generation, the following experiment was carried out. The normal females were crossed with males treated with 200, 250 and 300 Gy to produce the F1 generation. The F1 males were crossed with normal females, egg hatch being 0.4% at 200 Gy, 0.2% at 250 Gy and 0.0% at 300 Gy (Table IV).
<table>
<thead>
<tr>
<th>Generation</th>
<th>Cross variant*</th>
<th>Egg masses/female</th>
<th>Hatchability (%)</th>
<th>Longevity of adults (d)</th>
<th>Sterile pairs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>P_1</td>
<td>N</td>
<td>N (Co)</td>
<td>7.6</td>
<td>90.5</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>7.7</td>
<td>67.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N (Co)</td>
<td>7.4</td>
<td>88.0</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>N</td>
<td>7.6</td>
<td>53.6</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>A</td>
<td>7.2</td>
<td>59.2</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>6.0</td>
<td>25.4</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N (Co)</td>
<td>6.8</td>
<td>85.3</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>(A × N)</td>
<td>7.2</td>
<td>70.1</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>(N × A)</td>
<td>6.9</td>
<td>80.1</td>
<td>8.3</td>
</tr>
<tr>
<td>F_1</td>
<td>(A × N)</td>
<td>N</td>
<td>6.7</td>
<td>64.0</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>(A × N)</td>
<td>(N × A)</td>
<td>7.1</td>
<td>45.2</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>(A × N)</td>
<td>(A × N)</td>
<td>6.5</td>
<td>38.3</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>N</td>
<td>7.3</td>
<td>68.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>(A × N)</td>
<td>7.0</td>
<td>49.3</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>(N × A)</td>
<td>6.7</td>
<td>32.8</td>
<td>8.1</td>
</tr>
</tbody>
</table>

* N, normal; I, irradiated; A, progeny from irradiated male and normal female (I × N); Co, control.
These data revealed that in the F₁ generation male sterility is complete at 300 Gy and almost complete at 200 and 250 Gy. Compared with the sterility in the F₁ generation (69.2% at 200 Gy; 80.9% at 250 Gy and 86.5% at 300 Gy), the sterility of the F₁ generation was much higher.

F₁ pupae were also irradiated as six-day-old pupae with 100 or 150 Gy. The emerging males were crossed with normal females. The offspring of these crossings were inbred or backcrossed. Data for F₁ and F₂ crosses were recorded for number of egg masses/female, percentage of egg hatch, adult life span and percentage of sterile pairs.

The data in Tables V and VI show no significant lowering of the number of egg masses laid per female in the F₁, F₁ or F₂ generations, after irradiation with 100 and 150 Gy, respectively. In general, the number of egg masses was a little lower when adults descended from the F₁ cross of F × N were inbred.

We failed to obtain a sufficient population to test in the F₂ population descended from F × F₁. Although the number of eggs hatching reached 25.4% for 100 Gy and 0.1% for 150 Gy, the larvae obtained did not reach the adult stage.

In all combinations tested in F₁, hatching was reduced by increasing the radiation dose. The hatching percentage in F₁ was lower in the three groups descending from F × N, when compared with the parent generation. Egg viability in the F₁ generation was obviously reduced, in comparison with the control, for both doses applied, indicating the existence of a recessive lethal effect within these populations. In the F₂ generation, a decrease of egg hatching percentage was also noted in all combinations tested, indicating the inheritance of harmful effects induced by males being irradiated in the parent generation. It is remarkable that groups analysed in the F₂ generation, though more fertile than those in the F₁, still exhibited a noticeable effect of lethal genes. No significant reduction of adult life span was noted in the F₁, F₂, or F₄ generations.

The percentage of sterile couples usually increased in the progeny of irradiated males, reaching the highest values in inbred groups. This experiment showed that the F₁ sterility obtained at 100 Gy was generally less than at 150 Gy. Consequently, a radiation dose of 150 Gy was used for field cage releases.

Experiments performed in 1990, and ongoing at the time of writing (1991) in 3 m × 2 m × 2 m field cages, demonstrated a theoretical possibility of controlling the pest by releases of insects having inherited F₁ sterility (Table VII).

The data in this table demonstrate no significant reductions in the number of egg masses laid by irradiated females, except for group 4. The percentage hatching was lower in all groups using F₁ moths and this effect still persisted in the F₂ generation but disappeared in the F₄ generation.

The percentage of stems attacked and the number of overwintering larvae per stem were correlated with the hatching percentage.

Releases of ECBs in the F₁ generation in field cages demonstrated that F₁ sterility can be used as a part of an integrated control system along with other means of control.
<table>
<thead>
<tr>
<th>Generation</th>
<th>Cross variant<sup>a</sup></th>
<th>Egg masses/ female</th>
<th>Hatchability (%)</th>
<th>Longevity of adults (d)</th>
<th>Sterile pairs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>F<sub>1</sub></td>
<td>N</td>
<td>N (Co)</td>
<td>7.6</td>
<td>90.5</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>N</td>
<td>8.1</td>
<td>58.3</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N (Co)</td>
<td>7.4</td>
<td>88.0</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>N</td>
<td>7.5</td>
<td>42.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>A</td>
<td>8.0</td>
<td>40.7</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>7.1</td>
<td>9.1</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N (Co)</td>
<td>7.7</td>
<td>88.7</td>
<td>7.4</td>
</tr>
<tr>
<td>F<sub>2</sub></td>
<td>N</td>
<td>(A × N)</td>
<td>6.9</td>
<td>60.3</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>(N × A)</td>
<td>7.3</td>
<td>64.7</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>(A × N)</td>
<td>N</td>
<td>8.0</td>
<td>55.9</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>(A × N)</td>
<td>(N × A)</td>
<td>7.5</td>
<td>59.2</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>(A × N)</td>
<td>(A × N)</td>
<td>7.8</td>
<td>33.5</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>N</td>
<td>6.9</td>
<td>60.8</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>(A × N)</td>
<td>8.7</td>
<td>53.2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>(N × A)</td>
<td>(N × A)</td>
<td>7.3</td>
<td>29.9</td>
<td>7.8</td>
</tr>
</tbody>
</table>

^a N, normal; I, irradiated; A, progeny from irradiated male and normal female (I × N); Co, control.
<table>
<thead>
<tr>
<th>Number of variant</th>
<th>Cross variant</th>
<th>Egg masses/female</th>
<th>Egg hatchability (%)</th>
<th>Stems damaged (%)</th>
<th>Number of hibernating larvae/stem</th>
<th>Kernel yield/plant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isolated control</td>
<td>2.5</td>
<td>42.5</td>
<td>76</td>
<td>1.92</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>F₁⁺</td>
<td>2.7</td>
<td>20.3</td>
<td>4</td>
<td>0.04</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>F₁⁺</td>
<td>2.6</td>
<td>19.5</td>
<td>8</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>F₁⁺</td>
<td>F₁⁺</td>
<td>1.9</td>
<td>3.7</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>F₂⁺</td>
<td>N</td>
<td>2.8</td>
<td>25.7</td>
<td>36</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>F₂⁺</td>
<td>F₂⁺</td>
<td>2.3</td>
<td>14.2</td>
<td>16</td>
<td>0.28</td>
</tr>
<tr>
<td>7</td>
<td>F₄⁺</td>
<td>F₄⁺</td>
<td>2.5</td>
<td>40.3</td>
<td>80</td>
<td>1.80</td>
</tr>
<tr>
<td>8</td>
<td>Isolated control</td>
<td>—</td>
<td>33.3</td>
<td>8</td>
<td>0.08</td>
<td>58</td>
</tr>
</tbody>
</table>

* Progeny from P males irradiated with dose of 150 Gy and normal female. N, normal (unirradiated).
4. USE OF SYNTHETIC SEX PHEROMONES IN BIOLOGICAL
AND ECOLOGICAL RESEARCH ON ECB

Taking into account the possibility of using F₁ sterility as a component of an
integrated control system for the ECB, great attention was paid to elucidating its
flight dynamics in the field by means of pheromone traps.

TABLE VIII. NUMBER OF *O. nubilalis* (Hübner) MALES CAUGHT/TRAPPED
IN 1987

<table>
<thead>
<tr>
<th>Locality</th>
<th>Period</th>
<th>Type of pheromone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E5<sup>a</sup></td>
</tr>
<tr>
<td>Lovrin</td>
<td>13 May – 8 Sep.</td>
<td>12.25</td>
</tr>
<tr>
<td>Fundulea</td>
<td>4 June – 17 Sep.</td>
<td>30.00</td>
</tr>
<tr>
<td>Valu Tranai</td>
<td>4 June – 17 Sep.</td>
<td>28.75</td>
</tr>
<tr>
<td>Podu Iloici.</td>
<td>24 June – 3 Aug.</td>
<td>10.00</td>
</tr>
<tr>
<td>Turda</td>
<td>1 June – 25 Sep.</td>
<td>4.00</td>
</tr>
</tbody>
</table>

^a Average value, 17.00.
^b Average value, 15.05.

TABLE IX. NUMBER OF *O. nubilalis* (Hübner) MALES CAUGHT/TRAPPED
IN 1988

<table>
<thead>
<tr>
<th>Locality</th>
<th>Period</th>
<th>Type of pheromone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E5<sup>a</sup></td>
</tr>
<tr>
<td>Lovrin</td>
<td>6 May – 2 Sep.</td>
<td>15.35</td>
</tr>
<tr>
<td>Fundulea</td>
<td>6 June – 6 Sep.</td>
<td>28.00</td>
</tr>
<tr>
<td>Valu Tranai</td>
<td>2 June – 28 Sep.</td>
<td>51.00</td>
</tr>
<tr>
<td>Oradea</td>
<td>2 June – 25 Aug.</td>
<td>36.00</td>
</tr>
<tr>
<td>Podu Iloici.</td>
<td>8 June – 15 Aug.</td>
<td>20.66</td>
</tr>
<tr>
<td>Turda</td>
<td>20 May – 29 Aug.</td>
<td>5.66</td>
</tr>
<tr>
<td>Suceava</td>
<td>16 June – 1 Sep.</td>
<td>7.66</td>
</tr>
</tbody>
</table>

^a Average value, 24.33.
^b Average value, 7.78.
<table>
<thead>
<tr>
<th>Locality</th>
<th>Period</th>
<th>Type of pheromone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>e5(^a)</td>
</tr>
<tr>
<td>Lovrin</td>
<td>13 June – 12 Sep.</td>
<td>32.50</td>
</tr>
<tr>
<td>Fundulea</td>
<td>24 May – 14 Sep.</td>
<td>50.75</td>
</tr>
<tr>
<td>Valu Traian</td>
<td>17 June – 13 Sep.</td>
<td>37.75</td>
</tr>
<tr>
<td>Oradea</td>
<td>13 June – 31 Aug.</td>
<td>27.00</td>
</tr>
<tr>
<td>Podu Iloaiei</td>
<td>1 June – 17 Aug.</td>
<td>42.50</td>
</tr>
<tr>
<td>Turda</td>
<td>22 May – 11 Sep.</td>
<td>101.66</td>
</tr>
<tr>
<td>Suceava</td>
<td>15 June – 31 Aug.</td>
<td>11.25</td>
</tr>
</tbody>
</table>

\(^a\) Average value, 43.34.

\(^b\) Average value, 6.65.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Type of pheromone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e5(^a)</td>
</tr>
<tr>
<td>Lovrin</td>
<td>20.02</td>
</tr>
<tr>
<td>Fundulea</td>
<td>36.25</td>
</tr>
<tr>
<td>Valu Traian</td>
<td>41.16</td>
</tr>
<tr>
<td>Oradea</td>
<td>31.50(^a)</td>
</tr>
<tr>
<td>Podu Iloaiei</td>
<td>34.39</td>
</tr>
<tr>
<td>Turda</td>
<td>37.10</td>
</tr>
<tr>
<td>Suceava</td>
<td>9.45(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Two year results.

The results of Tables VIII–XI showed the relatively high number of ECB males captured throughout the experimental period, this varying with locality and pheromone variant used. In Romania, both cis and trans phenotypes of this species are present. The latter seems to be missing in the central and northeastern zones (Podu Iloaiei, Turda, Suceava). The trans phenotype was generally less numerous.
Even though the synthetic sex pheromone developed in Romania is less efficient than a sample of pheromone obtained from the United States of America, it can be used to record the flight of ECB males, thus providing flight curves for the first and second generations.

We stress that in Romania, the first generation, occurring in the second half of June, is particularly important. The second generation, specific to the southern part of the country, appears in August, and is practically devoid of damaging potential. This generation is significant only for the successive corn crops on which numerous pest populations congregate.

