Building blocks of quantitative genetics

Karen Marshall

IAEA, Korea, April, 2005

Basis of inheritance

Diploid parents

Meiosis

Haploid gametes (sperm and egg)

Fertilization

Diploid offspring

Basic quantitative genetics
Polygenic model

As the number of genes controlling a trait increases, the distribution of genetic effects becomes more normal.

Quantitative traits are assumed to be controlled by genes at many loci: the polygenic model.

Polygenic effects are the action and interaction of genes at a large number of loci, each with small effect.

Distributions of genetic effects

1 locus, 2 alleles / locus

2 loci, 2 alleles / locus

5 loci, 2 alleles / locus

150 loci, 2 alleles / locus
Phenotypic variation

\[P = G + E \]

\[V_P = V_G + V_E \]

Many loci, Genetic value \(G: \)

Environmental deviation \(E: \)

Phenotype, \(P = G + E: \)

\[\sigma_P = \sigma_G + \sigma_E \]

Basic quantitative genetics

\[h^2 = 0.1 \]

<table>
<thead>
<tr>
<th></th>
<th>(V_P)</th>
<th>(\sigma_P)</th>
<th>(V_A)</th>
<th>(\sigma_A)</th>
<th>(V_E)</th>
<th>(\sigma_E)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.030</td>
<td>0.173</td>
<td>0.003</td>
<td>0.054</td>
<td>0.027</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Basic quantitative genetics
Breeding value versus genetic value

\[P = G + E \]
\[P = A + NA + E \]

Genetic value (G)
- Value of genes to self

Breeding value (A)
- Value of genes to progeny

Difference (G-A)
- Non-additive effects e.g. dominance
Breeding value

Breeding values = the sum of the average effect of alleles (α)

Example
- Single locus model;
 - Genotypic values are $G_{A2A2} = -20$, $G_{A1A2} = 0$, $G_{A1A1} = 20$
 - $p=q=0.5$
- An $A1$ gamete will meet an $A1$ or $A2$ gamete at equal frequency
- Progeny are thus $0.5 \times A1A1$ and $0.5 \times A1A2$
- The average value of the progeny is $0.5 \times -20 + 0.5 \times 0 = -10$
- Thus $\alpha_{A1} = -10$ units
- Similarly $\alpha_{A2} = 10$ units

No dominance, $p=q=0.5$

<table>
<thead>
<tr>
<th>Genotype</th>
<th>$A2A2$</th>
<th>$A1A2$</th>
<th>$A1A1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>280</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Pop’n mean</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic value</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Breeding value</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

$\alpha_{A1} = 10$
$\alpha_{A2} = -10$

- With no dominance the genetic and breeding values are equal.
- With equal allele frequency the average effects of $A1$ and $A2$ are of equal magnitude
Some dominance, p=q=0.5

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A_2A_2</th>
<th>A_1A_2</th>
<th>A_1A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>280</td>
<td>310</td>
<td>320</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Pop'n mean</td>
<td>305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic value</td>
<td>-25</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Breeding value</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

$\alpha_{A1} = 10$

$\alpha_{A2} = -10$

- With some dominance the genetic and breeding values differ.
- Dominance deviation is excluded from the breeding value.

Basic quantitative genetics

p=0.1, q=0.9, No dominance

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A_2A_2</th>
<th>A_1A_2</th>
<th>A_1A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>280</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.81</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>Pop'n mean</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic value</td>
<td>-4</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>Breeding value</td>
<td>-4</td>
<td>16</td>
<td>36</td>
</tr>
</tbody>
</table>

$\alpha_{A1} = 18$

$\alpha_{A2} = -2$

- With unequal allele frequencies the average effects of $A1$ and $A2$ are of different magnitude.
- The average effect of an allele is greater if the allele is rare.

