Aspects of breeding program design

Karen Marshall

Examples of breeding objectives

Percentage emphasis on each EBV in the Japanese B3 Index.

- Calv. Ewe Dir. 12%
- Calv. Ewe Drs. 1%
- Birth Weight 8%
- 600 D Weight 24%
- Mature Curr.W. 1%
- Milk -11%
- Days to Calv. -1%
- Rump Fat 0%
- IMF 0%

Percentage emphasis on each EBV in the Supermarket Index.

- Calv. Ewe Dir. 12%
- Calv. Ewe Drs. 1%
- Birth Weight 8%
- 600 D Weight 24%
- Mature Curr.W. 1%
- Milk -11%
- Days to Calv. -1%
- Rump Fat 0%
- IMF 0%

Breeding program design
Considerations

- Is the best available population being utilized for the breeding objective?
 - If not, can genes from the best population be imported?

- Is there genetic variation within the chosen population, and what is the importance of heterosis?
 - Highly heritable traits respond well to within line selection
 - If heterosis is important, crossing systems (i.e. cross breeding) should be considered

Considerations

- Should reproductive technologies be utilized
 - AI, MOET, JIVET
 - Sperm and embryo sexing

- Is the breeding program structure optimal
 - Closed versus open nucleus

- Optimising selection
 - Use of a selection index
 - Unfavourable trait correlations → separate sire and dam lines may be required
Optimising selection

- Measurement strategy
 - Which traits to measure
 - Which animals to measure
 - Use of repeated measures
 - Level of pedigree recording

- Method of evaluation
 - Phenotypic selection
 - BLUP
 - QTL-BLUP

- How to select and mate the selected animals
 - Balance of selection intensity and generation interval
 - Balance of selection intensity and inbreeding

Conservation genetics

Special issues apply to conservation programs

- Level of genetic variance to conserve
 - Which populations
 - How many individuals from each population
 - Should selection result in a directional change

- Breeding strategies
 - Level of intervention e.g. introduction of outside animals

- Method of conservation
 - Live animals (in-situ, ex-situ), reproductive material, genetic material
Animal breeding

Application of genetic principles to modify animal performance

- Identify worthwhile changes
 - formalise a breeding objective

- Identify genetically superior animals
 - usually via a selection index

Technologies

Established technologies can and have resulted in significant gain. In developed countries these include

- Breed selection, development of composites breeds, crossing systems, separated sire and dam lines
- Use of reproductive technologies
- National genetic evaluation systems using BLUP
- Breeding structures allowing the exchange of genetic material

The genomics revolution has resulted in the introduction of new technologies (e.g. GAS), the impact of which is still largely unknown.