Sex pheromones are now used in ecological studies, mainly regarding the migration and evaluation of pest populations.

The development of a technique for sterile insect releases assumes that there are some practical means to evaluate insect populations existing in a certain area. Our results with pheromone traps for *O. nubilalis* show this is possible.

5. LABELLING ADULTS FOR RELEASE AND RECAPTURE

Attempts to label adults with fuchsin or fluorescent dyes were successful in cages but failed in the field. This was due to the trauma to which insects were exposed, and to the relatively tedious technique required to visualize the marker.

At present, Calco red dye is used in investigations on the pest dynamics and estimation of the natural population. This marker worked very well in our trials in labelling adults obtained from larval rearing on the regular diet, to which the dye had been added.

TABLE XII. EFFECT OF CALCO RED DYE ADDED TO THE DIET OF THE ECB

<table>
<thead>
<tr>
<th>Dye concentration⁶</th>
<th>Number of pupae/rearing box⁶</th>
<th>Adult emergence (%)</th>
<th>Egg masses/female</th>
<th>Egg fertility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>105.25</td>
<td>82.50</td>
<td>3.7</td>
<td>90.30</td>
</tr>
<tr>
<td>0.01</td>
<td>98.00</td>
<td>78.25</td>
<td>2.8</td>
<td>91.50</td>
</tr>
<tr>
<td>0.02</td>
<td>99.75</td>
<td>78.00</td>
<td>3.1</td>
<td>85.70</td>
</tr>
</tbody>
</table>

⁶ Dye was diluted in sunflower oil at a rate of 10 mL oil for 1 g of dye.
⁷ Fifteen egg masses per rearing box.
No significant differences were noted in preliminary tests between the control group and groups with various amounts of dye (0.01 and 0.02 g/mL) in terms of the number of pupae obtained per rearing box, percentage of moths emerged, number of egg masses per female and egg fertility (Table XII).

6. CONCLUSIONS

In order to study the possibility of using radiation induced F₁ sterility for the control of the ECB, the establishment of mass rearing on an artificial diet under laboratory conditions became imperative. As a result of a large range of experiments, a convenient mass rearing technique and an artificial diet, composed essentially of indigenous ingredients, have been developed. When evaluating the performance of O. nubilalis moths reared for various numbers of generations on an artificial diet, we found that the fecundity and longevity values did not exhibit significant differences between generations.

Investigations regarding the effect of various gamma radiation doses on ECB pupae for F₁ sterility indicated that emergence depended on their age at treatment, and on the radiation dose. In older pupae emergence was greatest at the lower dose. The degree of sterility rose in proportion to the increased radiation dose. The two sexes of ECB presented different levels of sterility at the same radiation dose; males were more resistant to radiation than females. Complete sterility of females was obtained with 300 Gy. Males had partial sterility (86.5%) at the same dose.

Experiments on sterility inheritance of ECB irradiated at substerilizing doses revealed that the F₁ generation sterility was higher than the P₁ generation sterility. In the F₂ generation, inherited sterility was also noted, but at a lower rate than in the F₁ generation.

Data obtained in field cage releases, using a radiation dose of 150 Gy, demonstrated the possibility of controlling the pest by releases of insects having inherited F₁ sterility.

In order to develop a sterile insect release technique, attention was paid to the investigations on the ECB dynamics and the estimation of the natural population by means of pheromone traps and markers. It was found that the synthetic sex pheromone developed in Romania can be used to monitor male flight. Likewise, Calco red dye worked very well in labelling adults obtained from larval rearing on a regular diet, to which dye was added.

7. PROSPECTS

Judging from the above mentioned facts, it seems that the inherited F₁ sterility of the ECB could be a component of an integrated control system along
with biological control agents (Bacillus thuringiensis, Trichogramma spp.) and resistant corn hybrids.

For that purpose, the following detailed investigations are needed:

(a) Mark and recapture of males in order to establish the dispersal capacity and level of population in certain corn growing areas;
(b) Field cage releases including interaction of different factors (the inherited \(P_t \) sterile, \(B. \) thuringiensis, Trichogramma spp., tolerant corn hybrids);
(c) Determination of the most efficient ratio between wild and \(F_1 \) males in field cage and large scale releases;
(d) Assessment of the impact of inherited sterility on seasonal populations of ECB in a small corn growing area encircled by forest;
(e) Determination of the effects of inherited sterility as a function of distance from release sites;
(f) Determination of the effects of inherited sterility on the ability of \(O. \) nubilalis to overwinter;
(g) Studies on inheritance of radiation induced chromosomal aberrations;
(h) Research on hybridization of the ECB (\(O. \) nubilalis) and the Asian corn borer (\(O. \) furnacalis);
(i) Investigate genetic sex linked markers for ECBs.

REFERENCES

STUDIES ON CHROMOSOMAL ABERRATIONS
AND INHERITED STERILITY IN ASIAN CORN BORER,
Ostrinia furnacalis (Guenee)

H.R. ZHANG, Y.Y. LI, W. KANG, H.S. WANG, W. ZHANG
Department of Pest Control,
Institute for the Application of Atomic Energy,
Chinese Academy of Agricultural Sciences,
Beijing, China

Abstract

STUDIES ON CHROMOSOMAL ABERRATIONS AND INHERITED STERILITY IN ASIAN CORN BORER, Ostrinia furnacalis (Guenee).

F₁ sterility and chromosomal aberrations in the Asian corn borer, Ostrinia furnacalis (Guenee), were induced by different doses of gamma radiation. The chromosome number of the Asian corn borer is n = 31 pairs. The results showed that chromosomal aberrations in spermatocytes of the F₁ generation were directly related to high F₁ sterility; however, the sterility was observed for only one generation and fertility was recovered in the next generation.

1. INTRODUCTION

The Asian corn borer (ACB), Ostrinia furnacalis (Guenee), is a destructive insect pest in maize production. Many studies have been conducted to find ways of controlling it. One of these studies, inherited sterility (F₁ sterility), is a promising management system and has shown its advantage compared with other conventional methods. Similar to other lepidopterous insects, ACB is radioresistant, so that higher radiation doses are needed to induce sterility. However, research has shown that high radiation doses significantly reduce the longevity, flight ability and mating competition of irradiated insects. It has been shown that the lower the radiation dose used, the higher the competitive ability of the treated insects. However, by reducing the dose in order to alleviate somatic damage, sterility was also reduced, which poses a dilemma. Radiation injures not only the somatic cells of the insect but the chromosomes in the germ-cells as well. It is well known that the chromosome contains the genetic material, so the severity and quantity of damage to germ-cells would directly affect the fertility of irradiated insects.

Preliminary studies relating to different radiation doses, to induced sterility and to chromosomal aberrations in ACB are reported.
2. MATERIALS AND METHODS

The ACB were reared in a laboratory using an artificial diet at room temperature and 50–70 RH. Pupae were irradiated with gamma radiation at doses of 100, 150, 200 and 250 Gy, one or two days before adult emergence. Adults were immediately paired with normal individuals of the opposite sex. Eggs were collected daily and then cages of ACB with different treatments were reared and the fertility was determined. The rates of hatching, pupation and emergence were calculated in each generation.

The chromosome slides were prepared as described in Sections 2.1 and 2.2.

2.1. Air dried method

The larval testes of third to fifth instars from 35–60 individuals were dissected in insect-Ringer’s solution, transferred into 0.7% hypotonic sodium citrate solution and left for 10 min and then divided into pieces. The germ-cells were sedimented by centrifugation for 10 min at 800–1000 rev./min and were fixed in Carnoy solution (with a ratio of absolute ethyl alcohol to glacial acetic acid of 3:1) for 10 min and sedimented again. Then they were fixed again in Carnoy solution and sedimented once more. The air dried preparations were made from the final fixed suspension. Some of the suspension was taken with a small pipette and dropped on a cold slide that was chilled in ice-water. The preparations were dried at room temperature and stained with 10% Giemsa in Sorensen’s phosphate buffer (pH 6.8) for 20–30 min. Then they were examined and photographed.

2.2. Cell suspension method

Another chromosome preparation method was also tried because it required fewer larvae compared with the method mentioned above. The larval testes from third to fifth instars — 10–20 individuals for each treatment — were dissected in insect-Ringer’s solution, transferred into Carnoy solution and fixed for about 10 min. Then one to two droplets of 45% glacial acetic acid were dropped on the slide, which was preheated to about 40°C. Four to six fixed testes were placed into acetic acid, and the testes squashed to release the germ-cells. Finally, some Carnoy solution was dropped on the slide. The slides were stained with 10% Giemsa in Sorensen’s phosphate buffer (pH 6.8) for 20–30 min, after which they were dried at room temperature. They were then examined and photographed.
3. RESULTS AND DISCUSSION

3.1. Chromosome analysis

Chromosomes of ACB, like many other species of Lepidoptera, are either polycentric or possess diffuse centromeres. The analysis of chromosomes showed that the ACB has \(n = 31 \) pairs of chromosomes (Fig. 1). Among the individual

\[\text{FIG. 1. Meiotic metaphase chromosomes of the ACB: (a) normal chromosomes, (b)-(f) abnormal chromosomes (e.g. chains in (b), (c), (d), (f) and fragments in (e)).}\]
Table I. Comparison of chromosomal aberrations in F₁ and F₂ males with different treatments

(♂ was the F₁ sex irradiated and the metaphase rate was about 0.04% of examined cells)

<table>
<thead>
<tr>
<th>Dose (Gy) to parent*</th>
<th>Number of metaphases examined</th>
<th>Number of abnormal metaphases</th>
<th>Number of normal metaphases</th>
<th>Abnormality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁ generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>17</td>
<td>13</td>
<td>4</td>
<td>76.5</td>
</tr>
<tr>
<td>150</td>
<td>41</td>
<td>32</td>
<td>9</td>
<td>78</td>
</tr>
<tr>
<td>200</td>
<td>23</td>
<td>19</td>
<td>4</td>
<td>82.6</td>
</tr>
<tr>
<td>250</td>
<td>20</td>
<td>17</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>F₂ generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>53</td>
<td>12</td>
<td>41</td>
<td>22.7</td>
</tr>
<tr>
<td>150</td>
<td>57</td>
<td>15</td>
<td>42</td>
<td>26.3</td>
</tr>
<tr>
<td>200</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>250</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* No data were obtained with 200♂F₂ and 250♂F₂ because of F₁ sterility.

Chromosomes of ACB there were no significant differences in length, and they were dot-like chromosomes. It is difficult to measure the length of the chromosome with conventional chromosome analysis methods because they are so small that the deviations of the chromosome in different cells may be as long as the length of the chromosome, or even longer. This polycentric type of chromosome structure could explain the radioresistance of the ACB. In the common chromosome structure, each chromosome has only one centromere. Radiation induced chromosome breaks in sperm with monocentric chromosomes result in chromosomal fragments without a centromere that are lost during cell division and lead to dominant lethal mutations. However, with the polycentric chromosome, which has more than one region for spindle fibre attachment, the fragments induced by radiation will very probably have at least one centromere and so can function as a normal chromosome, so fewer dominant lethal mutations would be expected.

Many types of chromosomal aberrations were found in the progeny produced by irradiated parents, such as fragments, chains and rings. The study showed that there were significant differences between the F₁ and F₂ generations in the number of chromosomal aberrations. About 80% of the metaphases examined were abnormal or had chromosomal aberrations in the F₁ generation, while only about 20% were
in the F₂ generation (Table I). In addition, more severe abnormalities in chromosomes were found in the F₁ generation than in the F₂ generation. For example, in the F₁ generation a chain could involve more than seven individual chromosomes but only two to three chromosomes in the F₂ generation (Fig. 2). Table I also shows that there were no significant differences between the different treatments. Table I shows only percentage abnormal metaphases among the total number of metaphase cells examined. No attempt was made to quantify the degree of abnormality in individual cells.

Broken chromosomes can reunite in many ways. A typical chromosomal rearrangement is the reciprocal translocation in which parts of two different broken chromosomes have rejoined. In general, most such reciprocal translocations can be transmitted to the offspring because each of them has a centromere in them. However, some chromosomal rearrangements may occur with one or two acentric fragments (without any centromeres) and dicentric chromosomes (one chromosome with two centromeres). Such dicentric chromosomes can produce a bridge during division which, when broken, may result in deficiency or duplication of genetic material in daughter cells. The cells will die. That is the usual action of dominant lethal mutations with the monocentric chromosome structure. However, it is not necessarily a problem with polycentric chromosome structures in mitotic divisions when such a chromosome rearrangement occurs because of its specific chromosome structure. However, it is fatal to a progeny in meiosis because this type of rearrangement produces gametes with deficient or duplicated genetic material that are contained in the germ-cells and this condition is lethal to embryos. This phenomenon is the main cause of F₁ sterility.
3.2. Inherited sterility in F₁ and F₂ generations of ACB

Table II shows that the sterility of the P generation became higher as the dose increased while 200 and 250 Gy treated males showed no significant difference. However, the sterility for all the different treatments increased sharply from the P generation to the F₁ generation, even though lower irradiation doses were used in the parents, such as 100 and 150 Gy (Table III). This showed that the above assertion that chromosome aberrations are the major cause of F₁ sterility was the best explanation of such results. Thus, F₁ sterility is related to chromosome aberrations in F₁.