Basic quantitative genetics
Important points

Breeding values are expressed as a deviation of the population mean (with the population mean dependent on genotypic values and frequencies)

With no dominance \(G=A \), with dominance \(G \neq A \)

Animals with a rare allele will have a larger (either positive or negative) breeding value

Breeding values and can be used to predict progeny performance

- Using example 1 from before:
 - Genotypic values are \(G_{A1A1} = 20 \), \(G_{A1A2} = 0 \), \(G_{A2A2} = -20 \)
 - \(p=q=0.5 \)

- Genetic value of offspring from an A1A1 sire is

\[
G_o = \frac{A + 0}{2} = \frac{20}{2} = +10
\]

- Check:
 - sire passes on A1, dams have equal frequency of A1 & A2,
 - progeny are equally A1A1 and A1A2, and \((20 \times 0.5 + 0 \times 0.5) = 10\)
Breeding values can be used to predict progeny performance

- Using example 3 from before:
 - Genotypic values are $G_{A1A1} = 36$, $G_{A1A2} = 16$, $G_{A2A2} = -4$
 - $p=0.1$ and $q=0.9$
 - Average effect of $A1 = 18$, of $A2 = -2$

- Genetic value of offspring from an $A1A2$ sire is

$$G_o = \frac{A + 0}{2} = \frac{16}{2} = +8$$

- Check:
 - Sire passes on $A1$ and $A2$ in equal frequency, dams have frequency of $A1 = 0.1$ & $A2 = 0.9$,
 - Progeny are $0.5 (0.1 A1A1 + 0.9 A1A2) + 0.5 (0.1 A2A1 + 0.9 A2A2) = 0.5 (0.1 \times 36 + 0.9 \times 16) + 0.5 (0.1 \times 16 + 0.9 \times -4) = 8$

Breeding values are halved when used to predict progeny performance

- As breeding value represents the sum of the average effect of two alleles,

- Only one of which is passed on.
Realised vs expected BVs

Realised BVs

- are calculated from progeny performance
- $BV = 2 \times (\text{progeny mean} - \text{population mean})$

Expected BVs

- calculated from knowledge of genotypic values and allele frequencies

These differ because

- Allele frequencies vary from expected, especially for small progeny group sizes
- Effect of environment - expectation of environmental effect is 0, but this is unlikely to be realised for small progeny group sizes.

<table>
<thead>
<tr>
<th>Genotypic Value</th>
<th>α_{A1}</th>
<th>α_{A2}</th>
<th>α_{A3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>200</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.20</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>Pop's mean</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Genetic value</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Breeding value</td>
<td>-25</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

$\alpha_{A1} = 10$

$\alpha_{A3} = -10$

Basic quantitative genetics
Predicting effects

At simplest level, own phenotype can be used as the information source

\[\hat{A} = \frac{V_A}{V_P} P \quad \hat{D} = \frac{V_D}{V_P} P \quad \hat{E} = \frac{V_E}{V_P} P \]

Breeding Value Dominance Environment

Basic quantitative genetics

Heritability

Regression of A on P is equal to heritability

\[b_{a,p} = \frac{\text{Cov}_{a,p}}{V_P} = \frac{\text{Cov}_{A,A} + \text{Cov}_{A,N} + \text{Cov}_{A,E}}{V_P} = \frac{V_A + 0 + 0}{V_P} = \frac{V_A}{V_P} = h^2 \]

Basic quantitative genetics
Predicting progeny performance

\[\hat{A} = \frac{V_A}{V_p} \hat{P} = h^2 \hat{P} \quad \hat{G}_o = \frac{\hat{A}_m + \hat{A}_f}{2} \]

Note \(G_o = (A_m + A_f)/2 \) because
- \(G = A + NA + E \)
- NA and E are expected to be 0 on average
- \(A = (A_m + A_f)/2 \).

Example

Ram = 90kg
Ewe = 80 kg
Average of flock = 70 kg
\(h^2 = 0.25 \)

\[\hat{A}_{\text{ram}} = h^2 \hat{P} = 0.25 \times 20 = 5.0 \text{kg} \]
\[\hat{A}_{\text{ewe}} = h^2 \hat{P} = 0.25 \times 10 = 2.5 \text{kg} \]
\[\hat{G}_o = \frac{\hat{A}_{\text{ram}} + \hat{A}_{\text{ewe}}}{2} = \frac{5.0 + 2.5}{2} = 3.75 \text{kg} \]

Note that +3.75 kg is the average we expect for a large group of progeny, individuals will deviate

![Image of sheep with weights]
Why do progeny of the same parents differ?

Genetic variation within families
- each individual received a random one-half of genetic material from each parent
- Mendelian sampling effects
 - e.g. $V_{MS\text{-full sib family}} = 0.5V_A$

Environmental variation
- systematic or random chance

Extending to a QTL model

Genetic variance under a QTL model
- Few genes of large effect
- Many genes of small effect

$$V_P = V_A + V_{QTL} + V_{NA} + V_E$$