TABLE II. COMPARISON OF EGG HATCH WHEN ACB MALES ARE TREATED WITH VARIOUS DOSES OF GAMMA RADIATION
(♂ was the P₁ sex irradiated)

<table>
<thead>
<tr>
<th>Dose (Gy) to parent</th>
<th>Number of eggs</th>
<th>Number of eggs hatched</th>
<th>Eggs hatched (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3210</td>
<td>3107</td>
<td>96.8</td>
</tr>
<tr>
<td>100</td>
<td>2578</td>
<td>1115</td>
<td>43.3</td>
</tr>
<tr>
<td>150</td>
<td>3556</td>
<td>1505</td>
<td>42.3</td>
</tr>
<tr>
<td>200</td>
<td>3238</td>
<td>902</td>
<td>27.9</td>
</tr>
<tr>
<td>250</td>
<td>3158</td>
<td>860</td>
<td>27.2</td>
</tr>
</tbody>
</table>

TABLE III. INHERITED STERILITY IN THE F₁ ACB FROM PARENTS WITH DIFFERENT TREATMENTS
(♂ was the P₁ sex irradiated)

<table>
<thead>
<tr>
<th>Dose (Gy) to parent</th>
<th>F₁ sex</th>
<th>Number of eggs</th>
<th>Number of eggs hatched</th>
<th>Eggs hatched (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>2794</td>
<td>2655</td>
<td>95</td>
</tr>
<tr>
<td>100</td>
<td>♂</td>
<td>1615</td>
<td>450</td>
<td>27.9</td>
</tr>
<tr>
<td>100</td>
<td>♀</td>
<td>1260</td>
<td>309</td>
<td>24.5</td>
</tr>
<tr>
<td>150</td>
<td>♂</td>
<td>1180</td>
<td>91</td>
<td>7.7</td>
</tr>
<tr>
<td>150</td>
<td>♀</td>
<td>1183</td>
<td>297</td>
<td>25.1</td>
</tr>
<tr>
<td>200</td>
<td>♂</td>
<td>1444</td>
<td>203</td>
<td>14.1</td>
</tr>
<tr>
<td>200</td>
<td>♀</td>
<td>823</td>
<td>27</td>
<td>3.3</td>
</tr>
<tr>
<td>250</td>
<td>♂</td>
<td>735</td>
<td>7</td>
<td>0.95</td>
</tr>
<tr>
<td>250</td>
<td>♀</td>
<td>1041</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
TABLE IV. INHERITED STERILITY* IN THE F₂ ACB FROM PARENTS OF F₁
(* was the P₁ sex irradiated)

<table>
<thead>
<tr>
<th>Dose (Gy) to parent*</th>
<th>F₁ sex outcrossed</th>
<th>F₂ sex outcrossed</th>
<th>Number of eggs</th>
<th>Number of eggs hatched</th>
<th>Eggs hatched (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>—</td>
<td>4638</td>
<td>4210</td>
<td>93</td>
</tr>
<tr>
<td>100</td>
<td>♀</td>
<td>♀</td>
<td>1424</td>
<td>575</td>
<td>40.4</td>
</tr>
<tr>
<td>100</td>
<td>♀</td>
<td>♂</td>
<td>5359</td>
<td>4958</td>
<td>93</td>
</tr>
<tr>
<td>100</td>
<td>♂</td>
<td>♀</td>
<td>586</td>
<td>511</td>
<td>94</td>
</tr>
<tr>
<td>100</td>
<td>♂</td>
<td>♂</td>
<td>4788</td>
<td>3751</td>
<td>78.3</td>
</tr>
<tr>
<td>150</td>
<td>♀</td>
<td>♀</td>
<td>197</td>
<td>176</td>
<td>89.3</td>
</tr>
<tr>
<td>150</td>
<td>♂</td>
<td>♀</td>
<td>1651</td>
<td>1217</td>
<td>93.7</td>
</tr>
<tr>
<td>150</td>
<td>♂</td>
<td>♂</td>
<td>3457</td>
<td>3159</td>
<td>91.4</td>
</tr>
</tbody>
</table>

* No data on the F₃ generation with 200♂ F₁♂ × N ♀ and 250♂ F₁♂ × N ♀ treatments were obtained because of F₁ sterility. No F₃ progeny were produced in lines where the male parent had received 200 or 250 Gy.

either to the quantity of germ-cells with chromosome aberrations or to the abnormal degree of chromosomes, in other words, the frequency of chromosomal rearrangements induced by radiation. The results in Table IV show that the fertility of the F₂ generation recovered greatly regardless of the dose used in the P generations. The egg hatching rate of the F₃ generation from different treatments was similar. It was inferred that few chromosome rearrangements were transmitted in F₂ adult progeny because most of the F₂ generation died as a result of duplications or deficiencies of genetic material caused by chromosomal rearrangements.

BIBLIOGRAPHY

GYPSY MOTH F₁ STERILITY PROGRAMME: CURRENT STATUS

V.C. MASTRO
Department of Behavior and Ecology,
Otis Methods Development Center,
US Department of Agriculture,
Otis Air Base,
Otis, Massachusetts,
United States of America

Abstract

GYPSY MOTH F₁ STERILITY PROGRAMME: CURRENT STATUS.

In the United States of America the gypsy moth, Lymantria dispar (L.), is progressively invading the country from its original site of introduction in Massachusetts. The use of F₁ sterility is being developed to eradicate the isolated infestations that occur sporadically far beyond the generally infested zone. F₁ sterility is also being developed to retard the rate of expansion of the generally infested zone. The optimal dose to induce F₁ sterility appears to be 80 GY of gamma rays. Pilot trials are being carried out in which treated male pupae are distributed into the wild, or in which the F₁ progeny of treated males and normal females are distributed during the egg stage. The latter approach permits mass rearing during most of the year and the stockpiling of diapausing eggs, as well as simplified shipment and distribution. In the past, mass rearing proved to be somewhat unreliable because of the occurrence of 'abnormal performance syndrome' or APS. This syndrome is characterized by a poor hatch, high mortality of neonates and retarded larval development. The syndrome is diet related, and can be avoided by fastidious attention to meeting the nutritional requirements of the rearing stocks. A special container was designed for the shipment and release of pupae. Also, a special formulation of the pheromone was developed that appears to permit the correlation of trap catches with local egg mass densities. Released males are marked internally with Calco red dye or externally with a fluorescent dye. Also, a morphometric method has been developed to distinguish between wild and released males. F₁ males mate readily, but the frequency of sperm transfer is low. Nevertheless, wild females mated to F₁ males appear to behave as though they had been mated to normal males.

The gypsy moth, Lymantria dispar (L.), was introduced into the United States of America in Medford, Massachusetts, in 1969. Since that time it has greatly expanded its range at the rate of 16-24 km a year through natural spread. Currently it is one of the most important forest pests in the USA. During the last major outbreak in 1981 this pest defoliated over 5 million hectares. Within the generally infested area, emphasis is placed on reducing the impact of defoliation. Along the leading edge of the infested area, current thinking is that a programme should be in
place to slow or contain the natural spread. An additional problem presented by the gypsy moth is that populations are often transported from the generally infested areas artificially by human activities. Most often these transported populations are associated with the movement of household articles and are found in residential areas. Annually, to detect these transported populations 300,000 pheromone baited traps are deployed. Current thinking is that two types of populations are good targets for control using the sterile insect technique: isolated populations in residential areas and sparse populations along the leading edge of the generally infested area.

Broadcast applications of pesticides in residential areas are becoming less acceptable; the development of alternative target specific tactics such as the sterile insect technique have become a high priority for the United States Department of Agriculture. In addition, in discussions about a proposed containment programme for the leading edge of the generally infested area, it becomes apparent that target specific, environmentally sensitive and socially acceptable control tactics will be a necessary component of any integrated programme.

Basic biology

A brief description of the insect biology of the gypsy moth will illustrate why the F₁ sterility programme has evolved in the way it has.

The gypsy moth is univoltine and overwinters as diapausing eggs. Hatching occurs in early spring about the time of bud breaking of some of its *Quercus* hosts. Male larvae generally have five instars and females six. Later, instars of both sexes normally feed at night and migrate to resting locations on tree holes or on the ground for the day. Insects normally pupate near larval resting sites. In sparse populations these pupation sites are usually hidden locations. The pupal period lasts for 12–14 d. Adults do not feed and are active during the day. Males, which normally only live for 2–3 d, may mate several times on any given day. Females, which normally mate only once, begin oviposition within a half-hour of completing mating and normally only oviposit one egg mass containing from 200 to 1600 eggs. Sperm transport from the bursa to the spermatheca is rapid and occurs within minutes of mating.

Radiation biology

Basically, 150 Gy administered to late stage male pupae is completely sterilizing. To induce nearly total sterility in the F₁ generation, 100 Gy administered to males is adequate. Lowering the dose to 80 Gy produces a nearly totally sterile F₁ generation but has the advantage of producing a higher number of more competitive insects.

Currently we are evaluating the F₁ sterility technique for use in these two settings; again for eradication of isolated populations and for suppression of popula-
tions along the leading edge of the generally infested area. Two different application

techniques have been used on a pilot scale:

(a) Deployment of male pupae treated with a substerilizing dose of radiation;
(b) Broadcasting F₁ progeny (egg stage) of irradiated males and normal females.

In the past both techniques have been used successfully to eradicate isolated infesta-
tions. In the summer of 1991 direct comparisons were to be made between these two
release techniques in replicated blocks in sparse populations along the leading edge
of the generally infested area.

Experience has shown that both techniques have advantages and disadvantages.
Releases of irradiated pupae are easily timed to coincide with native male flight and
theoretically offer a greater suppressive effect for dollars spent in production. In
addition, a non-feeding stage of the insects is being released and, therefore, damage
is not inflicted on the forest resource. Male gypsy moths, however, are short lived
and must be released continuously over the flight period of approximately four
weeks. Also, the production of insects is confined to a very narrow time window
and, therefore, the rearing facility is being underutilized. The logistics of shipment
and field release are also difficult. The release of F₁ eggs has the advantage of a
single release in the spring prior to the wild egg hatch. In addition, the release of
eggs permits a wider production window because diapausing eggs can be stored.
Finally, the logistics of shipment and release are simplified with egg releases. The
timing of release, however, is difficult, a potentially damaging stage is being
released and the suppressive effects for dollars spent on production are theoretically
less.

Currently we are looking into a number of areas to improve the use of tech-
niques or to ease the evaluation burden.

Rearing

In the past we have had a major problem with our rearing effort to produce
an effective competitive insect at a reasonable cost. The term we are currently using
to describe this problem is abnormal performance syndrome (APS). APS is charac-
terized by failure of eggs to hatch, neonate mortality and retarded larval develop-
ment. This problem has hindered the rearing programme in the past to the point of
delaying further sterile F₁ development work. An interagency team was formed to
solve this perplexing problem. Progress has been made in isolating the cause(s) of
this intermittent rearing problem and all experimental results to date indicate that it
is diet related. The importance of these findings is paramount to the success of the
F₁ sterile programme because it has been shown that the nutrition of the parental
generation directly affects the performance of their F₁ progeny. In general terms,
the importance of the rearing component of any sterility programme cannot be over-
stressed. In addition, different laboratory production strains of gypsy moth are being
developed and evaluated for their competitiveness.
Release technology

To address our problems with synchronizing the F1 egg hatch with the wild hatch, we are exploring several options. Currently we are storing F1 eggs on the site to be treated the following year. The results of past experimental work using this technique are promising. A wide variety of field egg placement dates resulted in a spring egg hatch synchronous with the wild egg hatch. In addition, we are experimenting with various laboratory holding conditions that will shorten or prolong the holding period and still provide a synchronous hatch and competitive insects. Basic studies of gypsy moth diapause are also being conducted to understand better the mechanisms involved so that the wild hatch can be better predicted.

In 1991 a new release container was designed for pupal release. This container is used for both shipment and release, and its use has eased the burden on both operations.

Population characterization

The characterization of the distribution and density of low level populations is difficult. This information is important so that adequate numbers of sterile insects can be released to achieve the desired overflooding ratios without wasting valuable resources. In isolated populations, pheromone trapping of males has proven valuable for describing the population distribution and estimating the egg mass density. In the generally infested area, however, a relationship between males in traps and egg mass density has eluded investigators. Recently, a new low release pheromone dispenser has been developed. Captures in traps baited with this dispenser in 1990 field trials were highly correlated with local egg mass density when the traps were deployed in sparse populations along the leading edge of the generally infested area. These findings may allow more precise targeting of these populations at less expense than egg mass surveys.

Evaluation of treatment

Currently a variety of techniques are used to evaluate the impacts of releases. When irradiated male pupae are released the relative mating success or response to a pheromone can be measured by either observing males visiting monitor females (or the resulting egg masses) or by examining males in traps. Males are easily marked, either internally by mixing Calco oil red in the larval diet or externally by using fluorescent dust. Evaluation of the impact of the sterile F1 generation, however, is more cumbersome when either the egg release or the pupal release strategies are used. Currently we are using a variety of techniques to evaluate the relative survival and competitiveness of the F1 generation. These include male chromosome analysis, mating (egg mass) evaluation and male trapping.
We have been investigating morphometric techniques to identify the males captured in traps, and the results, although showing some promise, have not conclusively demonstrated the utility of this technique. A pure strain has been selected from laboratory cultures to determine the relative abundance of marked individuals.

We are also closely scrutinizing sperm transfer by normal and sterile laboratory males (irradiated and F₁ progeny). To date, we have found a higher incidence of sperm fragmentation in laboratory reared males and low amounts of sperm transfer by F₁ males. Ongoing mating studies have not demonstrated that F₁ males mate less often or do not elicit the mated response from females. We plan to continue our development activities. In addition, we shall treat approximately 200 hectares using the pupal release technique. We also hope that target isolated populations can be identified that we can treat with the F₁ egg release technique. We envisage the future of the sterile insect technique in gypsy moth control as being one tool, among others, that will offer the land manager advantages over pesticides in particular situations.
CROSSING EXPERIMENTS BETWEEN EUROPEAN CORN BORER, *Ostrinia nubilalis* (Hübner), AND ASIAN CORN BORER, *Ostrinia furnacalis* (Guenee), TO EXPLORE THE POSSIBILITY OF HYBRID STERILITY

H.S. ZHANG, Y.Y. LI, Q.R. LIU, H. WANG, W. KANG
Department of Pest Control,
Institute for Application of Atomic Energy,
Chinese Academy of Agricultural Sciences,
Beijing, China

Abstract

CROSSING EXPERIMENTS BETWEEN EUROPEAN CORN BORER, *Ostrinia nubilalis* (Hübner), AND ASIAN CORN BORER, *Ostrinia furnacalis* (Guenee), TO EXPLORE THE POSSIBILITY OF HYBRID STERILITY.

In individual pair tests it was possible to obtain progeny from all possible combinations of males and females of the European corn borer, *Ostrinia nubilalis* (Hübner), and the Asian corn borer, *Ostrinia furnacalis* (Guenee). In most instances, the sex ratio of the progeny was skewed in favour of the males. In all crosses, the egg hatch was in the normal range. No evidence was found for the existence of hybrid sterility in the F₁ progeny of these crosses.

1. PRELIMINARY CROSSING EXPERIMENTS BETWEEN EUROPEAN CORN BORER AND ASIAN CORN BORER

One virgin female and one male European corn borer (ECB), collected from Yining City, Xinjiang Province in northwestern China and Hebei Province in northern China, were each crossed with an Asian corn borer (ACB) placed in a cage that was enclosed in a mesh (7 cm × 7 cm × 10 cm), given only water and kept at 28°C in an 8D:16L (D, dark; L, light) photoperiod at 80% RH. Several single pair cages were set up (Table I). The number of eggs laid was recorded for 6–7 d and dead females were dissected to check for spermatozoa. The eggs were incubated at 28°C for 3 d, then caged in larva rearing boxes that contained an artificial larva diet. Pupation started after 18–20 d at 28°C and 80% RH. The sex ratio of the F₁ progeny was observed in approximate terms. The results are shown in Table I.

The results indicated that only a few pairs mated and laid eggs. It was very interesting to note that the sex ratio of the F₁ progeny from the European females crossed with the Asian males was 1:99 in favour of the male.
TABLE I. PRELIMINARY CROSSING EXPERIMENTS BETWEEN THE ACB AND THE ECB IN 1989

<table>
<thead>
<tr>
<th>Cross</th>
<th>Number of pairs not laying eggs</th>
<th>Number of pairs laying eggs</th>
<th>Rate of mating (%)</th>
<th>Eggs laid per mated female</th>
<th>Hatching rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB × ACB</td>
<td>17</td>
<td>5</td>
<td>22.70</td>
<td>135.6</td>
<td>85.55</td>
</tr>
<tr>
<td>ACB × ECB</td>
<td>23</td>
<td>5</td>
<td>17.86</td>
<td>245.4</td>
<td>76.70</td>
</tr>
<tr>
<td>ACB × ACB</td>
<td>0</td>
<td>8</td>
<td>100</td>
<td>447.3</td>
<td>92.10</td>
</tr>
<tr>
<td>ECB × ECB</td>
<td>1</td>
<td>7</td>
<td>87.5</td>
<td>217.4</td>
<td>95.70</td>
</tr>
</tbody>
</table>

\[\chi^2 = 25.25, \chi^2_{0.05,3} = 7.81, \chi^2_{0.01,3} = 11.34, \chi^2 > \chi^2_{0.01,3}. \]

2. CROSSING EXPERIMENTS BETWEEN ECB AND ACB IN 1991

European corn borers were collected from Jiuhe county, Xinjiang Province, in northwestern China adjacent to the border with the former USSR. Asian corn borers were collected from Hebei Province in northern China. The handling procedures were the same as with the preliminary tests carried out in 1989. The results (Table II) indicated that there was very little reproductive isolation between the ECB and the ACB (see Table II). The sex ratio of the F₁ progeny was skewed: 1.35♂:1♀ for F₁ (♀ ECB × ♂ ACB), 1.46♂:1♀ for F₁ (♀ ACB × ♂ ECB) and 0.93♂:1♀ for the control (♀ ACB × ♂ ACB). The backcross test of the F₁ progeny with the ACB adults showed that the hatching rates in all four mating groups were very high — 82.37% for ♂ of F₁ (♀ ACB × ♂ ECB) × ♀ ACB, 93.06% for

TABLE II. CROSSING TEST OF THE ACB AND THE ECB IN 1991

<table>
<thead>
<tr>
<th>Cross</th>
<th>Number of pairs not laying eggs</th>
<th>Number of pairs laying eggs</th>
<th>Rate of mating (%)</th>
<th>Eggs laid per mated female</th>
<th>Hatching rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB × ACB</td>
<td>37</td>
<td>34</td>
<td>47.88</td>
<td>354.2</td>
<td>91.44</td>
</tr>
<tr>
<td>ACB × ECB</td>
<td>40</td>
<td>14</td>
<td>25.93</td>
<td>514.0</td>
<td>95.58</td>
</tr>
<tr>
<td>ACB × ACB</td>
<td>1</td>
<td>9</td>
<td>90.00</td>
<td>643.9</td>
<td>96.82</td>
</tr>
<tr>
<td>ECB × ECB</td>
<td>7</td>
<td>15</td>
<td>68.18</td>
<td>268.7</td>
<td>95.19</td>
</tr>
</tbody>
</table>

\[\chi^2 = 21.00, \chi^2_{0.05,3} = 7.81, \chi^2_{0.01,3} = 11.34, \chi^2 > \chi^2_{0.01,3}. \]
\(\Phi \) of \(F_1 (\Phi \text{ACB} \times \sigma \text{ECB}) \times \sigma \text{ACB} \), 96.72% for \(\sigma \) of \(F_1 (\Phi \text{ECB} \times \sigma \text{ACB}) \times \Phi \text{ACB} \) and 99.57% for \(\Phi \) of \(F_1 (\Phi \text{ECB} \times \sigma \text{ACB}) \times \sigma \text{ACB} \). Therefore there was no evidence of hybrid sterility in the \(F_1 \) progeny between the ACB collected from Hebei Province and the ECB collected from Jinhe county of Xinjiang Province.

There was a difference in the \(F_1 \) sex ratios for the ECBs collected from Yining City and Jinhe county. If the ECB were collected from Europe or North America, new results in hybrid sterility may be obtained since these are further away from central China than Yining City is from Jinhe county.
STUDY OF THE MECHANISM AND POSSIBILITIES OF USING F₁ STERILITY FOR GENETIC CONTROL OF CODLING MoTH

A.I. ANISIMOV
All-Union Scientific Research Institute for Plant Protection,
Pushkin,
Leningrad, USSR

Abstract

STUDY OF THE MECHANISM AND POSSIBILITIES OF USING F₁ STERILITY FOR GENETIC CONTROL OF CODLING MoTH.

A computer based model was developed to simulate the suppression through three filial generations of field populations of codling moths, Laspeyresia pomonella (L.), that have been exposed to the release of codling moths exposed to doses of gamma rays ranging from 1 to 500 Gy. The main purpose of the model is to select the optimal dose of radiation. The model runs on an IBM compatible computer. Numerous experiments were conducted to provide the experimental data required for the model. The model takes into account the fact that individual moths are affected in different ways by exposure to gamma rays. Some irradiated males mate and form spermatophores, while others fail to mate. Some males that form spermatophores fail to produce eupyrene sperm. These undesirable effects occur with increasing frequencies as the dose increases. Indeed, at high doses of radiation these negative effects are so great that the treated moths are totally non-competitive with the untreated moths. The release of F₁ individuals has a number of advantages for the control of the codling moth. This approach involves the mass rearing and stockpiling of diapausing F₁ larvae during the winter months. It facilitates the synchronization of the emergence and flight of genetically impaired individuals with the emergence and flight of the wild population. In addition, this approach facilitates the separation of the sexes and the release of only F₁ males. The optimum dose for this approach was found to be 100 Gy.

1. DESCRIPTION OF THE RESEARCH

The main aim of the project described in this paper was, on the basis of experimental data obtained by the All-Union Scientific Research Institute for Plant Protection (VIZR), to develop a computerized model simulating releases of codling moths that have been partially or completely sterilized by irradiation. The model was based on the principles used by Knipling and Klasson [1] for the comparative evaluation of the prospects of different types of mutation and induced sterility for the genetic control of arthropod pests. However, when modelling the possible use of F₁
sterility, they confined themselves solely to indices reflecting the sterility levels of irradiated males and F_1 individuals (assuming the latter to be 100% sterile). Theoretical considerations regarding the mechanisms governing the inheritance of sterility, confirmed by the results of experiments carried out by our group on the codling moth, indicate that F_1 individuals and their progeny are not uniform with respect to inheritance of sterility and changes in their genetic apparatus. Moreover, the type of 'inherited sterility' (F_1 sterility) in Lepidoptera is the result of a whole range of irradiation effects, which can be both positive or negative from the point of view of the efficiency of genetic control and which manifest themselves in irradiated insects in the F_1 and subsequent generations. It is therefore extremely difficult even to select the optimum irradiation dose without having an appropriate model. The model developed by us is designed to take account of these characteristics in the irradiated insects (adult males and females), their F_1 progeny (all stages of development), the F_2 generation (all stages of development) and the F_3 generation (egg stage and emergence of larvae).

These effects were evaluated quantitatively in previous studies carried out by use on the codling moth for a wide range of gamma radiation doses (from 30 to 500 Gy). The results of these studies show that the ratio of positive to negative effects in all generations depends largely on the dose administered and on the sex of the irradiated insects. The results have been partially published [2]. However, for the sake of completeness of the model, information had to be obtained on the competitiveness of males having different types of sterility. For this purpose, special experiments were carried out to make a parallel evaluation of the ratio of the different groups of F_1 males obtained at doses of 100 Gy and of their competitiveness in field cages (for the method see Ref. [2]). In addition, the experiments were repeated to determine more accurately the dependence on the dose of the ratio of F_1 insects having different types of sterility.

An IBM compatible Samsung SD700 computer was used to create a model (Appendix) simulating the release of insects subjected to various irradiation doses, taking into account the characteristics of inherited sterility in Lepidoptera. Making allowance for the corrections introduced and additional information on the changes in the reproductive potential of the insects, we have simulated the reduction in the number of pests (codling moths) in the F_1, F_2 and F_3 generations for different irradiation doses and different ratios of normal to sterile insects.

2. RESULTS

2.1. Improved determination of the dependence on dose

The deviation of a few points on the dose–effect curve from the law of systematic increase made it necessary for us to carry out these experiments. This
deviation related primarily to the frequency of completely sterile (mating, sp+, with spermatophores present and non-mating, sp−, with spermatophores absent) F₁ males and, in particular, females [2]. The results of the two replications, in which males were irradiated at doses of 60 and 100 Gy and of simultaneous tests subsequently carried out on the F₁ progeny irradiated at different doses, showed that the distribution of the points of the dose–effect curve referred to above does not follow a pattern. Among F₁ males and F₁ females at a dose of 100 Gy, the frequency of sp+ and sp− pairs and consequently of all completely sterile pairs (where all oviposited eggs were non-viable and showed no signs of development) was higher than at a dose of 60 Gy in both replications.

2.2. Evaluation of competitiveness of males

It is logical to assume that the radiation induced hereditary changes revealed in laboratory tests in the form of increased frequency of non-mating males (sp−) would lead to a total loss of their competitiveness under natural conditions as well. This is not so obvious in the case of the other group of males, namely those that mate and form spermatophores but are completely sterile (sp+), although it is perfectly possible since a significant proportion of them should be males that manifest the impaired formation and transfer of eupryne sperm characteristic of F₁ sterility in Lepidoptera. Our first laboratory experiments to study this problem using a dose of 300 Gy, Ref. [2], demonstrated that almost all sp+ males were totally uncompetitive.

In order to determine more accurately the competitiveness coefficients for different groups of males required for the model, two replications of experiments were carried out from May to August 1990 in the Crimea to determine simultaneously the competitiveness of F₁ males (dose 100 Gy) in field cages and their distribution in groups with different types of sterility in laboratory tests. The results showed that the proportion of competitive F₁ males in field cages corresponds most closely to the frequencies found in laboratory tests of males in whose progeny embryos develop and die. If full competitiveness of sp+ males (fully sterile males that form spermatophores) is assumed, then the competitiveness coefficients expected will always be much higher than the values obtained in the experiment. It would be desirable to obtain more extensive experimental data in order to obtain definite proof of the total loss of competitiveness of sp+ males or to determine the degree of the reduction of competitiveness in the case of partial loss. However, we believe that, for the purposes of modelling releases of irradiated insects and for determining the efficiency of the F₁ sterility method on the basis of laboratory experiments, the assumption that sp+ males are totally uncompetitive at high radiation doses is perfectly satisfactory.
2.3. Development of the model

The release of irradiated insects is modelled with a computer program, which can be used to generate the results of crossing between females and males of different groups. In the parent generation these groups consist of normal females, normal males, irradiated females and irradiated males. In the F₁ and F₂ generations the insects are made up of normal females and normal males in six groups of females and six groups of males. These groups consist of individuals with a level of sterility ranging from 0 to 20\% (these are subsequently combined with the normal ones), from 20 to 40\%, from 40 to 70\% and from 70 to 100\%; and also fully sterile males that form spermatozoa (sp+) and fully sterile males that do not form spermatozoa (sp−). The ratio between irradiated and normal insects in the different groups depends on the irradiation dose and the ratio of normal and released insects in the parent generation. In determining the number and ratio of the different F₁, F₂ and F₃ groups, changes in the following characteristics of the irradiated insects and their progeny are taken into account:

(a) The competitiveness of the males,
(b) The sexual activity of the females,
(c) The non-viability of the eggs (sterility),
(d) The non-viability in post-embryonic stages of development,
(e) The ratio of the sexes.

Changes in fertility are not taken into account. Fertility is taken to be constant. Information on changes in the reproductive potential indices are taken from tables compiled from calculated coefficients reflecting the deviation of each index from the norm for each irradiation dose. Each group of F₁ and F₂ females and males has its own table of coefficients of the changes in reproductive indices and of the frequencies of their distribution in the groups. The modelling is confined to the indices of the number of larvae hatching in the F₃ generation.

2.4. Modelling the release of partially and completely sterilized insects using the codling moth as an example

The program developed was used to model the release of irradiated male codling moths and irradiated insects not divided by sex for radiation doses of 60, 80, 100, 300 and 500 Gy. Assuming that the population increases geometrically from one generation to the next under normal conditions, the efficiency of a single release of irradiated insects in a ratio to normal insects ranging from 1:1 to 30:1 (in steps of one) in the three generations following release is calculated from the reduction in the number of first instar larvae.
2.4.1. First generation

The results of the modelling showed that, in the first generation after the release (Fig. 1(a)), the number of first instar larvae fell the most for all ratios in the case of complete sterility of males (dose of 500 Gy), despite the somewhat lower competitiveness coefficient of these males in comparison with those receiving a substerilizing dose of 300 Gy. Doses of 60, 80 and 100 Gy resulted in substantially lower efficiencies, i.e. percentage reductions of first instar larvae from mating involving a treated parent relative to larvae produced by untreated parents.

The release of irradiated insects that were not separated by sex did not affect the efficiency of the 300 and 500 Gy doses, since these doses cause complete sterility in the females. As a result of the partial sterility of females, a minimum positive efficiency is observed for the release of males and females irradiated with partially sterilizing doses, but only at 100 Gy and for the ratios 1:1 and 2:1. At ratios of irradiated to normal insects of 4:1 and higher, there is an increase in the number of larvae compared with the norm. At a dose of 60 Gy a negative efficiency is observed already at a ratio of 1:1, and at 7:1 the number of larvae is twice as high as when there is no release (no pest control).

2.4.2. Second generation

It is evident that the release of completely sterile insects should not affect the reproductive potential of the second generation after release, but the total number of larvae will be significantly lower as a result of the effect of the release on the first generation. In contrast, the release of partially sterilized insects has a greater effect on the second generation, owing to the increased sterility of F₁ males. The comparison of different doses in the second and third generations was therefore performed on the basis of the relative number of first instar larvae (relative to the number produced when no treated moths are released).

Modelling showed that a dose of 300 Gy is virtually equivalent to complete sterilization, since the very small number of F₁ females obtained after this dose in the progeny of irradiated males is completely sterile and the F₁ males (80% sp−−, the remainder sp+) are totally uncompetitive (Fig. 2). It is interesting that in the case of the release solely of males irradiated at 60 Gy the number of larvae is lower than for a release of completely sterile males, although this is true only for the ratio 1:1 (at 80 Gy for the ratios 1:1 and 2:1). For other ratios, the efficiency of releases of completely sterile males is higher even in terms of the number of F₂ larvae. At the same time, on the basis of this evaluation the release of completely sterile males is less efficient than the release of males irradiated at 100 Gy for all the ratios modelled. The ratio of released to normal males in this case also affects the efficiency. The difference is greatest for the ratios 6:1 and 7:1, is approximately two times lower for the ratio 1:1, gradually decreases from the maximum at larger ratios (8:1, 9:1,
FIG. 1. F1 generation: dependence of the efficiency (percentage reduction in the number of first instar larvae in comparison with the option of no pest control) of releases of codling moth males irradiated at different doses (in Gy: A, 60; B, 80; C, 100; D, 200; E, 300; F, 500) on their ratio (R) to natural males. (a) First generation after release, (b) second generation after release, (c) third generation after release.
FIG. 2. F_2 generation: dependence of the efficiency of releases of codling moth males irradiated at different doses (in Gy: A, 60; B, 80; C, 100; D, 200; E, 300; F, 500) on their ratio to natural males. (a) First generation after release, (b) second generation after release, (c) third generation after release.
FIG. 3. F3 generation: dependence of the efficiency of releases of male and female codling moths irradiated at different doses (in Gy: A, 60; B, 80; C, 100; D, 200) on their ratio to natural insects. (a) First generation after release, (b) second generation after release.

e etc.) and virtually disappears at 30:1. At this point, the reduction in the number of larvae compared with the variant without release is 96.4%.

Releasing partially sterilized insects without separation by sex reduces efficiency. However, unlike the first generation, the reduction in the number of larvae is observed at all doses and for all the ratios modelled. The only exception is 60 Gy for ratios of released to normal insects higher than 23:1. The dependence on the ratios in these cases is described by dome shaped curves, the point of inflection and the steepness of the 'shoulders' of the curves being a function of the dose (Fig. 3).
For example, at a dose of 100 Gy, the maximum efficiency is 85.8%, which was observed for the ratio 16:1. It is interesting that for ratios from 9:1 to 30:1 the efficiency changes very slightly, falling to 84.6 and to 84.2% respectively. At doses of 80 and 60 Gy, the 'shoulders' are steeper and maximum efficiencies are observed for the ratios 5:1 and 4:1, respectively. On the whole, the reduction in the second generation in the case of releases of insects irradiated at 60 and 80 Gy without separation of the sexes is lower than for releases of completely sterilized (500 Gy) and sub-sterilized (300 Gy) insects. A dose of 100 Gy is evidently better since, for ratios up to 4:1, the positive effects of inherited sterility offset and to some extent outweigh the negative effects of releasing males that are not completely sterile.

2.4.3. Third generation

Most of the inherited radiation induced damage in the spermatozoa of Lepidoptera takes the form of F₁ sterility. However, some inherited changes are preserved and result in the non-viability of the progeny of the F₁ and subsequent generations. The results of our experiments showed that, although on average the level of sterility in the F₂ generation is considerably lower than in the F₁ generation, the contribution of inherited damage to the reduction in the number of F₂ larvae may be significant in a number of cases. (The main reason for this is that, unlike F₁ insects that inherit sterility only from irradiated males, F₂ individuals inherit it from both F₁ females and males.) In the case of releases of males alone, this contribution is sufficient to increase the advantage of 100 Gy irradiation over complete sterilization significantly for all ratios of released to normal insects (Fig. 4). The advantage over total sterilization is also apparent at doses of 60 and 80 Gy, although not for all ratios. For example, in order to obtain 90% efficiency when releasing completely sterile insects, the ratio of released to normal insects should be greater than 11:1. For releases of partially sterile males irradiated at 60, 80 or 100 Gy, this efficiency already increases in the third generation at ratios of 9:1, 7:1 and 5:1, respectively.

In the case of releases without separation of the sexes, the general nature of the change in efficiency observed for the F₂ generation seems to be accentuated. A positive efficiency is observed for all doses and ratios modelled and it is always higher than 50%. Maximum efficiency is reached at ratios of 7:1, 9:1 and higher than 30:1 at doses of 60, 80 and 100 Gy, respectively. However, an efficiency of more than 90% is seen only at 10 Gy and for ratios of 8:1 and higher.

2.4.4. F₁ release

Releasing F₁ individuals, which are usually more sterile than the irradiated parents (males), is considered to be one of the most promising methods of using inherited sterility for the genetic control of Lepidoptera pests. In the case of the
colling moth, for example, this method opens up considerable possibilities for the mass rearing of F_1 diapausing larvae and their use to solve the problem of synchronizing the release and flight of the insects under natural conditions [3, 4]. Furthermore, this approach offers much greater technical scope for separating the sexes and releasing only F_1 males and for producing them and building up colonies during the period from autumn to winter. However, the selection of the optimum dose is perhaps even more important in this case than when releasing irradiated insects.

Our model enables us to obtain indices of the efficiency of F_1 larvae releases, although only by using additional calculations. It is obvious that with such releases

FIG. 4. F_1 generation: dependence of the efficiency of releases of colling moth males irradiated at different doses (in Gy: A, 60; B, 80; C, 100; D, 200) on their ratio to natural males. (a) First generation after release, (b) second generation after release.
a reduction in the number of larvae in the natural population is observed only over
two generations. Assuming that the codling moth release takes place at the diapaus-
ing larva stage, and taking into account the lower sterility of F₁ females and the
possibility of separating codling moths by sex at this stage, the release of F₁ males
alone was modelled. It should be noted that, in addition to the index for the reduction
in numbers, the variation in the breeding coefficient following the irradiation of
males at a given dose has also to be taken into account, since it significantly affects
the efficiency of the mass production of insects for release. Clearly, a dose of 500 Gy

FIG. 5. Dependence of the effectiveness of released F₁ males irradiated at different doses
(in Gy: A, 60; B, 80; C, 100; D, 200) on their ratio to wild males. (a) First generation after
release, (b) second generation after release.
does not yield the desired effect. At lower doses, it is possible to produce a certain number of diapausing F_1 males. For the five experimental doses, namely 60, 80, 100, 200 and 300 Gy, the numbers produced were 94.6, 83.2, 82.2, 75.2 and 26.6%, respectively, of the number bred without irradiation (in calculating these indices, the non-viability of embryos and the shift in the sex ratio was taken into account). It is evident that although a dose of 300 Gy results in the strongest shift to males in the sex ratio, it clearly has a worse effect than the other doses.

Modelling the release of these males begins by taking into account their non-viability at the post-embryonic stages of development. (It is assumed that this non-viability generally occurs during the period of metamorphosis. In making this assumption, we are probably somewhat underestimating the efficiency of lower doses compared with higher ones, but we do not yet have any separate experimental data on the non-viability of developing larvae from the first to fifth instar as distinct from data on the non-viability of diapausing larvae and pupae.) This index is again highest at 300 Gy, but the overriding factor that makes this dose totally unsuitable for the release of F_1 males is their complete lack of competitiveness and their consequent ineffectiveness.

The results of modelling the release of F_1 males at the diapausing larva stage using other irradiation doses for males in the parent generation are shown in Fig. 5. It can be seen that, of the doses tested, the best dose for all ratios of released to natural males is 100 Gy, both in terms of the reduction in the number of larvae in the generation following release (Fig. 5(a)) and in the second generation (Fig. 5(b)). In comparison with doses of 60 and 80 Gy, the advantage of 100 Gy lies in the greater level of sterility of competitive F_1 males, and in comparison with 200 Gy, there is a higher proportion of competitive F_1 males. It is evident that the optimum dose lies in the 100 to 200 Gy range, and on the basis of data on other species [5] probably in the 100 to 150 Gy range.

3. CONCLUSIONS

The model of the results of releasing partially and completely sterilized insects showed that the computer program takes into account the positive and negative effects that inherited sterility in Lepidoptera have on the reduction in the pest population. It reveals their complex interdependence and the general rules governing changes in the efficiency of the method, which are difficult to appreciate with individual indices. The model can be used for any type of Lepidoptera if the necessary information is available.

The main aim of the computer model is to select the optimum irradiation dose for the release of both irradiated insects and the F_1 generation. The program makes it possible to do this using the results of laboratory experiments. It can also carry out various other tasks of practical importance, for example, evaluating the variation
GENETIC CONTROL OF CODLING MOTH

in efficiency with different ratios of insects released to nature and assessing whether it is useful to divide the sexes.

There are still many areas in which the model can be improved and the initial data refined. In particular, it would be desirable to have more accurate indices of the variation of the competitiveness of males irradiated at different doses. As a consequence of this, the relative efficiency of releasing completely sterile insects (in the above calculations we assumed the reduction to be minimal) may change significantly. The general principles governing the variation in the efficiency of the method will be much more visible if the initial data used in the model are presented in the form not of tabular data but of equations that quantitatively reflect the dependences of the positive and negative effects on the dose. In order to determine these, it would be desirable to have quantitative data on all the parameters used in the model for a further two or three doses in the 100 to 200 Gy range. It would be desirable to be able to model the releases over several generations and to study their efficiency over a larger number of generations. We plan to carry out this work in the future.

Our model allows the efficiency of different irradiation doses and the ratios of released to natural insects to be compared only in the same generation. It is not possible to obtain an overall efficiency index for several generations using this model (although the reduction in the size of the previous generation affects the calculation of the size of the subsequent generation). It is also impossible to compare the release of sterilized adults (or pupae) and F1 diapausing larvae since the differences between the dynamics of releases and of the flight of natural insects may strongly affect efficiency. In order to solve these and a number of other problems, it would be desirable to establish a model that simulates the releases of irradiated and F1 insects and is capable of taking into account the dynamics of the size of the natural pest population and the final product yield for a given crop. Such a model could be verified through experiments on releases in a natural population. We plan to carry out such work in the near future on the Crimean population of codling moths.

A wide range of research can be carried out to find ways of improving the ratio of positive to negative effects. In this connection, factors such as dose rate, type of ionizing radiation, nature of the radiation source and so on may be very significant. Solving these problems would also be of practical importance.

4. SUMMARY OF CONCLUSIONS

(1) The dependence on dose of the frequency of F1 individuals with impaired reproductive physiology (loss of sexual activity, impairment of gametogenesis, etc.) increases uniformly.

(2) When F1 codling moth males are confined individually with virgin females, and when these females lay eggs that show no signs of development after they
are one week old, then such F₁ males will usually be non-competitive under field conditions.

(3) A computer program was developed to model the change in the size of the population over three generations after the release of insects irradiated at various doses. The model took into account the positive and negative effects that inherited sterility in Lepidoptera has on the reduction in the pest population and the complex interaction between these effects. An index based on these factors was obtained and an understanding gained of the general principles governing the changes in the efficiency of this genetic control method, which is difficult to achieve on the basis of individual effects.

(4) On the basis of the experimental results, releases of codling moths subjected to different doses of gamma radiation were modelled. This exercise demonstrated that the computer program can provide an adequate solution to the problems. It can be used to identify the optimum radiation dose (for the release of both irradiated insects and the F₁ generation), to evaluate the efficiency of releases with different ratios of released to natural insects and to determine the advantages of releasing only males.

(5) Research into F₁ sterility mechanisms and efforts to improve the computer model of the use of this mechanism in genetic control programmes should be continued in the following areas:

(a) Evaluation of the influence of irradiation conditions, the type of radiation, the radiation source, the dose rate and other factors on the effects that occur in the generations that follow the irradiation of the moths;
(b) Development of programs to model multiple releases of irradiated insects and programs that take account of the dynamics of the number of insects during the season;
(c) Determination of quantitative indices of the dependence on dose of the variation in the competitiveness of irradiated insects;
(d) Experimental determination and mathematical description of the dose–effect relationship for all the parameters considered in the model.

Appendix

Possibilities and Limitations of the Program

In general, this variant of the model has been developed for the optimum dose separation for the use of F₁ sterility effects for the genetic control of Lepidoptera pests. We consider that this variant of the program gives the best possibility for solving this problem. In addition, it is possible to select the optimal ratio of irradiated insects to natural ones if the economic indices for loss of agricultural products and the cost of insect rearing and release are taken into account.
The model is not intended for the prognosis of specific types of release in specific conditions for any particular species. However, if all the indispensable coefficients for simulation have been estimated for the natural conditions and the indices of mass reared insect quality for a particular biofactory can be taken into account, the present variant of the program can be useful.

Nevertheless we consider that for the purpose of prognosis of the results of a genetic control procedure, a special model must be developed that can take into account the dynamics of insect numbers in the natural population and the changes in quality of particular batches of released insects. We plan to develop such a model especially for the Crimean region.

To reduce the size of the algorithm and also the probability of errors in the first variant of the program and to make the simulation of codling moth releases easier, all the coefficients (which are calculated as if the contributions of both parents to the reproductive indices were additive) for F_2 and F_1 insects have been made constants in the algorithm. Therefore, the present variant of the model is not universal and cannot be used directly for the simulation of releases in all Lepidopteran species to the third generation. For other species there may be other or different coefficients of reproductive indices in F_2 and F_1 progeny.

For irradiated and F_1 insects of another Lepidopteran species such coefficients may be not the same as in the codling moth. However, the present variant of the program already gives the possibility of taking into account the specific reactions of any Lepidoptera pest to radiation and of producing an adequate result for the simulation release in the first and the second generations after the release of irradiated insects and only in the first generation after releases of F_1 insects.

We have already started work on the development of a more universal variant of the program. In particular, we have developed a universal system for designating the abbreviations of the coefficients. This system makes it possible to identify for which reproductive index, for which generation, for which sex, and for which group of insects it applies simply by the short abbreviation.

The first token (letter) marks the reproductive index:

- n: Number of individuals,
- f: Fecundity,
- h: Hatchability of larvae,
- e: Elosion of adults (viability in post-embryonic stages),
- s: Sex ratio (part of females)
- p: Part of the concrete group of insects.

The second token (number) marks the generation after irradiation to which the previous index applies to:

- 0: Generation of releases,
- 1: First generation after releases,
- 2: Second generation after releases,
- 3: Third generation after releases.

The third token (letter) marks the sex of the insects for which the reproductive index (including the viability of offspring in post-embryonic stages of development) was calculated:

- m: Males,
- f: Females.
The fourth token (letter or number) marks the group of insects:

\(F_0 \) Backcross,

r Released insects,

w Wild (natural) insects,

1 \(F_1 \) or \(F_0 \) insects with sterility levels of 0–19.9%,

2 \(F_1 \) or \(F_0 \) insects with sterility levels of 20–39.9%,

3 \(F_1 \) or \(F_0 \) insects with sterility levels of 40–69.9%,

4 \(F_1 \) or \(F_0 \) insects with sterility levels of 70–100%.

With the help of these markers all the coefficients that must be brought into the computer before simulation, were designated:

- \(n0nw \) Number of natural males,
- \(n0fw \) Number of natural females,
- \(n0mr \) Number of released males,
- \(n0fr \) Number of released females,
- \(f0fw \) Fecundity of natural females,
- \(f0fr \) Fecundity of irradiated females,
- \(f0mr \) Coefficient of irradiated male fecundity,
- \(c0mr \) Coefficient of irradiated male competitiveness,
- \(h1mr \) Coefficient of irradiated male fertility,
- \(h1fr \) Coefficient of irradiated female fertility,
- \(e1mr \) Coefficient of irradiated male \(F_1 \) offspring viability in post-embryonic stages of development,
- \(e1fr \) Coefficient of irradiated female \(F_1 \) offspring viability in post-embryonic stages of development,
- \(s1mr \) Sex ratio (proportion of females) in progeny of irradiated males,
- \(s1fr \) Sex ratio (proportion of females) in progeny of irradiated females,
- \(c1m1 \) \(F_1 \) (here and below in progeny of irradiated males) male competitiveness coefficient (c),
- \(p1m1 \) Proportion of \(F_1 \) males with 0–19.9% sterility levels,
- \(p1m2 \) Proportion of \(F_1 \) males with 20–39.9% sterility levels,
- \(p1m3 \) Proportion of \(F_1 \) males with 40–69.9% sterility levels,
- \(p1m4 \) Proportion of \(F_1 \) males with 70–100% sterility levels,
- \(p1f1 \) Proportion of \(F_1 \) females with 0–19.9% sterility levels,
- \(p1f2 \) Proportion of \(F_1 \) females with 20–39.9% sterility levels,
- \(p1f3 \) Proportion of \(F_1 \) females with 40–69.9% sterility levels,
- \(p1f4 \) Proportion of \(F_1 \) females with 70–100% sterility levels,
- \(f1m1 \) Coefficient of \(F_1 \) male fecundity with 0–19.9% sterility levels,
- \(f1m2 \) Coefficient of \(F_1 \) male fecundity with 20–39.9% sterility levels,
- \(f1m3 \) Coefficient of \(F_1 \) male fecundity with 40–69.9% sterility levels,
- \(f1m4 \) Coefficient of \(F_1 \) male fecundity with 70–100% sterility levels,
- \(f1f1 \) Fecundity of \(F_1 \) females with 0–19.9% sterility levels,
- \(f1f2 \) Fecundity of \(F_1 \) females with 20–39.9% sterility levels,
- \(f1f3 \) Fecundity of \(F_1 \) females with 40–69.9% sterility levels,
- \(f1f4 \) Fecundity of \(F_1 \) females with 70–100% sterility levels,
h2m2 Weighted average fertility coefficient of F1 males with 20–39.9% sterility levels,
h2m3 Weighted average fertility coefficient of F1 males with 40–69.9% sterility levels,
h2m4 Weighted average fertility coefficient of F1 males with 70–100% sterility levels,
h2f2 Weighted average fertility coefficient of F1 females with 20–39.9% sterility levels,
h2f3 Weighted average fertility coefficient of F1 females with 40–69.9% sterility levels,
h2f4 Weighted average fertility coefficient of F1 females with 70–100% sterility levels.

Algorithm of the RESTECOM Program

\[i1 = n0mw*n0fw*10fw/(n0mw+n0mr*c0mr), \text{ Number of first instar larvae that are produced from the crosses of natural insects between themselves;} \]
\[i2 = n0mr*c0mr*n0fw*10fw*10fw/(n0mfw+n0mf*c0mr), \text{ Number of first instar larvae that are produced from the crosses of natural females with irradiated males;} \]
\[i3 = n0mfw*n0fr*h1fr*10fr/(n0mfw+n0mf*c0mr), \text{ Number of first instar larvae that are produced from the crosses of natural males with irradiated females;} \]
\[i4 = n0mfw*c0mf*n0fr*h1fr*10fr*10fr/(n0mfw+n0mf*c0mr), \text{ Number of first instar larvae that are produced from the crosses of irradiated insects among themselves;} \]
\[i5 = i1 + i2 + i3 + i4, \text{ General number of first instar larvae in the first generation (here and below after releases);} \]
\[i6 = i1*0.5 + i3*e1fr*s1fr, \text{ Number of females in the first generation that are produced from the crosses of irradiated females with natural males and also from natural insects crossed together;} \]
\[i7 = i2*e1mr*s1mr+i4*e1fr*e1mr*e1fr*s1mr/0.5, \text{ Number of F1 females in the first generation;} \]
\[i8 = i6 + i7, \text{ General number of females in the first generation;} \]
\[i9 = i1*0.5 + i3*e1fr*(1-s1fr), \text{ Number of males in the first generation that are produced from the crosses of irradiated females with natural males and from crosses of natural insects among themselves;} \]
\[i10 = i2*e1mr*(1-s1mr)+i4*e1fr*e1mr*(1-s1fr*s1mr/0.5)*c1, \text{ Number of competitive F1 males in the first generation;} \]
\[i11 = i9 + i10, \text{ General number of competitive males in the first generation;} \]
\[i12 = i11 + i8, \text{ General number of adult insects in the first generation;} \]
\[i13 = i10*p1m1*f1m1/i11, \]
\[i14 = i10*p1m2*f1m2*h2m2/i11, \]
\[i15 = i10*p1m3*f1m3*h2m3/i11, \]
\[i16 = i10*p1m4*f1m4*h2m4/i11, \]

(i13–i16), The relative fertility coefficients of competitive F1 males with sterility levels from 0 to 19.9% (i13), from 20 to 39.9% (i14), from 40 to 69.9% (i15) and from 70 to 100% (i16). Coefficients take into account the proportion of specific groups of competi-
tive F₁ males between all males in the first generation, their weighted average fecundity and fertility;

i₁₁₇ = i₁₉/i₁₁, Proportion of the males in the first generation that are produced from the crosses of irradiated females with natural males and natural insects among themselves;

i₁₁₈ = i₁₇*i₁₈*i₁₉*i₁₁,

i₁₁₉ = i₁₇*i₁₂*i₁₂*i₁₂,

i₁₂₀ = i₁₇*i₁₂*i₁₂*i₁₂,

i₁₂₁ = i₁₇*i₁₆*i₁₆*i₁₂,

(i₁₁₈–i₁₂₁), Number of F₁ females with sterility levels from 0 to 19.9% (i₁₁₈), from 20 to 39.9% (i₁₁₉), from 40 to 69.9% (i₁₂₀) and from 70 to 100% (i₁₂₁). Value takes into account the number of specific groups of coupled F₁ females in the first generation, their weighted average fecundity and fertility;

i₁₂₂ = i₁₆*i₁₀*i₁₈, Number of females in the first generation that are produced from the crosses of irradiated females with natural males and natural insects among themselves;

i₁₂₃ = (i₁₃+i₁₄+i₁₅+i₁₆+i₁₇)*(i₁₈+i₁₉+i₂₀+i₂₁+i₂₂), Number of the first instar larvae in the second generation;

i₁₂₄ = i₁₄*0.884,

i₁₂₅ = i₁₅*0.699,

i₁₂₆ = i₁₆*0.474,

(i₁₂₄–i₁₂₆), Relative breeding coefficients of competitive F₁ males with sterility levels from 20 to 39.9% (i₁₂₄), from 40 to 69.9% (i₁₂₅) and from 70 to 100% (i₁₂₆). Coefficient takes into account all reproductive indices such as i₁₁₃–i₁₁₆ plus viability in post-embryonic stages of development;

i₁₂₇ = i₁₉*0.881,

i₁₂₈ = i₂₀*0.551,

i₁₂₉ = i₂₁*0.394,

(i₁₂₇–i₁₂₉), Number of adults in the second generation that are produced by F₁ females with sterility levels from 20 to 39.9% (i₁₂₇), from 40 to 69.9% (i₁₂₈) and from 70 to 100% (i₁₂₉). Value takes into account all reproductive indices such as i₁₁₈–i₁₂₁ plus viability in post-embryonic stages of development;

i₁₃₀ = (i₁₁₃+i₁₁₇)*(i₂₂+i₁₁₈)*0.5, Number of normally fertile females in the second generation;

i₁₃₁ = i₁₃*i₁₂₇*0.500,

i₁₃₂ = i₁₃*i₁₂₈*0.500,

i₁₃₃ = i₁₃*i₁₂₉*0.500,

i₁₃₄ = i₁₂₄*i₁₂₈*0.420,

i₁₃₅ = i₁₂₄*i₁₂₇*0.420,

i₁₃₆ = i₁₂₄*i₁₂₈*0.420,

i₁₃₇ = i₁₂₄*i₁₂₉*0.420,

i₁₃₈ = i₁₂₄*i₁₂₂*0.420,

i₁₃₉ = i₁₂₅*i₁₂₈*0.440,

i₁₄₀ = i₁₂₅*i₁₂₇*0.440,
GENETIC CONTROL OF CODLING MOTH

\[i_{41} = i_{25} \cdot i_{28} \cdot 0.440, \]
\[i_{42} = i_{25} \cdot i_{29} \cdot 0.440, \]
\[i_{43} = i_{25} \cdot i_{22} \cdot 0.440, \]
\[i_{44} = i_{26} \cdot i_{18} \cdot 0.361, \]
\[i_{45} = i_{26} \cdot i_{27} \cdot 0.361, \]
\[i_{46} = i_{26} \cdot i_{28} \cdot 0.361, \]
\[i_{47} = i_{26} \cdot i_{29} \cdot 0.361, \]
\[i_{48} = i_{26} \cdot i_{22} \cdot 0.361, \]
\[i_{49} = i_{17} \cdot i_{27} \cdot 0.500, \]
\[i_{50} = i_{17} \cdot i_{28} \cdot 0.500, \]
\[i_{51} = i_{17} \cdot i_{29} \cdot 0.500, \]

(i_{31}-i_{51}). Numbers of \(F_2 \) and \(F_3 \) females in the second generation that are produced from the crosses of different groups of \(F_1 \) males or females with normally fertile insects and among themselves. For example, \(i_{37} = i_{24} \cdot i_{29} \cdot 0.42 \), number of females in the second generation that are produced from the crosses of \(F_1 \) males (with sterility levels from 20 to 39.9%) with \(F_1 \) females (with sterility levels from 70 to 100%) calculated by multiplication of \(i_{29} \), number of adult \(F_0 \) moths that are produced by \(F_1 \) females with sterility levels from 70 to 100%, \(i_{24} \), relative breeding coefficient of competitive \(F_1 \) males with sterility levels from 20 to 39.9%, and the constant 0.42. The last constant reflects changes in the \(F_2 \) sex ratio after crosses of males and females from corresponding groups and is calculated by a special formula;

\[i_{52} = i_{31} + i_{32} + i_{33} + i_{34} + i_{35} + i_{36} + i_{37} + i_{38} + i_{40} + i_{41} + i_{42} + i_{43} + i_{44} + i_{45} + i_{46} + i_{47} + i_{48} + i_{49} + i_{50} + i_{51}, \]

General number of \(F_2 \) and \(F_3 \) females in the second generation;

\[i_{53} = 0.804 \cdot (i_{13} + i_{49}) + 0.771 \cdot (i_{32} + i_{50}) + 0.494 \cdot (i_{33} + i_{51}) + 0.734 \cdot i_{35} + 0.599 \cdot i_{40} + 0.495 \cdot i_{45} + 0.704 \cdot i_{36} + 0.574 \cdot i_{41} + 0.475 \cdot i_{46} + 0.451 \cdot i_{37} + 0.368 \cdot i_{42} + 0.304 \cdot i_{47} + 0.913 \cdot (i_{34} + i_{38} + 0.745 \cdot (i_{39} + i_{43}) + 0.616 \cdot (i_{44} + i_{48}), \]

General fertility coefficient of \(F_2 \) and \(F_3 \) females in the second generation. Coefficient takes into account and summarizes the number of each group of coupled females and their weighted average fertility (fecundity is not considered at this point);

\[i_{54} = i_{30} + (i_{24} \cdot 0.58 + i_{25} \cdot 0.56) \cdot (i_{18} + i_{22}), \]

Number of males with normal fertility levels in the second generation;

\[i_{55} = i_{24} \cdot i_{27} \cdot 0.472, \]
\[i_{56} = i_{24} \cdot i_{28} \cdot 0.465, \]
\[i_{57} = i_{24} \cdot i_{29} \cdot 0.368, \]
\[i_{58} = i_{25} \cdot i_{27} \cdot 0.456, \]
\[i_{59} = i_{25} \cdot i_{28} \cdot 0.449, \]
\[i_{60} = i_{25} \cdot i_{29} \cdot 0.355, \]
\[i_{61} = i_{26} \cdot i_{18} \cdot 0.410, \]
\[i_{62} = i_{26} \cdot i_{27} \cdot 0.333, \]
\[i_{63} = i_{26} \cdot i_{28} \cdot 0.328, \]
\[i_{64} = i_{26} \cdot i_{29} \cdot 0.259, \]
\[i_{65} = i_{26} \cdot i_{22} \cdot 0.410, \]
\[i_{66} = i_{31} \cdot 0.814, \]
\[\begin{align*}
i_{67} &= 132 \times 0.802, \\
i_{68} &= 133 \times 0.634, \\
i_{69} &= 149 \times 0.814, \\
i_{70} &= 150 \times 0.802, \\
i_{71} &= 151 \times 0.634.
\end{align*} \\
\]

(i55–i71), Numbers of competitive \(F_2 \) and \(F_3 \) males in the second generation that are produced from the crosses of different groups of \(F_1 \) males or females with normally fertile insects and among themselves. For example, \(i_{64} = i_{26} \times i_{29} \times 0.259 \), Number of competitive \(F_2 \) males in the second generation that are produced from the crosses of \(F_1 \) males (with fertility levels from 70 to 100\%) with \(F_1 \) females (with fertility levels from 70 to 100\%) also. It is calculated by multiplication of \(i_{29} \), number of adult \(F_3 \) moths which are produced by \(F_1 \) females with fertility levels from 70 to 100\%, \(i_{26} \), relative breeding coefficient of competitive \(F_1 \) males with fertility levels from 70 to 100\%, and \(0.259 \), the constant specific for crosses between these groups of \(F_1 \) males and females. This constant was calculated by the following steps. From the beginning by a special formula the proportion of males in progeny after such crosses (1-0.361*0.500)/0.500=0.639 was calculated. Then the proportion of males was multiplied by the competitiveness coefficients of \(F_3 \) males corresponding to specific groups of \(F_1 \) males (0.641) and females (0.634). The result was 0.639*0.641*0.634 = 0.259;

\[\begin{align*}
i_{72} &= i_{55} + i_{56} + i_{57} + i_{58} + i_{59} + i_{60} + i_{61} + i_{62} + i_{63} + i_{64} + i_{65} + i_{66} + i_{67} + i_{68} + i_{69} + i_{70} + i_{71}, \\
\text{General number of} \ F_2 \text{ and} \ F_3 \text{ competitive males in the second generation;}
\end{align*} \\
\]

\[\begin{align*}
i_{73} &= 0.56(i_{68} + i_{57} + i_{65} + i_{71}) + 0.733(i_{66} + i_{55} + i_{58} + i_{69}) + 0.587(i_{67} + i_{56} + i_{59} + i_{70}) + 0.823(i_{61} + i_{65}) + i_{62} \times 0.603 + i_{63} \times 0.483 + i_{64} \times 0.425, \\
\text{General fertility coefficient of competitive} \ F_2 \text{ and} \ F_3 \text{ males in the second generation which are produced from the crosses of different groups of} \ F_1 \text{ males or females with normally fertile insects and among themselves;}
\end{align*} \\
\]

\[\begin{align*}
i_{74} &= i_{72} + i_{54}, \text{General number of all the males in the second generation;}
\end{align*} \\
\]

\[\begin{align*}
i_{75} &= (i_{30} + i_{53}) \times (i_{54} + i_{73}) \times 140/i_{74}, \text{Number of first instar larvae in the third generation} \\
&\quad \text{(it is proposed that the fecundity of all groups of insects in the second generation is the same);} \\
i_{76} &= i_{30} + i_{52}, \text{General number of all the females in the second generation;}
\end{align*} \\
\]

\[\begin{align*}
i_{77} &= i_{76} + i_{74}, \text{General number of all adult insects in the second generation.}
\end{align*} \\
\]

The computer now writes the results of the release simulation:

Number of larvae in the first generation,
Number of adults in the first generation,
Number of all the males in the first generation,
Number of competitive \(F_1 \) males in the first generation,
Number of all the females in the first generation,
Number of \(F_1 \) females in the first generation,
Number of larvae in the second generation,
Number of adults in the second generation,
Number of all the males in the second generation,
Number of competitive F₁ and F₂ males in the second generation,
Number of all the females in the second generation,
Number of F₁ and F₂ females in the second generation,
Number of larvae in the third generation.

and asks:

Do you want to work with program again? (Y/N)

REFERENCES

CONCLUSIONS AND RECOMMENDATIONS

(a) Computer simulation models are very helpful in projecting the suppressive action of inherited sterility on pest populations that have been overflooded with irradiated moths. Such projections are complicated because:

1. The level of sterility induced by a given radiation dose differs widely from one generation to the next.
2. The detrimental effects of irradiation tend to increase uniformly with dose, but the thresholds for various detrimental effects differ widely.
3. The rates of increase of some wild populations may be high (e.g., tenfold or more) and therefore require that the F1 descendants of released moths possess a fairly high level of sterility in order to prevent the wild populations from building to densities that cause economically significant damage; but lower levels of sterility may suffice against other populations whose intrinsic rates of increase are low (e.g., fivefold or less).
4. If fairly low doses of radiation are used then F1 females may be partially fecund and fertile.
5. The economic threshold may be so low that a significant increase in population density cannot be tolerated.
6. The combined effects of, for example, inherited sterility, releases of predators, parasites or pathogens, or cultural practices may have to be computed.

Two computer models that are able to take most of these considerations into account are presented. Additional efforts are needed to improve the utility, user friendliness and speed of this software.

(b) A computer model was used to reach the conclusion that the optimal dose for inducing inherited sterility in the management of the codling moth, Cydia pomonella, is about 100 Gy. This conclusion needs to be validated with field tests or in an operational programme.

(c) F1 males of the European corn borer, Ostrinia nubilalis, are fully sterile if their fathers had received 300 Gy. A dose of about 150 Gy appears to be appropriate for future experiments to suppress this pest in the field. Appropriate field trials should be conducted, to include the combined effects of inherited sterility, and the use of biocontrol agents and of resistant corn hybrids. In addition, an inexpensive diet for mass rearing based on ingredients readily available in eastern Europe has been developed. This diet should be evaluated by workers throughout the geographical range of the pest in order to see if further improvements can be made.

(d) In the Asian corn borer, Ostrinia furnacalis, the optimal dose range for inducing useful inherited sterility appears to be 150–200 Gy. The incidence of visible
chromosomal aberrations in metaphase cells of the testis is slightly more than
threefold greater in the F_1 generation than in the F_2 generation and this correlates
closely with the levels of sterility in the two generations. There appear to be no major
technical barriers to the suppression of the Asian corn borer on an operational scale.
A large scale pilot test should be conducted to obtain data on the economic returns
of this approach and to improve further the technology for mass rearing, distribution
and field releases.

(e) In the pink bollworm, *Pectinophora gossypiella*, the optimal dose for the
use of F_1 sterility to manage populations appears to lie between 150 and 200 Gy. At
these doses the moths are significantly less impaired than at 200 Gy, the dose used
in the large, successful, programme to protect cotton in California. Thus it appears
that the robustness of this technology can be upgraded. This should be evaluated in
a large scale trial, and additional consideration should be given to the diet used for
mass rearing. It was found that larvae develop more rapidly, and yield a much higher
percentage of pupae that are considerably larger and that develop into much longer
lived adults when reared on a casein and wheat germ diet than when reared on diets
based on soybean flour and wheat germ, corn-cob grits and wheat germ or peanut
flour. Thus the benefits of using a casein based diet need to be weighed against the
increased cost.

(f) The optimal dose for inducing a useful level of inherited sterility in the
tropical army worm, *Spodoptera littoralis*, appears to lie in the range of 100 to 150 Gy.
Large scale field trials should be undertaken to develop the use of inherited sterility
against *S. littoralis*. In field cage studies to suppress the cotton leafworm, *Spodoptera
littoralis*, by releasing moths treated with 100 Gy, it was not completely possible to
prevent the population from increasing. Thus, field trials should be conducted with
S. littoralis moths treated with as much as 200 Gy. The fall army worm, *Spodoptera
frugiperda*, can be suppressed by releasing moths treated with 125 Gy. However,
the optimal dose appears to be higher. Efforts should be made to assess the technical
and economic feasibilities of using inherited sterility to suppress *S. frugiperda* in its
overwintering refugia. These refugia should not be allowed to produce significant
numbers of migrants that establish highly damaging populations in temperate latitudes
where the pest cannot overwinter.

(g) In the diamondback moth, *Plutella xylostella*, very useful levels of
inherited sterility can be induced with 150 to 200 Gy. Since populations of this insec-
ticide resistant species can also be suppressed by means of the *Bacillus thuringiensis*
endotoxin and by overflooding with several species of parasites, field trials should
be undertaken to develop a pest management system involving the use of these
biocontrol agents and the use of inherited sterility. The purpose of such trials would
be to improve significantly the mass rearing and release technologies both for irradi-
ated moths and for parasites, and to measure the economic returns of this integrated
approach against that of using only one of these measures.
(h) In the wild mulberry silkworm, *Bombyx mandarina*, a useful level of inherited sterility can be induced with 200 Gy. However, the data suggest that the optimal dose may be somewhat lower. Additional laboratory studies should be undertaken to establish the optimal dose. Subsequently field trials on the use of inherited sterility against this pest should be undertaken in order to determine whether its selective suppression would be profitable. Since the mulberry silkworm is also attacked by several defoliating insects, it may be necessary to devise an integrated strategy to suppress the entire complex.

(i) Major disruptions in mass rearing of the gypsy moth, *Lymantria dispar*, are caused by the 'abnormal performance syndrome' in which a high percentage of the larvae develop very slowly or die. This syndrome was found to be caused by deficiencies in the diet and can be avoided. Two options are available for infusing inherited sterility into the wild population, i.e. distribution of irradiated pupae or of F₂ eggs. The latter has the great theoretical advantage that the mass rearing and stockpiling of eggs of this univoltine species would be possible on a year round basis. Additional field trials should be conducted to evaluate the technical and economic feasibilities of the infusion of inherited sterility into wild populations by distributing F₁ eggs.

(j) In the corn earworm, *Helicoverpa zea*, a pilot field test showed that the release of males irradiated with 100 Gy in small mountain valleys was effective in infusing inherited sterility into the wild populations, and that this retarded and reduced their seasonal population buildup. In order to evaluate the potential economic returns of this technology, a field trial on an operational scale should be conducted in which the use of inherited sterility is combined with the use of resistant crop cultivars and parasite releases.

(k) A new co-ordinated research programme on the use of radiation induced inherited sterility should be undertaken. This programme should stress field aspects rather than laboratory and field cage studies. Thus the main objective should be to evaluate the potential of suppressing populations of pest Lepidoptera in the field. This will require the acquisition of data on the ecology, dispersal and seasonal buildup of pest populations. In addition, observations will have to be made on the field behaviour of irradiated and wild moths, e.g. times of onset and cessation of calling, attractancy, mating success, etc. Mated females will have to be captured and examined for the presence of eupyrene sperm in spermathecae, and for the levels of sterility induced in them and in their descendants.
LIST OF PARTICIPANTS

Anisimov, A. All-Union Research Institute for Plant Protection (VIZR), Podbelskogo 3, Pushkin 189620, Leningrad, Union of Soviet Socialist Republics

Arthur, V. Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, C.P. 96, 13.400 Piracicaba, SP, Brazil

Barbulescu, A. Department of Plant Protection, Research Institute for Cereals and Industrial Crops, Fundulea, 8264 Călărași, Romania

Carpenter, J.E. Insect Biology and Population Management Research Laboratory, Agricultural Research Service, US Department of Agriculture, South Atlantic Area, P.O. Box 748, Tifton, GA 31793-0748, United States of America

Mastro, V. Department of Behavior and Ecology, Otis Methods Development Center, PPQ, APHIS, US Department of Agriculture, Otis Air Base, Otis, MA 02542, United States of America

Mansor, M. Department of Genetics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Qureshi, Z.A. Division of Entomology, Atomic Energy Agricultural Research Centre, Tandojam, Sindh, Pakistan

Sallam, H.A. Radiobiology Department, Nuclear Research Centre, Atomic Energy Authority, Atomic Energy Post Office, 101 Kasa El-Eini Street, Cairo, Egypt

Sutrisno, S. Centre for the Application of Isotopes and Radiation, National Atomic Energy Agency, P.O. Box 2, Kebayoran Lama, Jakarta Selatan 12240, Indonesia

1 Affiliation at time of meeting.
LIST OF PARTICIPANTS

Wang, Huasong
Department of Pest Control, Institute for the Application of Atomic Energy, Chinese Academy of Agricultural Sciences, P.O. Box 5109, Beijing, China

Yang, Rongxing
Radiation Application Division, Institute for the Application of Atomic Energy, Zhejiang Academy of Agricultural Sciences, Hangzhou, China

Henneberry, T.J.
Agricultural Research Service, US Department of Agriculture, Pacific West Area, Western Cotton Research Laboratory, 4135 E. Broadway Road, Phoenix, AZ 85040, United States of America

Wiendl, P.M.
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, C.P. 96, 13.400 Piracicaba, SP, Brazil

LaChance, L.E. (Scientific Secretary)
Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria
HOW TO ORDER IAEA PUBLICATIONS

An exclusive sales agent for IAEA publications, to whom all orders and inquiries should be addressed, has been appointed for the following countries:

CANADA
UNIPUB, 4811-F Assembly Drive, Lanham, MD 20706-4391, USA

UNITED STATES OF AMERICA

In the following countries IAEA publications may be purchased from the sales agents or booksellers listed or through major local booksellers. Payment can be made in local currency or with UNESCO coupons.

ARGENTINA
Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, RA-1429 Buenos Aires

AUSTRALIA
Hunter Publications, 58 A Gipps Street, Collingwood, Victoria 3066

BELGIUM
Service Courrier UNESCO, 202, Avenue du Roi B-1060 Brussels

CHILE
Comisión Chilena de Energía Nuclear, Venta de Publicaciones, Amunátegui 85, Casilla 168-D, Santiago

CHINA
IAEA Publications in Chinese:
China Nuclear Energy Industry Corporation, Translation Section, P.O. Box 2103, Beijing
IAEA Publications other than in Chinese:
China National Publications Import & Export Corporation, Deutsche Abteilung, P.O. Box 88, Beijing

FRANCE
Office International de Documentation et Librairie, 48, rue Gay-Lussac, F-75240 Paris Cedex 05

HUNGARY
Libraria Ltd., Book Import, P.O. Box 126, H-1556 Budapest

INDIA
Oxford Book and Stationary Co., 17, Park Street, Calcutta-700 016
Oxford Book and Stationary Co., Scindia House, New Delhi-110 001

ISRAEL
Yozmot Literature Ltd., P.O. Box 50055, IL-61950 Tel Aviv

ITALY
Libreria Scientifico Dott. Lucio di Biasio "AEIOU". Via Correggio 6, I-20146 Milan

JAPAN
Maruzen Company, Ltd., P.O. Box 5000, 100-31 Tokyo International

PAKISTAN
Mirza Book Agency, 65, Shahrah Quaid-e-Azam, P.O. Box 729, Lahore 3

POLAND
Ars Polona, Foreign Trade Enterprise, Krakowskie Przedmiescie 7, PL-00-066 Warsaw

ROMANIA
Librex, P.O. Box 136-197, Bucharest

RUSSIAN FEDERATION
Mehdzhadnadanay Kniga, Sovetina-EA, Dimitrova 36, SU-113 05 Moscow

SLOVAK REPUBLIC
Alfa, Publishers, Holubanover namestie 3, 815 89 Bratislava

SOUTH AFRICA
Van Schaik Bookstore (Pty) Ltd, P.O. Box 724, Pretoria 0001

SPAIN
Diaz de Santos, Legaspi 96, E-28006 Madrid
Diaz de Santos, Balines 417, E-08022 Barcelona

SWEDEN
AB Fritzes Kungl. Hovbokhandel, Fredsgatan 2, P.O. Box 16566, S-102 27 Stockholm

UNITED KINGDOM
HMSSO, Publications Centre, Agency Section, 81, Nine Elms Lane, London SW8 5DR

YUGOSLAVIA
Jugoslovenska Knjiga, Terazije 27, P.O. Box 36, YU-11001 Belgrade

Orders from countries where sales agents have not yet been appointed and requests for information should be addressed directly to:

Division of Publications
International Atomic Energy Agency
Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria