Breeding a new variety is far more complex and takes much more time than performing a laboratory experiment in well controlled conditions. Further, breeding information is often not published in scientific journals, and is sometimes kept as a trade secret. Therefore, it is not an easy job to collect and analyse relevant information and write a paper to review the achievements in plant breeding. As in many other countries, induced mutations have played an important role in crop breeding in Bulgaria. In this issue, Dr. N. Tomleкова presents an excellent paper on this subject. She has succeeded in portraying a comprehensive picture of research and application of mutation breeding in Bulgaria: about 80 mutant varieties of 14 different plant species; leading mutant varieties are covering about 50% of maize growing area and almost 100% of durum wheat area; novel mutations have not only played a role in improving resistance/tolerance to biotic/abiotic stresses, quality and nutrition traits, but also in facilitating hybrid seed production and enabling adaptation to mechanization of crop production; thousands of mutant lines have been generated and preserved as germplasm collections and used in breeding programmes. The great success in hybrid maize breeding may surprise most readers since it is widely believed that out-crossing crops like maize have sufficient genetic variability, and that induced mutations have limited roles. Such perceptions should be re-assessed against the great success of maize mutation breeding in Bulgaria.
Chronic radiation enables continuous mutagenic treatment of living organisms. This requires special facilities such as: gamma phytotrons, gamma greenhouses or gamma fields. Brief introductions of such facilities, currently available, are included in this issue.

It has been a pleasure being the editor of Plant Mutation Reports over the past five years and I am very pleased that we have made significant progress on this journal in terms of the quality of published papers. Further progress will continue to take place with the establishment of an online manuscript submission and review system as well as a new editorial team in the coming years, if not months. Since I am finishing my contract with the IAEA soon, I would like to take this opportunity to thank you (authors, reviewers and readers) for the support you have given.

Qingyao Shu
Contents

Induced Mutagenesis for Crop Improvement in Bulgaria
 Tomlekova, N.B. ...4

A Study on EMS and Gamma Mutagenesis of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]
 Mahla, H.R., Shekhawat, A. and Kumar, D. ...28

Production of Doubled Haploids in Tunisian Durum Wheat (Triticum durum Desf.) Cultivars through
 Unpollinated Ovary Culture

Genetic Improvement of an Indigenous Aromatic Variety ‘Jajai 77’ through Mutagenesis
 Bughio, H.R., Asad, M.A., Odhano, I.A., Arain, M.A. and Bughio, M.S. ..40

Binachinabadam-4: A High Yielding Mutant Variety of Groundnut with Medium Pod Size
 Azad, M.A.K., Hamid, M.A. and Yasmine, F. ...45

Gamma Phytotron: A New Chronic Gamma Irradiation Facility
 Kang, S.-Y., Kim, J.-B., Lee, G.-J. and Kim, D.S. ..50

Malaysian Nuclear Agency Gamma Greenhouse
 Ibrahim, R. ..52

Gamma Radiation Facilities at the Institute of Radiation Breeding
 Nakagawa, H. ...55

FAO/IAEA Mutant Variety Database ...57

Author’s Guidelines ...58
Induced Mutagenesis for Crop Improvement in Bulgaria

N.B. Tomlekova
Molecular Genetics Laboratory, Department of Breeding, Variety Maintenance and Introduction, Maritsa Vegetable Crops Research Institute, 32, Brezovsko shosse Str., 4003 Plovdiv, Bulgaria
E-mail: nasia.tomlekova@gmail.com

Abstract

Experimental mutagenesis has been investigated and applied in crop breeding in various Bulgarian agricultural research institutes during the last half century. In this paper some major accomplishements achieved in Bulgaria are highlighted. Both, physical mutagens (mainly gamma rays) and chemical mutagens (mainly EMS, NMU, NEU), have been used and their proper doses have been established. According to the information available to the author, there are more than 76 new cultivars developed using induced mutants in Bulgaria, namely: barley (5), wheat (5), durum wheat (9), maize (26), sunflower (3), lentil (4), bean (2), pea (1), chickpea and vetch (2), soybean (5), tomato (6), pepper (4), cotton (2), tobacco (2). Some of the mutant cultivars such as maize hybrid Kneja 509 and durum wheat cultivar Gergana have become leading cultivars occupying up to 50% of the growing area of the crop concerned. In durum wheat, mutant cultivars have not only covered almost all the growing areas but also doubled the yield in the past 30 years. The achievements in mutation breeding programmes have also had a significant impact on the progress of genetic research by elucidating the underlying mechanisms of induced mutations and the training of many young researchers and university students through their involvement in various research projects. A number of mutant lines with novel characteristics and mutant cultivars of economical importance together with relevant techniques used in the development and characterization of those mutant lines/cultivars are described in this paper.

Keywords: Mutation breeding, induced mutagenesis; physical mutagen, chemical mutagen, cereals, legumes, vegetable crops

Introduction

In the late 1920s, it was discovered that genetic make-up is amenable to change by chemical mutagenesis. This has since been applied as an established method for increasing genetic variability in many crop plants. In Bulgaria, mutation breeding has been widely used since the 1950s. Initial mutagenesis studies were mainly directed to identify the optimum mutagen and dose (or combination of different mutagens) to achieve high frequencies and broad ranges of induced mutations. Breeding lines and cultivars were developed with the establishment of proper protocols of physical and chemical mutagenesis in various crop species, such as: cereals, forage, fibre, vegetable crops, tobacco, etc. Such investigations and breeding work have been pursued in several research institutes, notably, in universities, supported by national research programmes, as well as several IAEA projects, including a number of coordinated research projects and technical cooperation projects.

A large range of chemical and physical mutagens have been investigated for their use in crop improvement and Table 1 shows the most commonly used ones. X rays, easy to access and apply, were frequently used as sources of ionizing radiation. Gamma rays were used for both, intact plants and parts of plants as well as seeds. Fast neutrons, known to be strongly harmful to chromosomes, were used for seed treatment. UV-light – causing formation of T-T dimmers and lasers has been used recently. Nowadays, with the permission of the Nuclear Regulatory Agency, 18 gamma irradiation facilities, using either cobalt-60 or caesium-137, are in operation in Bulgaria for either industrial or scientific (7) or for medical purposes (11). A number of chemical mutagens were also frequently used.

To date, more than 76 mutant cultivars have been developed in Bulgaria (Table 1). In addition, a large number of mutant lines are maintained as working germplasm collections in respective institutes, where they were developed, or at the National Seed Genebank in Sadovo. There is an ongoing assessment on the potential use of mutants in agriculture. Considering the fact that induced mutations are generally deleterious, such large number of mutant cultivars and lines released in major crops is impressive. It is relevant to emphasize here that in all cases the mutant cultivars have emerged as superior to other entries prior to being approved for commercial release. The lines and cultivars developed demonstrated that gene mutations can be useful for obtaining genotypes with higher yield potential, altered plant architecture, characteristics suitable for mechanical harvesting, reduced lodging, early ripening, higher levels of protein and β-carotene content, disease and pest resistance and drought tolerance, wide ecological adaptability (Table 1).

This article aims at summarizing some of the main and recent achievements of induced mutagenesis in major crops in Bulgaria. It also provides some perspectives of future mutation breeding.
Table 1. Mutagenesis and mutant cultivars of various crops registered in Bulgaria

<table>
<thead>
<tr>
<th>Crops species</th>
<th>Commonly used mutagens and range of doses</th>
<th>Number of mutant cultivars developed**</th>
<th>Main mutant characteristics reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>60Co γ rays (20-100 Gy); UV-C light (0.5-5 J/cm²)</td>
<td>3 (2)</td>
<td>Increased productivity; improved grain characteristics; spike fertility; short and lodging resistant stalks; short vegetation period; high hardness to dip; high cold tolerance; resistance to powdery mildew and to brown, black and stem rust</td>
</tr>
<tr>
<td>Common wheat</td>
<td>60Co γ rays (50 Gy); NaN$_3$ (0.1, 1-10 mM); EMS (0.1-0.3%)</td>
<td>4 (1)</td>
<td>High grain yield; high and stable productivity; ecological adaptability, drought and cold tolerance; improved tolerance to lodging and shedding; resistance to brown rust; quality index - softening of dough and energy for dough deformation</td>
</tr>
<tr>
<td>Durum wheat</td>
<td>60Co γ rays (50-200 Gy); EMS (0.1-3.5%)</td>
<td>8 (1)</td>
<td>High yield, high productivity; high cold tolerance; short stem; awnlessness; new leaf shape - spherococum, erectum, compactum, spread rosette</td>
</tr>
<tr>
<td>Maize</td>
<td>NEU (0.001-0.01%); NMU (0.001-0.01%); Dioxane (<1%); DMS (0.1-0.3%); DES (0.1-0.3%); EMS (0.1-0.3%)</td>
<td>(26)</td>
<td>High grain yield and productivity; tolerance to dense sowing; early ripening; drought tolerance; high protein content; high biomass dry matter; shifts in the flowering time; white-colour grain; strong stem; altered ear length; increased number of rows</td>
</tr>
<tr>
<td>Sunflower</td>
<td>60Co γ rays (20-500 Gy); 137Cs γ rays (8-540 Gy); Ultrasound (0.5-25.5 W/cm²); EMS (0.2 - 0.8%)</td>
<td>3</td>
<td>Higher seed oil content; higher plants; larger leaves; greater number of branches; larger diameter of stem and plant head; altered size, position, shape, colour of leaves, seeds and inflorescence; increased seed weight; shortened vegetation period; small stalk height; increased oil contents; improved oil seed composition; cytoplasmic male sterility; better combining ability; resistance to Orobanche cumana</td>
</tr>
<tr>
<td>Lentil</td>
<td>60Co γ rays (30-40 Gy); 137Cs γ rays (30-40 Gy); FN (10 Gy); EMS (0.05-0.3%); DES (0.05-0.25%); MMS (0.05-0.2%); NaN$_3$ (0.001-0.1%); NMU (0.0065-0.025%); NEK (0.0065-0.025%); 60Co γ rays (20-40 Gy) + EMS (0.05-0.1%)</td>
<td>4</td>
<td>Higher yield; early ripening; optimization of bush shape; increased grain size; resistances to: Ascochyta blight, Fusarium, Anthracnose, Stemphylium and viruses; non-lodging stem; low tannin levels; changed leaf colour and shape; increased grain protein content plant: short, tall, dwarf-like, with different degree of lodging; Grain shattering resistance; grain mass; changed cotyledon colour and seed coat</td>
</tr>
<tr>
<td>Bean</td>
<td>60Co γ rays (80-100 Gy); Colchicine (0.1%)</td>
<td>2</td>
<td>Long narrow leaves; sickle-shaped pods; flowers with three ovaries compact habit; early ripening; simultaneous pod ripening; dark-green corrugated leaves; increased pod weight; changed pod shape; unifoliate; chlorophyll mutations – albina, xantha, chlorine, chloroviridis, chlorotica; resistance to: CBB, HB, BCMV, CMV, CIYVV, Rust, Anthracnose, Sclerotinia</td>
</tr>
<tr>
<td>Pea</td>
<td>60Co γ rays (40 Gy); FN (2.5 - 15 Gy); EMS (0.1-0.6%); EI (0.2%, 0.01-0.06%, 0.005%); DES (0.05-0.6%); NMU (0.001%); DMS (0.2%); 60Co γ rays (2.5-5 Gy) or FN (0.25-0.50 Gy) + EMS (0.2%); or DES (0.2%); 60Co γ rays (80Gy) + EMS (0.05%); 60Co γ rays (40 Gy) + EMS (0.2%)</td>
<td>1</td>
<td>strong and non lodging stem – ‘alfa’ type; increased number of pods and seeds; early ripening; drought tolerance; great number of fertile branches; increased protein levels; resistances to Ascochyta blight, Erysiphe poligoni, SCCV virus; tolerance to Brushus pisi</td>
</tr>
<tr>
<td>Chickpea; vetch</td>
<td>60Co γ rays (50-350 Gy); EMS (0.05-0.2%); 60Co γ rays (50 Gy) + EMS (0.05-0.1%)</td>
<td>(2)</td>
<td>Morphological mutations</td>
</tr>
</tbody>
</table>
Crops species | Commonly used mutagens and range of doses | Number of mutant cultivars developed** | Main mutant characteristics reported
--- | --- | --- | ---
Grass - Sorghum sudanense | DMS (0.1-0.3%); DES (0.0005-0.01%); NMU (0.0005-0.01%); NEU (0.0005-0.01%)) | | Mutations in reproductive organs; shorter corn-flower
Soybean | ^60^Co γ rays (25-150 Gy); FN (0.025-100 Gy); EMS (0.05-0.2 M) EMS (0.1%); NMU (0.001 - 0.1%); NaN (0.001 M); MMS (0.001-0.1%); ^60^Co γ rays (40-50 Gy) + EMS (0.1%); ^60^Co γ rays (50 Gy) + MMS (0.1%); ^60^Co γ rays (50 Gy) + NMU (0.05%); FN (40 Gy) + EMS (0.05 M) | 5 | Drought tolerance; improved architecture of shrub; early-ripening; increased crude protein in grain; resistances to charcoal rot, stem cancer, bacterial blight, bacteriosis and mildew; increased protein content; dwarf type; vertically arranged leaves; altered leaflet number
Pepper | ^60^Co γ rays (80-120 Gy); X rays (120 Gy); EMS (0.5-0.7%) | 2 (2) | Male-sterility: nuclear (Ms3, Ms6); CMS (ms1); resistances to powdery mildew; sulfur-white (sw); high β-carotene content; dwarfism (dw, dw-2); short conic fruits; anthocyaninless (al); marbled leaves; yellow cotyledons; light green leaves; high dry matter content; early ripening
Cotton | ^60^Co γ rays (100-150 Gy) | 2 | High yield; length uniformity; high maturity co-efficient; shorter vegetation period; high fibre strength
Tobacco | DES (0.01-0.2 M); FN (90-150 Gy) | 2 | Male sterility, shorter vegetation period, resistance to: Peronospora tabacina, Erysiphe ciceracearum, Agrotis ipsilon

** The numbers are presented as ‘mutant cultivars directly using induced mutants (mutant cultivars developed using one or more induced mutants in cross breeding)’

Cereals

Barley

Induced mutagenesis in barley was first investigated in 1967 at the Institute of barley, Karnobat, now known as the Institute of Agriculture (Stefanov, 1995). Through extensive investigations, several mutants were developed with valuable biological and economic characteristics, including increased productivity and number of fertile spikes, short and lodging resistant stalks, short vegetation period, increased cold tolerance, etc. (Table 1; Gramatikova et al., 1996; 2005a; 2005b; Dyuulgerova, 2008).

Some mutants have been used as gene resources in barley breeding. Two cultivars were developed through gamma rays mutagenesis: Markeli 5 (1976) and Diana (1983). Two other cultivars: Krasi 2 (1983) and Jubiley (1982) were developed through hybridization with mutant lines. A new feed barley cultivar IZ Bori (K13026) was released in 2009; it was developed by sodium azide mutagenesis of a breeding line 280-7 and belongs to Hordeum sativum Jess, subsp. Vulgare, var. paralelim. IZ Bori is a winter type cultivar, highly tolerant to dip with good tolerance to cold temperatures (ranked Group III for cold tolerance similar to the control cultivar Odeskiy 31). IZ Bori shows good to very good resistance to powdery mildew, as well as to brown, black and stem rust. The strict self-pollination habit of IZ Bori is favorable for maintaining its homogeneity. Its grain yield exceeds the control cultivar by 15-17% and its grain protein and lysine content is higher than standard cultivars, hence its grains are of improved nutritional value. IZ Bori is well-adapted to all kinds of growing conditions and can consequently be grown throughout the country.

Barley has also been used for basic research of DNA damage and repair in Bulgaria. Gecheff et al., (1994) and Georgieva et al., (2008) demonstrated that the heterogeneity of DNA damage induction and repair is dependent on the chromatin organization, transcriptional activity and nature of individual DNA sequences. Mutagenic treatments using ionizing radiation, UV-C light and bleomycin were applied in barley. Selective induction and differential repair in individual genes and defined DNA sequences were investigated. However, results indicated that there was no noticeable relationship between the transcriptional activity of rRNA genes and their repair potential when bleomycin was applied (Manova et al., 2003; 2006; 2009).
Wheat

Common wheat

Two types of wheat cultivars are grown in Bulgaria: soft (common wheat) \textit{(Triticum aestivum} L.) and hard (durum wheat) \textit{(T. durum} Desf.). \textit{T. aestivum} is the most widely spread wheat type worldwide and the only improved cultivar grown in Bulgaria. The main common wheat breeding centres in Bulgaria are the Dobrudza Agriculture Institute (DAI) in General Toshevo, the Institute of Plant Genetic Resources (IPGR), Sadovo, and until recently the Institute of Agriculture (IA) in Karnobat. Experimental mutagenesis of common wheat was also carried out at the Institute of Genetics, Sofia (Savov, 1976).

Since the 1970s, gamma rays, sodium azide and EMS, used in combination or alone, has been used for mutation induction and breeding in wheat (Georgiev, 1977; Rachovska, 1996) (Table 1). In addition, the effectiveness of mutagenic treatment of hybrid materials was investigated. For example, F$_2$ seeds were treated with sodium azide for selecting mutants (Rachovska \textit{et al.}, 2002a, 2002b, 2003; Mangova \textit{et al.}, 2004). Mutation breeding has produced the following mutant cultivars:

Ideal was developed as a strong wheat cultivar with improved dough properties (Dzhelepov, 1982). Myriana is a winter bread wheat cultivar developed through crossing with a mutant line at the IA, Karnobat, and released in 1991. It is a high yielding cultivar that outyielded the standard by 10-12%. It has high winterhardness, good resistance to diseases and good quality grain. Myriana has also proven to be suitable for growing in Turkey, Northern Greece, Italy, Southern France, Spain, Portugal, Albania and Serbia. Two other cultivars Avangard and Guinness/1322 were registered in 2005 by the Bulgarian Executive Agency for Variety Testing, Field Inspection and Seed Control (IASAS) (Rachovska \textit{et al.}, 2005). Guinness/1322 was included in the Bulgarian Official Catalogue of Varieties of Agriculture and Vegetable Plant Species (Bulgarian Official Catalogue of Varieties). Guinness/1322 is a new winter common wheat cultivar that was developed from the cultivar Katya by 60Co gamma rays irradiation at a dose of 50 Gy. High productivity, ecological adaptability and drought tolerance are its distinctive advantages compared to other cultivars. It is distinguished from its parental cultivar Katya by improved resistance to lodging and shedding. Fermer is the newest Bulgarian winter wheat cultivar registered in 2009 (Fig. 1). It was developed by G. Rachovska in the IPGR by gamma irradiation (50 Gy) of dry seeds of the cultivar Pobeda. According to the grain quality parameters, Fermer belongs to the Group B - medium to high power wheat, suitable for self-baking of bread wheat. Fermer is considered as a significant breeding achievement with the following distinguished characteristics: its stable and high productivity; excellent drought and cold tolerance (ranked as the highest cold tolerance) and resistance to the brown rust (race 10R). These characteristics make it suitable to be grown in various ecological environments. It attains basic yield with limited input of nitrogen and produces additional grains with the increase of nitrogen input, which makes it economically effective. This is the newest direction of the breeding programme in the IPGR, Sadovo. Fermer has all characteristics needed for widespread growing in the country.

Since the 1970s, gamma rays, sodium azide and EMS, used in combination or alone, has been used for mutation induction and breeding in wheat (Georgiev, 1977; Rachovska, 1996) (Table 1). In addition, the effectiveness of mutagenic treatment of hybrid materials was investigated. For example, F$_2$ seeds were treated with sodium azide for selecting mutants (Rachovska \textit{et al.}, 2002a, 2002b, 2003; Mangova \textit{et al.}, 2004). Mutation breeding has produced the following mutant cultivars:

Ideal was developed as a strong wheat cultivar with improved dough properties (Dzhelepov, 1982). Myriana is a winter bread wheat cultivar developed through crossing with a mutant line at the IA, Karnobat, and released in 1991. It is a high yielding cultivar that outyielded the standard by 10-12%. It has high winterhardness, good resistance to diseases and good quality grain. Myriana has also proven to be suitable for growing in Turkey, Northern Greece, Italy, Southern France, Spain, Portugal, Albania and Serbia. Two other cultivars Avangard and Guinness/1322 were registered in 2005 by the Bulgarian Executive Agency for Variety Testing, Field Inspection and Seed Control (IASAS) (Rachovska \textit{et al.}, 2005). Guinness/1322 was included in the Bulgarian Official Catalogue of Varieties of Agriculture and Vegetable Plant Species (Bulgarian Official Catalogue of Varieties). Guinness/1322 is a new winter common wheat cultivar that was developed from the cultivar Katya by 60Co gamma rays irradiation at a dose of 50 Gy. High productivity, ecological adaptability and drought tolerance are its distinctive advantages compared to other cultivars. It is distinguished from its parental cultivar Katya by improved resistance to lodging and shedding. Fermer is the newest Bulgarian winter wheat cultivar registered in 2009 (Fig. 1). It was developed by G. Rachovska in the IPGR by gamma irradiation (50 Gy) of dry seeds of the cultivar Pobeda. According to the grain quality parameters, Fermer belongs to the Group B - medium to high power wheat, suitable for self-baking of bread wheat. Fermer is considered as a significant breeding achievement with the following distinguished characteristics: its stable and high productivity; excellent drought and cold tolerance (ranked as the highest cold tolerance) and resistance to the brown rust (race 10R). These characteristics make it suitable to be grown in various ecological environments. It attains basic yield with limited input of nitrogen and produces additional grains with the increase of nitrogen input, which makes it economically effective. This is the newest direction of the breeding programme in the IPGR, Sadovo. Fermer has all characteristics needed for widespread growing in the country.

Six new candidate cultivars, all developed by crossing with mutants, are pending for registration. A characteristics-based cultivar collection, comprising of 129 consoliated mutant lines of common wheat with useful properties have been developed in the IPGR (Rachovska, 1990). Under the law of protection of new plant cultivars and animal breeds and in agreement with the Convention on Biological Diversity, this collection was registered as original germplasm. In 2003, the collection was deposited for long-term storage at the National Gene Bank of Bulgaria and can solely be used for scientific purposes.

Durum wheat

Durum wheat originates from the Mediterranean region. The main breeding centre of the crop in Bulgaria is the Institute of Cotton and Durum Wheat (ICDW) in Chirpan. Mutation techniques have been successfully deployed in durum wheat improvement in Bulgaria since the 1980s. Different frequencies of induced mutations were reported for 60Co gamma rays and EMS mutagenesis, the highest frequency was achieved by 2h treatment of 0.5 – 3.5% EMS (Table 1).
A total of 8 cultivars have been developed by the combined use of mutation induction and cross-breeding at the ICDW and listed in the Bulgarian Official Catalogue of Varieties. The use of those mutant cultivars has substantially and continuously increased the yield level, cold tolerance and grain quality of durum wheat in Bulgaria. Gergana, released in 1984, was developed by crossing a durum wheat cultivar and a mutant line. The F₂ hybrid seeds were further irradiated with 100 Gy gamma rays. It possesses characteristics such as high yield and good cold tolerance. It had covered 40-45% of the durum wheat area in Bulgaria until 1990 (Yanev, 1987). Progress, released in 1990, was developed from a cross between two mutant lines. Presently, it is the prevailing cultivar due to its high quality and productivity, covering about 80% of the durum wheat area in the country and was notified as the cultivar with the highest yield, 8340 kg/ha in 1988. Beloslava, released in 1997, was also developed from a cross between two mutant lines. It is the Bulgarian cultivar that has the highest quality with grains of about 40-42% wet gluten (standard requirement is 28%) and 18-19% raw protein content (standard requirement is 14.5-15%). The highest yield reached 8500 kg/ha.

Vazhod, released in 1999, was developed from a cross between Gergana and Zagorka. The F₂ hybrid seeds were irradiated with 50 Gy gamma rays. It is currently the cultivar with highest yield (>8500 kg/ha) and covers 20% of the durum wheat area in Bulgaria. It is resistant to Puccinia graminis and Puccinie recondite tritice and highly resistant to other diseases. It also has high cold tolerance, which makes it suitable for the northern areas of the country. Deyana belongs to the Group B – medium-strong durum wheat cultivars. In the testing period its average yield reached 5530 kg/ha (5160 kg/ha for standard cultivars Progress and Saturn 1). It is medium early-ripening cultivar and forms ears 3 to 8 days later than the average standard cultivars and demonstrates good winter hardness. Zvezditsa is medium early-ripening cultivar, with medium ear height. It belongs to the Group B – medium-strong durum wheat cultivars. The average yield for the testing period is 5470 kg/ha (5160 kg/ha for standard cultivars Progress and Saturn 1). Over the years of testing this cultivar demonstrated lower winter-tolerance. Yavor was developed from a cross between a mutant line and the cultivar Zagorka. The F₂ hybrid seeds were irradiated with 100 Gy gamma rays. Impuls was developed by crossing another mutant line with the cultivar Zagorka and its F₂ seeds were irradiated with 100 Gy gamma rays. Its stem height is 90-100 cm with good lodging hardness. The cultivars Yavor and Impuls are in the process of forced multiplication and appear to have high grain productivity and quality. Yavor is resistant to Puccinia graminis and Puccinie recondite tritice.

It is worthwhile mentioning that old cultivars grown till 1980, had stalks longer than 1.5 m while mutant cultivars, grown presently, are around 85-90 cm. Mutant cultivars currently cover almost the whole durum wheat area in the country. A big part of the durum wheat is exported. High quality mutant characteristics are preferred for the production of pasta. The use of mutant cultivars has significantly increased the productivity of durum wheat. Nowadays these durum wheat cultivars attain a grain yield almost equal to common wheat.

Maize

Although maize was only introduced a few centuries ago to Bulgaria, it has attained a great social-economic importance (Todorovska et al., 2008). The main breeding centre in Bulgaria is the Maize Research Institute (MRI), in Kneja. In 1973, a research programme on induced mutagenesis for accelerating breeding by inducing additional genetic variation in elite lines and hybrids was initiated at the MRI, in Kneja (Christov et al., 1995), with the first maize mutant hybrid cultivar being developed in 1980 (Hristov et al., 1987a; 1987b). The results of studies on the choice of mutagen and optimum doses for inducing mutants with high productivity and combining ability were reported in a number of publications (Christova et al., 1993; 1995; Genov et al., 1987; Genov, 1990; Hristov, 1985; Hristov et al., 1989; Hristova et al., 1991). As a major output of these studies, a principal scheme known as Recurrent Reciprocal Mutation Breeding (RRMB) was developed (Hristova et al., 1984a; 1984b; 1987a; 1987b). However, the details of this technology are not fully reported; it is essentially an improved version of the traditional Reciprocal Recurrent Breeding method (Christov, 1977; Christova et al., 1987; Christova, 1988; Hristova et al., 1987b). The RRMB scheme was especially designed for fixing chemically induced mutant genes controlling quantitative traits and combining ability by selecting highly competitive hybrid combinations. An essential peculiarity of the breeding in Kneja is that low concentrations of chemical mutagens are used for treatment of seeds at a 24-h exposure with Dioxane as the medium solvent.

Choice of mutagen and dose. A number of chemical mutagens have been assessed for inducing mutants in maize (Tables 1 and 2). The highest number of mutations was generated by using dimethyl sulfate (DMS) and diethyl sulfate (DES) at 0.15-0.2% concentrations. According to studies conducted in the MRI, in Kneja, nitroso diethyl or dimethyl carbamides and diazo ketones are considered to be the most efficient mutagens. The mutagens frequently used are N-nitroso-N-ethyl-urea (NEU) and N-nitroso-N-methyl-urea (NNU) at 0.001% concentration. In a minor scale 1,4-bis-diazo-acetyl butane (DAB) is used.
Maize seeds usually have 4 initial germ cells, which grow into a plant. In mutagenesis these four initial cells should all be mutated. The results showed that after 22-24 hours, the seed absorbs water equal to its weight, indicating cell initiation. For this reason, low concentrations of DNA alkylating mutagens are applied with prolonged exposure, often in combination with other solvents. Dioxane is one of the intermediary solvents that is used, leading to improved efficiency of mutagenic treatment. Applied in concentration <1% the Dioxane does not affect the mutation effect. Otherwise, it probably acts like antidote, which reduces the harmful effect of the chemical mutagen and consequently the mutagen can be applied at higher doses. Dioxane achieves high quality emulsions and provides the best possible oil-like mixture of mutagen and water. It increases the penetration of chemical mutagens across cellular and intracellular membranes and enables the mutagen to reach the target initial cells and target components (DNA).

Initial materials for mutagenic treatment. Mutagenic treatment is often conducted for elite inbred lines for expanding its genetic basis. The best hybrid AxB with the highest yield is selected in a competitive examination. If the yield of the hybrid AxB significantly exceeds others, it indicates that classical recurrent selection has reached this peak potential and the chance for further improvement through cross and backcross programmes is small, while induced mutagenesis may have a chance. The mutagenesis for increasing the genetic variation of the inbred line is conducted at this stage and an effective way for selecting mutants without many test crosses is developed. Mutant lines are selected after testing and included in the list of parent lines for developing new hybrids. Mutation breeding is conducted in parallel for the inbred lines, the parents of hybrid AxB. For mutants of line A, the tester is the B and vice versa and hybrid AxB is always used as a control.

Table 2. Mutant lines, parents of released maize hybrids

<table>
<thead>
<tr>
<th>No.</th>
<th>Hybrid cultivar *</th>
<th>Release year</th>
<th>Maturity group</th>
<th>Main characteristics</th>
<th>Combination **</th>
<th>Procedure of mutant inbred development ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kneja HP 633</td>
<td>1980</td>
<td>600</td>
<td>High protein</td>
<td>B-37 × XM 532</td>
<td>OH-43, seeds, DMS (0.2%) + methanol</td>
</tr>
<tr>
<td>2</td>
<td>Kneja HP 556</td>
<td>1982</td>
<td>500</td>
<td>High protein, drought tolerant</td>
<td>A-632 × XM 532</td>
<td>OH-43, seeds, DMS (0.2%) + methanol</td>
</tr>
<tr>
<td>3</td>
<td>Kneja 510</td>
<td>1983</td>
<td>500</td>
<td>High yield, mid-late</td>
<td>A-632 × XM 521</td>
<td>OH-43, seeds, NEU (0.0001%) + methanol</td>
</tr>
<tr>
<td>4</td>
<td>Kneja 641</td>
<td>1983</td>
<td>600</td>
<td>High yield in irrigation, stable, grown in acid soils</td>
<td>B-73C × XM 568-I</td>
<td>XM 568, seeds, NMU (0.001%) + dioxane (1%) (second cycle)</td>
</tr>
<tr>
<td>5</td>
<td>Kneja 712</td>
<td>1987</td>
<td>600</td>
<td>High yield, stable, drought tolerant</td>
<td>B-73 × XM 552</td>
<td>OH-40b, seeds, NMU (0.001%) + dioxane (1%)</td>
</tr>
<tr>
<td>6</td>
<td>Kneja 666</td>
<td>1987</td>
<td>600</td>
<td>Three-linear corn type, very high yield, silage type, tolerant to very high dip sowing</td>
<td>B-78 × XM 199</td>
<td>multicorn population, seeds, NMU (0.001%) + DAB (0.05%) + dioxane (1%)</td>
</tr>
<tr>
<td>7</td>
<td>Kneja 674</td>
<td>1989</td>
<td>600</td>
<td>Silage type, for silage and grain; very drought tolerant</td>
<td>(B-73 × B-84) × XM 199</td>
<td>multicorn population, seeds, NMU (0.001%) + DAB (0.05%) + dioxane (1%)</td>
</tr>
<tr>
<td>8</td>
<td>Kneja 570</td>
<td>1992</td>
<td>500</td>
<td>Mid-late, for silage and grain drought tolerant,</td>
<td>(B-579 × B-84) × XM 552</td>
<td>OH-40b, seeds, NMU (0.001%) + dioxane (1%)</td>
</tr>
<tr>
<td>9</td>
<td>Kneja 509</td>
<td>1993</td>
<td>500</td>
<td>Mid-late, for grain, very drought tolerant</td>
<td>XM 87-136 × Mo17</td>
<td>B-37, seeds, DMS (0.2%) + DAB (0.05%) + dioxane (1%)</td>
</tr>
<tr>
<td>10</td>
<td>Kneja 682</td>
<td>1994</td>
<td>600</td>
<td>Late, high yield, for grain, drought tolerant</td>
<td>XM 88-113 × Mo17</td>
<td>B-84, seeds, NMU (0.001%) + dioxane (1%)</td>
</tr>
<tr>
<td>11</td>
<td>Kneja 596</td>
<td>1995</td>
<td>500</td>
<td>Mid-late, high yield, for grain</td>
<td>XM 8451 × H-108</td>
<td>B-73, seeds, NEU (0.0001%) + dioxane (1%)</td>
</tr>
<tr>
<td>12</td>
<td>Kneja 419</td>
<td>1997</td>
<td>400</td>
<td>Mid-early, for grain</td>
<td>XM 85-105 × XM 93-295</td>
<td>P-3737, seeds, NMU (0.001%) + dioxane (1%)</td>
</tr>
<tr>
<td>13</td>
<td>Kneja 423</td>
<td>1997</td>
<td>400</td>
<td>Mid-early, for grain</td>
<td>XM 92 470 × XM-93 295</td>
<td>P-3737, seeds, NMU (0.001%) + DAB (0.05%) + dioxane (1%)</td>
</tr>
<tr>
<td>No.</td>
<td>Hybrid cultivar</td>
<td>Release year</td>
<td>Maturity group</td>
<td>Main characteristics</td>
<td>Combination **</td>
<td>Procedure of mutant inbred development ***</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Kneja 590</td>
<td>1994</td>
<td>500</td>
<td>Mid-late, for grain and silage</td>
<td>K 4640A × H-108</td>
<td>B-73, germs, colchicine (0.05%)</td>
</tr>
<tr>
<td>15</td>
<td>Kneja 683</td>
<td>1994</td>
<td>600</td>
<td>Late, high-yield, for grain and silage</td>
<td>K 4640B × Mo17</td>
<td>B-73, germs, colchicine (0.05%)</td>
</tr>
<tr>
<td>16</td>
<td>Kneja 594</td>
<td>1995</td>
<td>500</td>
<td>Mid-late, for grain and silage</td>
<td>K 4640A × H-109</td>
<td>B-73, germs, colchicine (0.05%)</td>
</tr>
<tr>
<td>17</td>
<td>Kneja 689W</td>
<td>1995</td>
<td>600</td>
<td>White grain</td>
<td>527/44/77 × PXM 4699</td>
<td>Mo 17, seeds, AA 2d + NMU (0.001%)</td>
</tr>
<tr>
<td>18</td>
<td>Kneja 598</td>
<td>1997</td>
<td>500</td>
<td>Mid-late, for grain</td>
<td>PM 4547 × Mo17</td>
<td>A-634, seeds, AA 2d</td>
</tr>
<tr>
<td>19</td>
<td>Kneja 512</td>
<td>1998</td>
<td>500</td>
<td>Mid-late, high yield, for grain and silage</td>
<td>XM 4544 × Mo17</td>
<td>Sirena, seeds, DMS (0.15%)</td>
</tr>
<tr>
<td>20</td>
<td>Kneja 698W</td>
<td>1998</td>
<td>600</td>
<td>White grain</td>
<td>PCM 4699 × PM 4662</td>
<td>Mo 17, seeds, AA 2d + NMU (0.001%); B-73, seeds, γ ray (80 Gy)</td>
</tr>
<tr>
<td>21</td>
<td>Kneja 634</td>
<td>1999</td>
<td>600</td>
<td>Late, for grain</td>
<td>K 4640A × K 4651</td>
<td>B-73, germs, 5d (2x2h per day) colchicine (0.05%) + vacuum Mo 17, germs, 8h colchicine (0.05%)</td>
</tr>
<tr>
<td>22</td>
<td>Kneja 515</td>
<td>2003</td>
<td>500</td>
<td>Mid-late, for grain</td>
<td>XM 4521 × PCM 4550</td>
<td>B-73, seeds, AA 4d + NEU (0.001%)</td>
</tr>
<tr>
<td>23</td>
<td>Kneja 435</td>
<td>2005</td>
<td>400</td>
<td>Mid-early, high yield, for grain, resistant to virus and fungus diseases</td>
<td>XM 4418 × K 4652</td>
<td>Mirna, seeds, NEU (0.001%) in alcohol; Mo 17, germs, colchicine (0.05%)</td>
</tr>
<tr>
<td>24</td>
<td>Kneja 621</td>
<td>2007</td>
<td>600</td>
<td>Late, for grain and silage, resistant to main diseases</td>
<td>KC-4647 × K 4640B</td>
<td>B-73, germs, colchicine (0.05%)</td>
</tr>
<tr>
<td>25</td>
<td>Kneja 546</td>
<td>2009</td>
<td>500</td>
<td>Mid-late, high yield, for grain and silage</td>
<td>XM 4527 × H-108</td>
<td>P-3737, seeds, NMU (0.001%)</td>
</tr>
<tr>
<td>26</td>
<td>Kneja 627</td>
<td>2009</td>
<td>600</td>
<td>Late, for grain</td>
<td>PCM 4658 × Mo 17</td>
<td>(522xA-B-84), seeds, AA+DAB (0.1%)</td>
</tr>
</tbody>
</table>

* Names with HP are high protein cultivars and with W are of white grains; ** The mutant inbred lines are shown in bold; inbred lines starting with ‘XM’ are developed by chemical mutagenesis, with ‘PM’ by physical mutagenesis, and with ‘PCM’ by combined treatment of physical and chemical mutagen; *** Treatments of maize seeds or germs with chemical mutagen were conducted at room temperature at the ratio of seed weight: dH₂O = 1:5; pH of distilled water is 4.8-5. Exposition for treatment 24 h, solvent was changed after 12 h. Dioxane (methanol) was used as medium solvent in all treatments. AA 2 – Accelerating aging of seeds used as a method for obtaining mutations; Most of treatments are conducted in inbred lines; hybrid seeds are: P-3737, Sirena of the company Pioneer (USA) and the cross (UC 522 × B 84); Hybrid P 3737, known Panonia, is used as control.

A total number of 92 maize hybrids were developed by the MRI in Kneja in the period 1966-2009. Four thousand hybrids developed by mutagenic selection were competitively tested on a yearly basis in Kneja, and 26 hybrid cultivars were developed through experimental mutagenesis starting from 1980 (Table 2).

There are no statistical data of acreage for each hybrid, but, it is known that the mutant hybrid Kneja 509 was the most widely grown cultivar on 40-50% of the maize area in Bulgaria till recently. It is now being replaced by Kneja 683A (Genov et al., 2005a; 2005b). Since 1994, despite the entering of numerous companies from the European Union (EU), the United States of America (USA) and Israel, the main maize hybrid in Bulgaria has been Kneja 509, a medium late-season cultivar. Kneja 509 is also known to have the best drought tolerance. Kneja 509 is grown in desert conditions in Morocco, and also gives a high yield by only 2 irrigations (it usually requires 4 irrigations). The high protein mutant hybrid Kneja 556 has been grown mainly for silage. By 1990, it has contributed significantly to the maintenance of the milk-corn belt of the field of Sofia. At present Kneja 435 is much preferred (Genov et al., 2005b). The pedigree of some inbred lines, used in commercial hybrid maize pro-
duction, is shown on a diagram (Fig. 2). Since 1980’s, high-protein hybrids *Kneja HP 633, Kneja HP 556* and *Kneja MHP 556* have been widely cultivated in Bulgaria for silage. The first is a late-season hybrid (maturity group FAO600), while the other two are medium late-season (FAO500). Their protein grain content is about 12% as compared to a maximum of 9-10% of common maize hybrids. *Kneja 510* and *Kneja 641* are not only released in Bulgaria but also in Greece. *Kneja 666* is a mutant hybrid officially registered in 1987 as silage maize. It was developed by crossing mutant inbred line XM 199RβRf4 induced by chemical mutagen (EMS+DAB). The main improved attributes of this hybrid are high grain yield (up to 15 t/ha), high protein (10%), with a biomass dry matter (up to 32 t/ha) and with 3.9% protein.

![Figure 2. Evolutionary links of classical and mutant maize inbreds. Mutant inbred lines are in black background. (Photo adapted from Kostova et al., 2006 - courtesy of Dr. N. Christov)](image)

It should be noted that due to confidentiality reasons, lines and hybrids developed by mutagenesis, and some information on maize breeding processes are not published. It was not before the Symposium on Experimental Mutagenesis, which took place in Plovdiv in 1987, that the first world-wide mutant maize hybrids, released by an official state authority, were registered, on the request of A. Micke of the IAEA. The main information about mutant hybrid cultivars, released in Bulgaria, is given in Table 2; some mutant inbred lines and hybrid cultivars are shown in Fig. 3. Some important maize hybrid cultivars are highlighted below.
Kneja 689W, Kneja 698W and Kneja 634 are new maize hybrids, which have been recently released. **Kneja 689W** is a late maize hybrid for grain (Genov et al., 2009). It is a representative of maize hybrids with special qualities. In the food processing industry, white grain maize is used for production of fine bread stuffs, and the population all together uses it for making boiled maize, hominy and other meals. In three-year tests the average yield of Kneja 689W was 7.9% higher than the control cultivar H 708. The moisture content in the harvesting time was 2% more than that of the standard, which is a characteristic of white maize. Kneja 689W possesses good hardness to lodging. **Kneja 698W** is also a grain hybrid; its white colour was a recessive mutation of the gene Y (Yellow), induced by chemical and physical mutagens. Kneja 698W showed resistance to most of widespread maize diseases in field conditions in Bulgaria. **Kneja 634** is a late maize hybrid for grain (Genov et al., 2009). In 2005 the hybrid was registered and included in List A of the Bulgarian Official Catalogue of Varieties and in 2006 it was protected by a certificate of the Patent Agency. In the state cultivar testing in 4 different stations, Kneja 634 exceeded the standards H 708, Ivana and Kneja 530 by 128%, 116% and 130% grain yield.

Making use of the means and methods of experimental cytogenetics and genetics, a study was initiated at adopting intergeneric hybridization (Maize × Teosinte), chemical and physical mutagenesis, accelerating aging of seeds and their combined use into maize breeding (Christov, 1977; Genov, 1988).

The mutant inbred lines, developed through experimental mutagenesis, were chosen for molecular characterization because in addition to the improved grain yield, proven by their predominance in the Bulgarian breeding programs, they showed drought tolerance, shifts in the flowering time as compared to the initial inbreds: two of B37 and four of OH-43 (Kostova et al., 2006a; 2007). They contribute to generate diversity in the elite maize germplasm. Some of the variations may affect the major quantitative trait loci (QTLs). Simple Sequence Repeat (SSR) and single nucleotide polymorphisms (SNP) polymorphisms were observed in the major candidate genes involved in the flowering time. Polymorphic SSRs were identified between mutant inbreds and their parents (Christov et al., 2004). SNPs and indels were detected in the region flanking the SH2 domain of *dwarfS* gene in some of the mutant inbreds as a result of single strand chain polymorphism (SSCP) and sequencing analyses (Kostova et al., 2006b).
A working collection of 6985 inbred lines is available at the MRI, Kneja developed by the application of different mutagenic agents. Of these inbred lines, 654 are stabilized lines that are used in various directions of breeding and production. Some of them are parents of some released hybrids. Breeding of the other stabilized lines is directed to find suitable components for developing hybrids with high yield combined with other characters. Seven of the recently released hybrids were developed from mutant lines. A total of 6333 M₄ mutant lines are currently being utilized in breeding. Selected lines will be used to develop new hybrids, which will be tested in IASAS for registration in the Bulgarian Official Catalogue of Varieties.

Sunflower

The application of biotechnologies in sunflower (*Helianthus annuus*) breeding was conducted in the DZI, General Toshevo (Ivanov et al., 1995). Gamma rays (both ⁶⁰Co and ¹³⁷Cs), ultrasonic treatment and EMS have been used in sunflower mutagenesis in Bulgaria (Table 1; Christov, 1990; 1995; 2002; Christov et al., 1996). In most cases, seeds are used for treatment and are sown in the field on the same day, together with untreated seeds as control (10% of the total number of treated seeds). In a few cases, shoots are treated with gamma rays.

During the vegetation period of M₁ plants, phenological observations were conducted and biometric measurements were taken. Parts of the plants were isolated by paper or cloth bags to enable self-pollination for the production of M₂ seeds. M₂ seeds from each head were sown as a separate progeny. Selection in M₂ was carried out twice – before flowering and following the harvesting of ripe heads. M₃ seeds were evaluated for characteristics such as the mass of 1000 seeds, seed oil content and kernel: shell proportion. Female fertility was determined by the amount of seeds obtained in free pollination, while self-fertility was determined by the amount of seeds by self-pollination in isolation. The selected M₃ seeds from each head were sown as separate progenies. The same procedure was applied in the next generations. The stability of the mutated traits was confirmed in M₅, M₆ and advanced generations if needed. The mutant lines were registered in the collection of DZI in General Toshevo. The following parents have been used in sunflower mutagenesis: 24 inbred cultivars developed in Bulgaria and Russia; 4 hybrid cultivars developed in Bulgaria and Serbia; 17 breeding lines developed in Bulgaria and the USA and 6 mutant lines developed in DZI, General Toshevo. Several mutants have been isolated for the following morphological and biological characters: size, position, shape and colouration of leaves and of the seeds; position and shape of the inflorescence; seed weight; vegetation period; stalk height and appearance of branching plants with male sterile flowers of the inflorescence (Christov, 1990; 1995; 1996; 1999; 2002; Christov et al., 1996; 2009); increased oil content (Christov, 1990; 2002; Christov et al., 1996); improved seed oil composition (Ivanov et al., 1985; Christov et al., 1996); cytoplasmic male sterility (Christov, 1993; Christov, 1999); high combining ability, resistance to diseases and to parasite *Orobanche cumana*. Genetic analysis showed that a part of mutated morphological traits were controlled by recessive genes while the resistance to *Orobanche cumana* is controlled by dominant genes. The mutant line IN1, with altered petiole, leaf shape, shape of the inflorescence (Fig. 4), was developed from cultivar VINK8931 using 150 Gy ⁶⁰Co gamma rays (Christov, 1996); it also carries a recessive mutation that renders resistance to *Orobanche cumana*. The decorative sunflower mutant Decor 110 (Fig. 4) was also developed using 70 Gy ⁶⁰Co gamma rays (Christov, personal communication). Two of the mutant lines have been used in sunflower breeding programmes.

Figure 4. Sunflower mutant lines developed by gamma rays mutagenesis. **Top:** A morphological mutant IN1 showing altered shape of petiole, leaf and florescence. **Bottom:** A decorative mutant line Decor 110 (Photo courtesy of Dr. M. Christov)

Over 100 mutant lines were developed with important economic characters; some are especially promising for sunflower breeding. Mutant lines 222, 223, 226 and 596, originating from the cultivar **Start**, are high in both oleic
structure of M₁ plants was also studied (Mihov et al., 1990a; 1990b; 1995). Mutant lines resistant to diseases with economic importance in lentil caused by C. truncation, A. lentis were developed. A number of high yielding lentil mutant lines were produced and also had a good resistance to some economically important diseases: Fusarium, Anthracnose, Stemphylium and viruses (Mihov et al., 1995). Mutant lines with non-lodging stem and low content of antinutrition components (tannins) were produced (Mihov et al., 1999).

Up to now, four lentil cultivars have been developed through experimental mutagenesis in the DAI and registered by the IASAS. Having higher production potential and a number of new valuable economic and biological qualities, producers have shown considerable interest in these cultivars. Mutant 17 MM, released in 1999, differs from its parent cultivar by its larger leaflets, pods and seeds, seed pod colour, better resistance to diseases Anthracnose, Stemohylium, and viruses. It is high yielding, with larger seeds and very good culinary quality and organoleptic properties. It also demonstrates better drought tolerance (Mihov et al., 1999; 2001). Zornitsa, released in 2000, was developed by treating seeds of Tadjikskaya 95 with 0.1% of EMS. It is medium-ripe, has larger leaflets, pods and seeds. It has yellow-green seed pods and red to yellow cotyledons, which are different from the grey colour of Tadjikskaya 95. The cultivar is highly productive and highly resistant to Anthracnose (Colletotrichum truncatum), Ascochyta blight (A. lentis) and viruses. It is characterized by high protein content (28.7%) and very good culinary and organoleptic properties (Mihov et al., 2001). Djudje (Dwarf), released in 2000, was developed by treating dried seeds of Tadjikskaya 95 with 30 Gy gamma rays in 1988. It significantly differs from Tadjikskaya 95 by its low, bushy and non-lodging stem, non-shattering pods and its better resistance to Fusarium and Botrytis. It has better productivity and higher protein content (27.9%). It is a suitable parental cultivar in cross breeding for improving plant architecture for mechanized harvesting (‘bushy’ type) (Mihov et al., 2001). Elitsa, released in 2001, was developed by irradiation of Tadjikskaya 95 seeds with 40 Gy Co gamma rays. It is distinguished as being highly productive (2454 kg/ha, which is 34.4% higher than average standards) and resistant to main lentil diseases (Mihov et al., 2005).

Beans

A high frequency of spontaneous mutations that exceeds other plant species was described in common bean, Phaseolus vulgaris L. (Rukmanski 2005). It was observed that most morphological characters could be mutated in common bean after applying gamma rays or chemical mutagens. In 1979, a breeding programme with the application of induced mutagenesis in French bean

Legumes and forage crops

Lentil

In Bulgaria, studies on radiation-induced mutagenesis in lentil date back to 1980 in the DAI-General Toshevo and IG-Sofia. Gamma rays (⁶⁰Co and ¹³³Cs) and, to a lesser extent, neutrons and laser beams, as well as chemical mutagens such as EMS, MMS and NaN₃ have been used for mutagenesis (Table 1). The lethal effect of MMS was stronger than that of EMS and NaN₃ in lentil (Mihov, 1994). Mutant lines of valuable economic characters have enriched lentil germplasm and have been used in breeding for new cultivars.

The mutant lines have been assessed mainly for their usefulness in increasing production potential, tolerance to abiotic and biotic stress, and improving biochemical and cooking qualities (Stoyanova et al., 1994). The chimeric

(42.8 to 46.5%) and stearic acid content (10.9 to 12.4%), their iodine numbers - a characteristic reflecting the level of non-saturated fatty acids, are in the range from 104.8 to 110.0 U, which is 15.0-20.2 U lower than Start, and 26.1-31.3 U lower than cultivar Peredovik. These lines can be used for developing new cultivars with even lower iodine numbers, which are desired for basic raw material in the manufacturing of margarine – hydrogenated sunflower oil. New sources of cytoplasmic male sterility (4 lines) were developed after gamma ray irradiation of seeds of cultivars Peredovik (2), Stadion and Hemus (1 each). Nineteen mutant restorer lines (R lines) were developed with good combining ability, having medium-sized seeds and high seed oil content, and all having branching stalks and being resistant to downy mildew.

In vitro techniques have also been used in sunflower mutagenesis and a number of mutant lines with useful characteristics for breeding have been developed (Encheva et al., 1993; 2002; 2003a; 2003c; 2004a; 2004b). The first mutant line R 12,002 was developed by irradiation of immature embryos with 8 Gy ¹³³Cs gamma rays. R 12,002 has a great mass of 1000 seeds and is used as the male parent of hybrid sunflower cultivar Rada, which was registered in 2006. The second mutant line R 12,003 was also developed by *in vitro* mutagenesis. Immature embryos were treated by ultrasounds at a dose of 25.5 w/cm² for 1 minute. R 12,003 possesses high seed oil content and has a large number of seeds per head and is used as the male parent of the hybrid cultivar Yana. Yana was initially known as hybrid 80 and was officially registered in 2009.

Madan is a sunflower hybrid released in 2008 (Christov, personal communication). Its female parent is a mutant line (6127) that was developed from the breeding line 7515R after 120 Gy ⁶⁰Co gamma irradiation. Madan has large seeds with improved characters suitable for food (oil content ~29% and protein content >22%).

Plant Mutation Reports, Vol. 2, No. 2, June 2010
started at the Vegetable Crops Research Institute (Maritsa VCRI) in Plovdiv.

Zarya is a cultivar suitable for canning industry and is susceptible to common bacterial blight (CBB) (Xanthomonas axanopodis pv. phaseoli). Consequently, for the first time a mutation breeding project in common bean was initiated using gamma irradiation of dry seeds. The lethal dose (LD$_{100}$) of this cultivar was found to be 160 Gy and the semi-lethal one (LD$_{50}$) - 120 Gy, therefore, doses of 80 and 100 Gy were used in the mutagenesis breeding programme (Zagorcheva et al., 1983a). Several mutants were selected and showed resistance to CBB (Fig. 5; Table 1).

Figure 5. Common bean cultivar Zarya (top, susceptible) and its mutant line A-8-40 (bottom, resistant) showing infection of common bacterial blight after artificial inoculation (Photo courtesy of Dr. I. Poryazov)

The application of induced mutagenesis in common bean in the Agricultural University, Plovdiv, resulted the development of two cultivars with high importance to the rural economics – both, **Plovdiv 11M** and **Plovdiv 15**, were developed through EMS treatment (1.25.10$^{-2}$ M) of cultivar Dobrudzhanski 2 (Delchev et al., 1983; Petkova et al., 1983a; 1983b; Svetleva, 1983; Svetleva et al., 1983).

Gamma rays (80 Gy 60Co) were also applied in garden bean for inducing mutants of the following characters: (1) flowers with three ovaries (Zagorcheva et al., 1987); (2) long narrow leaves and sickle-shaped pods (Zagorcheva et al., 1988); (3) six days earlier maturing and simultaneously ripening pods; (4) compact growth habit with architecture suitable for mechanical harvesting and dark-green corrugated leaves; (5) increased pod weight and changed pod shape; (6) unifoliate; (7) chlorophyll mutations – albina, xantha, chlorine, chloroviridis, chlorotica (Zagorcheva et al., 1983b); (8) higher resistance to halo blight (HB) (Pseudomonas savastanoi var. phaseolicola (Gar-dan), race 6 and productivity (Rodriges et al., 1988).

Meiosis of pollen mother cells (PMCs) of CBB-resistant mutants was studied. Distributed bivalent pairing was found, as well as formation of univalent and multivalent, fragmentations of chromosomes and early division of chromosomes into chromatides. As a result, genetically irregular gametes were formed (Nikolova et al., 1991). These meiotic disturbances suggested that the gamma rays induced chromosome aberrations – translocation between two non-homologous chromosomes and inversions. One accessory chromosome was present in the narrow leaves bean mutation (Nikolova et al., 1986).

CBB resistant mutants were advanced up to M$_3$ and six of them were crossed with elite bean genotypes aiming at transferring the resistant gene into local germplasm and combining it with other economically valuable characters (Nikolova et al., 1991; Sofkova et al., 2004a). In parallel homogeneous recombinant inbred lines were tested for resistance to some economically important diseases in Bulgaria, including CBB, HB, bean common mosaic virus (BCMV), cucumber mosaic virus (CMV), clover yellow vein virus (CIVV), Rust (Uromyces appendiculatus), Anthracnose (C. lindemuthianum) and Sclerotinia (S. sclerotiorum) using different scoring systems (Sofkova et al., 2004b; 2005).

Pea

Since 1966, mutagenesis studies on pea have been carried out in the IG, Sofia and later in the DAI, General Toshevo and the Experimental Station of Soybean (ESS) in Pleven. Different physical and chemical mutagens were tested alone or in combination with in vitro techniques (Table 1; Mehndjiev et al., 1975; Todorova, 2009; Vassileva, 1978; 1980). Additive mutagenic effects of combined treatment of 40 Gy gamma rays and 0.2% EMS were observed.

A great variability of germplasm was created with useful economical characters for direct and indirect utilization in breeding: strong and non-lodging stem, increased number of pods and seeds, earliness and drought tolerance, mutants with fertile branching as well as increased protein content (Mehndjiev et al., 1998; 2001a; 2001b; Vasileva, 1977). The use of ‘alfa’ type mutants has resulted in significant improvement of tolerance to lodging. With regard to increasing the adaptability of peas, 10 early-maturing and two ultra-early-maturing lines were produced – among which 190 and 198 maturing 15 days earlier. During the two typically dry years, the entire genetic
resource was evaluated and lines with good drought tolerance were selected. A high productive mutant spring forage pea was selected in M₃ having smaller seeds than the initial cultivar Kristal.

Sredetz, an officially released mutant cultivar, and the mutant line Celeste, have been developed through the combined treatment of gamma-irradiation and EMS. Champion, a mutant line, was developed by using 10 Gy gamma rays. The above mentioned, garden pea cultivar and lines, possess increased productivity and improved quality indices. In yield trials (1998-2000), the yield of Sredetz exceeded the control (Pleven-4) by 139.3%, attaining 5760 kg/ha similar to Champion and Celeste (5800 kg/ha). On the basis of the phenolic content in grain and damages caused by Bruchus pisi, hybrids tolerant to this pest such as (1) Diktron × Finale, (2) Diktron × Finale and (3) Tirkis × A6, were released, in which the mother is a mutant line, obtained by 80 Gy gamma rays+0.05% EMS. Cultivar Sredetz, line Celeste and hybrid Diktron × Finale showed good resistance to Ascochyta pisii. Cultivar Ballet was used for gamma rays irradiation and lines 33, 66 and 68 were developed, which demonstrated tolerance to Erysiphe poligoni. A number of mutant lines with resistance to SCCV were also registered, developed by gamma irradiation of pea cultivars Kristal and Drujba (Mehandjiev et al., 2002a; 2002b).

Chickpea

During the last twenty years, breeding of cool grain legume crops has been carried out at the DAi in General Toshevo (Mihov et al., 2002). Two chickpea cultivars (Obraztsov chiflik and Stepnoj) with contrasting features were treated either with ⁶⁰Co gamma rays or EMS or both (Table 1; Atanasova et al., 2004a; 2004b). The results showed that there is a significant genotypic effect on the frequency of induced mutations.

As a result of crossing with a mutant line, one cultivar of the crop bitter vetch (Borina) and pea vine (Strandja) were developed and registered.

In 2001, new genotypes of plant species chickpea and vetch were presented for testing and registration. Seed production of the main cultivars was organized to meet the demands of the producers in the country. Mutant lines with different morphological characters of great interest to breeding were developed, which enriched the germplasm of chickpea. Some of them are directly used in breeding new cultivars and others are used as parents in cross-breeding programmes.

Soybean

From 1980 to 2009, experimental mutagenesis was applied as a breeding method for enhancing genetic diversity in soybean (Glycine max L. Merrill), which is considered as a forage crop in Bulgaria. The Institute of Genetics in Sofia (IG) and the Experimental Station of Soybean (ESS) in Pleven are the main institutes working on soybean experimental mutagenesis in Bulgaria. A large number of experiments have been performed on soybean mutagenesis using physical mutagens, such as ⁶⁰Co or ¹³⁷Cs gamma rays (Alexieva et al., 1990; 1991; Alexieva, 1992; Georgiev et al., 2000; Goranova et al., 1987; Todorova, 2002; Todorova et al., 2001) and fast neutrons (Gornova et al., 1986), as well as chemical mutagens – EMS, MMS, NMU and sodium azide (Georgiev et al., 2000; Todorova, 2002; 2005), or in combination (Aleksieva et al., 2000; Todorova, 2002; 2005) (Table 1).

Three mutant lines (B22, B115, B206), resistant to bacterial blight, have been developed from cultivars Ravnika and Bachka through gamma irradiation or treatment of chemical mutagens EMS and NMU, or their combination (Georgiev et al., 2000). Mutant lines, resistant to stem cancer and charcoal rot were identified from progenies of cultivars Hudson and Daniela and irradiated with gamma rays (Todorova et al., 2001; Todorova, 2002). Mutant lines with the following characteristics were also developed: high productivity potential under irrigated and non-irrigated conditions, improved architecture of shrub, early-ripening and increased content of crude grain protein. Furthermore, mutant lines with the following traits were registered: increased protein content, dwarf type, vertically arranged leaves, altered number of the compound leaflets (from 3 to 4-5), resistance to diseases - charcoal rot, stem cancer (Aleksieva et al., 1991; 1995; 1999; 2000; 2003).

Seven mutant soybean cultivars have been developed. The old ones including Bisser, Zarya, Boryana and Zvezda, developed in IG, Sofia, are no more registered in the Bulgarian Official Catalogue of Varieties. The following three mutant cultivars were newly developed in the ESS, Pleven. Rosa was tested in the system of IASAS in 2006-2008. It was developed by irradiation of seeds of the cultivar Hodson with 80 Gy gamma rays. It attained in cultivar competition trials, high yield under both - irrigated and nonirrigated conditions - and showed resistance to diseases of bacterialis and mildew (Todorova, 2010). Mira 96 was developed through gamma irradiation (50 Gy) and registered in 2001 (Aleksieva et al., 2003). Srebrina was developed through hybridization of the mutant line LN2 (from Asgrow 2440 by 25 Gy ⁶⁰Co gamma rays) with the mutant cultivar Zarya. Srebrina was registered in 2004 (Aleksieva et al., 2005).

Sorghum sudanense

The Experimental Station of Soybean, in Pleven, is the main institute working on the grass Sorghum sudanense (Piper), a forage crop, related to the application of experimental mutagenesis (Golubinova et al., 2007). Chemical mutagens DMS, DES were applied in concen-
Vegetable crops

Tomato

Extensive investigations on mutant genes controlling male sterility in tomato, aimed at developing a system facilitating hybrid seed production, have been carried out at the Institute of Genetics in Sofia (Georgiev, 1991; Atanassova, 1991; 2007; Atanassova et al., 2002). Cultivars Balkan, Kom, Elina, and Odysseus were developed in the IG, Sofia and in the company Geosem Select, Sofia. They all possess functional male sterility gene ps-2. Balkan and Kom were released in the early 1990s and are still widely grown in Bulgaria. **Balkan** is a very early semi determinate hybrid with high total productivity and is recommended for both - protected cropping (plastic tunnels) and open field production. Its fruits are smooth and uniform, round in shape, with 100-120 g standard weight. Green shoulders disappear totally at ripening. It is resistant to *Tomato mosaic virus (Tm-2)*, *Verticillium dahliae (V)*, *Fusarium oxysporum* f. sp. *lycopersici* race 0 (*FORL*). **Elina** is a medium early, semi determinate hybrid for both - protected cropping (plastic tunnels) and open field production. The plant is vigorous with upright leaves and has an easy fruit setting ability under low temperature conditions. Its fruits are round and firm, about 130-150 g standard weight, with an excellent quality and extended shelf life. Green shoulders disappear totally at ripening. It is resistant to *Tomato mosaic virus (Tm-2)*, *Verticillium dahliae (V)*, *Fusarium oxysporum* f. sp. *lycopersici* race 0 (*FORL*). **Odysseus** produces fruits of flattened globe shape, with intensive red skin and a nice internal colour. Green shoulders disappear totally at ripening. It possesses a good transport and storage quality and is resistant to *Tomato mosaic virus (Tm-2)*, *Verticillium dahliae (V)*, *Fusarium oxysporum* f. sp. *lycopersici* race 0, *Fusarium radici lycopersici* (*FORL*). **Elina** is a medium early, semi determinate hybrid for both - protected cropping (plastic tunnels) and open field production. The plant is vigorous with upright leaves and has an easy fruit setting ability under low temperature conditions. Its fruits are round and firm, about 130-150 g standard weight, with an excellent quality and extended shelf life. Green shoulders disappear totally at ripening. It is resistant to *Tomato mosaic virus (Tm-2)*, *Verticillium dahliae (V)*, *Fusarium oxysporum* f. sp. *lycopersici* race 0 (*FORL*). **Rosa-lina Rossa** is a medium early, indeterminate hybrid recommended for open field production and protected cropping (plastic tunnels). It produces firm, smooth and tasty pink fruits of 160-180 g standard weight, which are greatly appreciated by Bulgarian consumers (Fig. 6). It is resistant to *Tomato mosaic virus (Tm-2)*, *Verticillium dahliae (V)*, *Fusarium oxysporum* f. sp. *lycopersici* race 0 (*FORL*). The seed parent *ps 2* of Rosalina Rossa hybrid is shown in Fig. 6 possessing *potato leaf (c)* that enables easy and rapid determination of hybrid seed purity.

![Image of Tomato hybrid cultivar Rosalina Rossa. Left: Its pink fruits and; right: its seed parent *ps 2* showing potato leaves. (Photos courtesy of Dr. B. Atanasova)](image-url)
et al., 2007). It was demonstrated that the functional male sterility, controlled by the gene ps 2 (positional sterile 2), was the most suitable one for practical application (Atanassova et al., 1997a; Atanassova, 2000). Different morphological markers such as potato leaf (c), anthocyaninless of Hoffmann (ah), anthocyanin without (aw) etc. were studied for their usefulness in hybrid seed production (Atanassova et al., 1997b; 2001) and have been introduced into ps 2 seed parents, that are used for a number of commercial hybrids. These marker traits permitted testing the purity of hybrid seeds at germination or seedling stage. During the last decade, about 80% of tomato hybrid cultivars included in the Bulgarian Official Catalogue of Varieties possess ps 2 sterile seed parents (Atanassova, 2007; Atanassova et al., 2007). Therefore, the use of the ps 2 - sterile seed parents in tomato hybrid seed production is no more a theory, but a practice.

Comparative studies on the time needed for the emasculation of floral buds - as practiced when using fertile seed parent, and of flowers at anthesis - as practiced when using a ps 2-line as seed parent, indicated that the latter was easier and almost two times faster than the former. On the other hand, hybrid seed yield, achieved using ps 2 lines, was also 1.5-2.0 times higher (depending on the seed parent genotype) than that of fertile lines (Atanassova, 1999; 2000).

Pepper

A significant contribution to improvement of sweet pepper (*Capsicum annuum* L.) was made in the Institute of Genetics in Sofia. The mutagenic effect and optimum doses of 60Co gamma rays (80-120 Gy), X rays (120 Gy) and EMS (0.5-0.7%) were systematically investigated (Table 1; Daskalov 1968; 1971; 1972; 1973a; 1973b; 1974; 1977; 1986; Daskalov et al., 1987). As a result of mutation experiments, a great number of mutants useful for pepper breeding have been developed and described. The gene symbols as well as a short description of the mutants are given in the gene list (Daskalov, 1973a).

Nuclear and nuclear-cytoplasmic male sterile genotypes in pepper were developed by treatment of X rays and gamma rays; the nuclear male sterility mutations were denoted as ms-3, ms-4, ms-6, ms-7 and ms-8 (Daskalov, 1968; 1973b). The inheritance and stability of male sterility mutations and their possible use in breeding programmes and in hybrid seed production were investigated (Daskalov, 1971; 1976), including cytological studies of mutants with recessive genes ms3 and ms8 and with the CMS genotype Smns-5ms-5 (Daskalov, 1991). No essential differences were detected between nuclear male sterile and CMS plants in the timing and mechanisms of degeneration and lethality of the meiocytes. Abnormal function of the tapetum in both types of male sterility and a sterilizing effect of S cytoplasm of the CMS plants was found. Daskalov et al., (1988) proposed the use of female sterile mutants as pollinizer in the hybrid seed production with a recessive conditional lethal gene. The genes ms-3 and ms-8 have been used for development of a new technology of hybrid seed production and for development of 9 hybrid cultivars.

Todorova and Daskalov (1979) generated mutant plants resistant to powdery mildew using gamma rays, fast neutrons and EMS. After subsequent selection, 8 resistant lines were developed. A mutant with sulfur-white immaturity colour (gene mutation of the allele series sw) was reported by Daskalov (1986). Daskalov (1974) developed a mutant with orange mature fruits by treating dry seeds with X rays. The fruits are characterized by increased levels of β-carotene (provitamin A) (Tomlekova et al., 2008) (Fig. 7). A number of new breeding lines are currently being evaluated and a biochemical selection is being performed. The mutation has also been introduced into other breeding programmes in the country, such as in the Maritsa Vegetable Crops Research Institute in Plovdiv (Todorova et al., 2009), and in Moldova (Tomlekova et al., 2009b). The efforts to combine the high-β-carotene mutation with other mutations (fruit morphology, male-sterility mutations) are on-going in the Maritsa Vegetable Crops Research Institute. A molecular marker of the high-β-carotene mutation was assessed for exploiting different mutant lines by marker-assisted selection towards increased fruit nutritive quality (Tomlekova et al., 2009a).

Figure 7. Wild type pepper (*upper*) and mutant line 35 with increased β-carotene content (*bottom*)
Daskalov (1973a; 1974) developed two dwarf mutant denoted as \(dv \) and \(dw-2 \) by gamma irradiation. Tomlekova et al. (2007) induced a compact type mutant with determinate growth pattern by 0.7% EMS. Mutants are suitable for mechanized cultivation and for one-time harvest. Another possible use of such mutants is to serve as a tool in genetic and mutation research (Daskalov, 1981). After irradiating dry seeds with X rays, a mutant with short conic fruits was developed by Daskalov (1972). A number of mutants with altered fruit morphology of the cultivar Hebar were induced (Tomlekova et al., 2007). Easily recognizable markers are very useful in hybrid seed production, mutation breeding and genetics studies. As such, some of these mutant phenotypes have been developed, e.g. three anthocyaninless (al) mutants, lack of blue stain on the hypocotyl, nodes, fruit and anthers, mutants with marbled leaves, yellow cotyledons, light green leaves, etc. (Daskalov, 1972; 1974; 1975). In addition, mutant lines with increased fruit dry matter content and early ripening were developed by X rays mutagenesis (Daskalov, unpublished data).

The following mutant cultivars have already been released in pepper. Albena is an early ripening cultivar, has high yielding potential with attractive fruit and excellent flavour (Daskalov, 1975). Krichimski ran is an early and high yielding hybrid cultivar (Daskalov and Milkova, 1976, cited by Daskalov, 1986). Ljulin is an early and high yielding hybrid (Milkova and Daskalov, 1983, cited by Daskalov, 1986). Pirin is a cultivar resistant to powdery mildew cultivar (Todorova and Daskalov, unpublished). Oranzeva kapiya is a cultivar with high content of \(\beta \)-carotene (Provitamin A) (Daskalov, 1991).

Industrial crops

Cotton

Cotton mutation breeding has been performed in the Cotton and Durum Wheat Research Institute, Chirpan, with the aim to improve fibre quality, increase yield potential and attain earliness. Mutant genotypes of cotton were developed by application of gamma rays (Table 1). Two new mutant cotton cultivars were registered in the system of IASAS, Approbation and Seed Control. **Trakia** is a mutant cultivar that was registered in 2007 (Fig. 8) (Stoilova et al., 2009; Valkova, 2010). The mutant line was induced by irradiating hybrid seeds of Ogosta \(\times 76223 \) (\(G. \) hirsutum) with 100 Gy gamma rays in 1993. It achieved an average yield of 2530 kg/ha cotton-gin, exceeding standard cultivars Chirpan 539 and Avangard 264 by about 8.5%. It also has better length uniformity and ripeness degree than the standards. The cultivar is featured by a shorter vegetative period (119 days), which gives a high yield (~1540 kg/ha) for September harvests. **Helius** is another mutant cultivar that was registered in 2007 (Fig. 8) (Stoilova et al., 2009; Valkova, 2010). The mutant was induced by irradiating seeds of the Uzbek cultivar C-6530 with 150 Gy gamma rays in 1994. During yield trials, its average yield reached 2810 kg/ha cotton-gin, exceeding control cultivars by 8.4%. The average production in September was 1500.3 kg/ha, compared to 1300 kg/ha for Chirpan 539 and 1300.2 kg/ha for Avangard 264. Its high pre-winter harvest in September is mainly due to its short vegetation period (~130 days). However, Helius is susceptible to verticillium wilt. The technological traits of these two cultivars are shown in Table 3.

Figure 8. Cotton mutant cultivars released in Bulgaria (Photo courtesy of Dr. N. Valkova)
Table 3. Technological traits of cotton cultivars Trakia and Helius

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Strength (g)</th>
<th>Metric number (m)</th>
<th>Modal length (mm)</th>
<th>Staple length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999 – 2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trakia</td>
<td>4.15</td>
<td>5065</td>
<td>27.59</td>
<td>29.12</td>
</tr>
<tr>
<td>Chirpan-539 (control)</td>
<td>4.05</td>
<td>5382</td>
<td>27.92</td>
<td>30.61</td>
</tr>
<tr>
<td></td>
<td>2001 – 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helius</td>
<td>4.32</td>
<td>5761</td>
<td>27.15</td>
<td>29.70</td>
</tr>
<tr>
<td>Chirpan-539 (control)</td>
<td>3.91</td>
<td>6025</td>
<td>27.35</td>
<td>30.17</td>
</tr>
</tbody>
</table>

A number of recently developed mutant lines were evaluated for stability of five most important economic traits under diverse environments (years) using Shukla and Kang’s stability parameters (Valkova et al., 2006; Dechev et al., 2007). The following mutant lines were proven to have high stability: ML-364, ML-362, ML-288, ML-240, ML-220 and ML-191. Over the past years these mutant lines have been subjected to state testing for biological and economic properties at three different stations in the country and a few of them may become new cotton cultivars.

Tobacco

Induced mutagenesis is applied in tobacco (*Nicotiana tabacum* L.) breeding in the Institute of Tobacco and Tobacco Products, Plovdiv, with the use of diethyl sulfate and fast neutrons. The effective doses of irradiation for fast neutrons and concentrations and duration for diethyl sulfate treatment were established. A number of useful mutations were induced by irradiation with 90 Gy and 120 Gy fast neutrons and 0.1 M diethyl sulphate solution (Nikolov et al., 1979).

So far, two new tobacco cultivars, **Virdzinia Mutant 890** and **Virdzinia Mutant 891**, with shorter vegetation period, resistance to diseases (*Peronospora tabacina*, *Erysiphe ciceracearum*, *Agrotis ipsilon*) and excellent technological indices have been developed in Bulgaria (Stoyanov, 1980).

Conclusions

The success of a breeding programme depends heavily on the availability of germplasm with desired traits. The usefulness of induced mutagenesis for generating novel germplasm and breeding new cultivars of crops of importance to Bulgaria is demonstrated by the great achievements deliberated in this paper. The new cultivars developed by experimental mutagenesis have been attaining a special place in Bulgarian agriculture because of their high productivity, wide ecological adaptability and suitability for mechanized growing and harvesting, as well as good resistance to diseases and pests and high quality/nutritional parameters.

Acknowledgement

I am thankful to many breeders for devoting their attention to me through productive discussions and e-mail communications and for the provision of relevant photos, data and publications. I would like especially to thank the following researchers: K. Christov, M. Genov, G. Rachovska, I. Poryazov, M. Mihov, B. Atanasova, N. Christov, N. Valkova, R. Todorova, S. Yanev and P. Serafimov.

References

Hristova P. and Hristov K. (1987a) Achievements of mutation breeding in maize. The 14th meeting of the maize and sorghum section of EUCARPIA, 6-13 September, 1987, Nitra, Czechoslovakia.

Mihov M. and Mehandzhiev A. (1990b) Influence of different doses of gamma radiation (Co60) on the elements of lentil productivity. Report “Breeding, seed production and agrotechnology of field crops”, Ruse, 152-158.

A Study on EMS and Gamma Mutagenesis of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]

H.R. Mahla ¹, A. Shekhawat and D. Kumar
AICRP on Arid Legumes, Central Arid Zone Research Institute Jodhpur – 342 003, India
¹Present address: Regional Research Station, Central Arid Zone Research Institute, Post Box 63, Jaisalmer – 345 001, India
E-mail: drhansraj2003@yahoo.com

Abstract

Dry and pure seeds of two clusterbean cultivars (RGC 936 and HGS 365) were treated with gamma rays (10, 20, 30 and 40 kR) and EMS (0.1, 0.2, 0.3 and 0.4 per cent). Gradual reduction in germination and subsequent survival of the treated population were observed with the increased mutagen dose in both cultivars. Four different types of morphological mutants were observed with the maximum mutation frequency of spreading types in case of higher doses of gamma rays. Positive association was observed between mutagen dose and mutation frequency of morphological traits in M₂ generation. Three different types of chlorophyll mutant viz. chlorina, xantha and albina were observed: chlorophyll mutants induced with gamma rays had higher frequency than EMS induced mutants. Fifty best performing progenies, identified in M₂ on the basis of earliness and higher seed yield, were further tested and fifteen of them were selected in M₄ generation.

Introduction

Clusterbean (Cyamopsis tetragonoloba L. Taub) is a main arid legume crop, traditionally grown as a system sustaining crop under poorly endowed conditions with minimal management. It is grown over an area of 3.0 million hectares in India, mostly in the northwestern parts of the country, such as the states of Rajasthan (80% of the total acreage), Haryana and Gujarat. However, it is of great concern that the total area of cultivation and productivity levels have been fluctuating over the years (area: 1.5-3.0 million hectare and productivity: 50-500 kg), since it is grown as a rainfed crop and the distribution of rainfall (less than 100 mm to more than 500 mm) is so erratic and uneven in this region.

Mutagenesis is rewarding in situations where naturally existing genetic variability is low (either over all diversity or variability for specific traits) and where simply inherited defects need to be rectified in an otherwise agronomically superior cultivar (Chopra and Sharma, 1985). Mutation breeding is a potentially powerful tool for clusterbean improvement, since it has very limited exploitable and useful genetic variation. The creation of variability through hybridization is very difficult and cumbersome owing to very small and delicate flower structures, which often result in very poor seeds setting in the manually hybridized buds and higher frequency of flower drop during and after crossing (Arora and Pahuja, 2008). There is also limited variability for characters of economic importance in existing cultivars. In this study, chemical and physical mutagenesis was employed for creation of variability in two widely grown clusterbean cultivars.

Materials and methods

Mutagenic treatment

The seeds of two clusterbean cultivars, RGC 936 and HG 365, were treated with gamma rays and ethyl methane sulphonate (EMS). Gamma irradiation was made for dry seeds at doses of 10, 20, 30 and 40 kR in the Indian Agricultural Research Institute, New Delhi, with a ⁶⁰Co source. The EMS treatment was performed in freshly prepared phosphate buffer (pH 7.0) after pre-soaking the seeds for 6 h at doses of 0.1, 0.2, 0.3 and 0.4 per cent for 6 h followed by post-treatment washing of 1 h under gentle flow of running tap water.

Handling of M₁ and M₂ plants

The data on germination of M₁ seeds and subsequent survival of the M₁ plants till maturity were recorded. M₁ plants were individually harvested to raise the M₂ generation following the plant to row method. The M₂ generation was screened for morphological and chlorophyll mutants. Chlorophyll mutants were determined and grouped by their type in M₂ generation using classifications of Prilin et al., (1976). Growth pattern of M₂ plants were compared with their respective parental cultivars for the selection of morphological mutations, i.e. spreading, dwarf, mating and vigorous plant types, together with agronomic and yield related mutants for early maturity, higher yield, more number of branches, clusters and pods, plant height, number of seeds per pod and pod length. Mutation frequency was calculated on the basis of 100 M₂ plant rows according to Gaul’s (1964) method. M₂ plants with superior performance were selected and their performances were assessed in M₃ and M₄ generations.

Assessment of M₃ and M₄ lines

Fifty M₃ progenies were selected on the basis of their per se performance for certain characteristics of economic importance. In M₄ generation the 50 M₃ progenies were further evaluated to assess the stability of the promising mutants. These progenies were sown in 4 rows of 4 m length each spaced 30 cm apart along with checks.
Proper agronomic practices were followed for raising a health crop in all the generations (M₁ M₄) and grown strictly under rainfed conditions. The observations were recorded on 5 randomly selected plants in each progeny. The statistical analysis was performed as per the standard statistical procedures.

Results

Effect of mutagenic treatment on germination and survival

In M₁ generation the initial damage caused by the mutagenic treatments is judged by the reduction in germination and further survival of the plants up to maturity. Gradual reduction in germination and subsequent survival of the treated population was observed with the increase of mutagen dose in both cultivars (Fig. 1). Higher dose (40 kR) gamma rays caused the maximum reduction of germination in cultivar HGS 365 while the damage was comparable at lower doses in both cultivars. The decline in survival rate was minimum at lower dose (10 kR) of gamma rays in both the cultivars, while higher doses were much more detrimental. Lower concentration of EMS reduced germination more drastically in RGC 936 while at higher concentration was detrimental to HGS 365, but at 0.3% concentration, the damage was comparable in both cultivars. The survival rate of the germinated individuals was lower in HGS 365 than RGC 936.

Mutation frequency in the M₂ generation

Chlorophyll deficiency

Three different types of chlorophyll deficiency mutant viz. chlorina, xantha and albino were observed. The mutation frequency of albino type was always the highest in all treatments, while those of xantha and chlorina varied between cultivars and among doses (Table 1). In general, the mutation frequency of albino type induced by gamma rays was higher than by EMS in both cultivars while no definite pattern was observed for chlorina and xantha (Table 1). The cultivars HGS 365 (21.8% & 23.5%) had higher overall chlorophyll mutation frequencies than RGC 936 (16.6% & 12.2%) treated either with gamma rays or EMS (Table 1).

Morphological and agronomic traits

Frequencies of various morphological mutations were also computed and presented in Table 1. Four different types of morphological trait, namely spreading (branched from base with upright behaviour), dwarf, mating (branches spread on ground like turf) and vigorous, were observed. Spreading and vigorous mutants were more frequently observed with gamma treatments in both cultivars than EMS, but this trend was not observed for dwarf and mating mutants (Table 1). Except for the spreading traits, HGS 365 had higher mutation frequencies than RGC 936 in both gamma and EMS mutagenesis, which is consistent with the chlorophyll deficiency mutations (Table 1).

Performance of M₃ and M₄ progenies

In M₁ generation fifty progenies were selected on the basis of their per se performance for agronomic traits (Table 2). Twenty promising progenies were found superior for earliness, twenty for grain yield per plant, five for plant height, nine for pods per plant and ten for seeds per pod over the respective parent (control). Some of the progenies had shown superiority for more than one trait (yield, pods per plant and seeds per pod). These progenies were evaluated in M₄ generation for their yield performance and other agronomic traits (Table 3). Mutant progeny RGC 936-30-2 matured in just 65 days with higher grain yield (8.02 g) and maximum number of seed bearing pods (9.7) closely followed by RGC 936-1-17, which matured in 68 days with almost the same yield level (7.93 g) with maximum branches (5.9), clusters per plant (12.9), pods per plant (27.1) and seeds per pod (9.7). This mutant progeny showed superiority for all the agronomic traits except maturity with almost the same yield level (7.93 g) than that of the best yielder. The other mutant progeny of RGC 936 also showed superiority for more than one trait.

Figure 1. Effect of gamma rays (upper) and EMS (bottom) on germination and survival of clusterbean.
Eight promising mutants were identified in cultivar HGS 365 on the basis of their agronomic performance and superiority over parental control. Mutant progeny HGS 365-15-5 was found superior with higher yield per plant (9.95g), branches per plant (6.3), clusters per plant (13.7), pods per plant (34.8) and seeds per pod (9.1). Besides yield, other mutants of HGS 365 had also shown superiority for other agronomic traits.

Table 1. Frequency of morphological and chlorophyll mutations in clusterbean

<table>
<thead>
<tr>
<th>Cultivars/Treatment</th>
<th>Morphological mutations (%)</th>
<th>Chlorophyll mutations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spreading</td>
<td>Dwarf</td>
</tr>
<tr>
<td>RGC 936, Gamma rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 kR</td>
<td>0.87</td>
<td>-</td>
</tr>
<tr>
<td>20 kR</td>
<td>2.42</td>
<td>0.85</td>
</tr>
<tr>
<td>30 kR</td>
<td>3.65</td>
<td>4.56</td>
</tr>
<tr>
<td>40 kR</td>
<td>16.72</td>
<td>8.18</td>
</tr>
<tr>
<td>RGC 936, EMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1%</td>
<td>-</td>
<td>0.62</td>
</tr>
<tr>
<td>0.2%</td>
<td>2.15</td>
<td>0.62</td>
</tr>
<tr>
<td>0.3%</td>
<td>4.54</td>
<td>2.12</td>
</tr>
<tr>
<td>0.4%</td>
<td>6.77</td>
<td>3.42</td>
</tr>
<tr>
<td>HGS 365, Gamma rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 kR</td>
<td>1.16</td>
<td>0.28</td>
</tr>
<tr>
<td>20 kR</td>
<td>2.39</td>
<td>1.92</td>
</tr>
<tr>
<td>30 kR</td>
<td>4.66</td>
<td>3.72</td>
</tr>
<tr>
<td>40 kR</td>
<td>15.18</td>
<td>8.96</td>
</tr>
<tr>
<td>HGS 365, EMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1%</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>0.2%</td>
<td>1.71</td>
<td>0.80</td>
</tr>
<tr>
<td>0.3%</td>
<td>3.28</td>
<td>1.74</td>
</tr>
<tr>
<td>0.4%</td>
<td>4.76</td>
<td>16.35</td>
</tr>
</tbody>
</table>
Table 2. Selected promising progenies for agronomic traits in M₂ generation

<table>
<thead>
<tr>
<th>SN</th>
<th>Agronomic trait</th>
<th>RGC 936 Mutants*</th>
<th>Parent</th>
<th>HGS 365 Mutants*</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early maturity (days)</td>
<td>< 66 (10)</td>
<td>72</td>
<td>< 65 (10)</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>High yielding (g/plant)</td>
<td>> 6.0 (10)</td>
<td>5.23</td>
<td>> 6.5 (10)</td>
<td>5.58</td>
</tr>
<tr>
<td>3</td>
<td>Plant height (cm)</td>
<td>> 45.0 (2)</td>
<td>38.0</td>
<td>> 50.0 (3)</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>Number of pods per plant</td>
<td>> 24.0 (5)</td>
<td>18.0</td>
<td>> 29.0 (4)</td>
<td>19.0</td>
</tr>
<tr>
<td>5</td>
<td>Number of seeds per pod</td>
<td>> 9.0 (4)</td>
<td>8.2</td>
<td>> 9.0 (6)</td>
<td>8.4</td>
</tr>
</tbody>
</table>

* Figures in parentheses show the number of progenies selected for the trait. These numbers exceed fifty because some progenies were common for more than one trait.

Table 3. Agronomic performance of promising M₄ progenies

<table>
<thead>
<tr>
<th>Mutants</th>
<th>Yield per plant (g)</th>
<th>Days to maturity</th>
<th>Plant height (cm)</th>
<th>Branches per plant</th>
<th>Clusters per plant</th>
<th>Pods per plant</th>
<th>Seeds per pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGC 936-1-5</td>
<td>6.89</td>
<td>67.5</td>
<td>42.7</td>
<td>5.7</td>
<td>12.3</td>
<td>25.5</td>
<td>9.2</td>
</tr>
<tr>
<td>RGC 936-1-17</td>
<td>7.93</td>
<td>68.0</td>
<td>46.0</td>
<td>5.9</td>
<td>12.9</td>
<td>27.1</td>
<td>9.7</td>
</tr>
<tr>
<td>RGC 936-5-4</td>
<td>7.90</td>
<td>65.5</td>
<td>43.7</td>
<td>5.9</td>
<td>12.7</td>
<td>24.5</td>
<td>8.8</td>
</tr>
<tr>
<td>RGC 936-12-11</td>
<td>6.81</td>
<td>66.5</td>
<td>43.4</td>
<td>5.6</td>
<td>11.8</td>
<td>22.6</td>
<td>8.5</td>
</tr>
<tr>
<td>RGC 936-16-2</td>
<td>7.54</td>
<td>66.5</td>
<td>44.8</td>
<td>5.8</td>
<td>12.2</td>
<td>23.8</td>
<td>9.0</td>
</tr>
<tr>
<td>RGC 936-20-22</td>
<td>7.48</td>
<td>68.5</td>
<td>41.9</td>
<td>5.7</td>
<td>11.9</td>
<td>22.2</td>
<td>8.9</td>
</tr>
<tr>
<td>RGC 936-30-2</td>
<td>8.02</td>
<td>65.0</td>
<td>43.0</td>
<td>5.5</td>
<td>12.6</td>
<td>22.9</td>
<td>9.7</td>
</tr>
<tr>
<td>RGC 936 (C)</td>
<td>4.26</td>
<td>71.5</td>
<td>38.1</td>
<td>4.5</td>
<td>9.2</td>
<td>18.1</td>
<td>7.9</td>
</tr>
<tr>
<td>HGS 365-2-7</td>
<td>7.82</td>
<td>67.5</td>
<td>44.6</td>
<td>5.4</td>
<td>11.9</td>
<td>24.6</td>
<td>8.8</td>
</tr>
<tr>
<td>HGS 365-3-10</td>
<td>7.35</td>
<td>68.0</td>
<td>44.3</td>
<td>5.4</td>
<td>12.0</td>
<td>24.6</td>
<td>9.0</td>
</tr>
<tr>
<td>HGS 365-7-5</td>
<td>7.74</td>
<td>69.0</td>
<td>50.0</td>
<td>5.5</td>
<td>11.8</td>
<td>25.1</td>
<td>8.8</td>
</tr>
<tr>
<td>HGS 365-10-2</td>
<td>7.84</td>
<td>65.0</td>
<td>49.3</td>
<td>4.8</td>
<td>10.2</td>
<td>25.8</td>
<td>9.1</td>
</tr>
<tr>
<td>HGS 365-12-6</td>
<td>9.16</td>
<td>67.0</td>
<td>46.7</td>
<td>4.7</td>
<td>12.1</td>
<td>33.6</td>
<td>8.5</td>
</tr>
<tr>
<td>HGS 365-15-2</td>
<td>8.47</td>
<td>68.0</td>
<td>49.0</td>
<td>4.9</td>
<td>13.4</td>
<td>28.2</td>
<td>9.0</td>
</tr>
<tr>
<td>HGS 365-15-5</td>
<td>9.95</td>
<td>69.0</td>
<td>48.8</td>
<td>6.3</td>
<td>13.7</td>
<td>34.8</td>
<td>9.1</td>
</tr>
<tr>
<td>HGS 365-18-4</td>
<td>9.50</td>
<td>63.5</td>
<td>45.9</td>
<td>6.2</td>
<td>10.4</td>
<td>30.6</td>
<td>8.8</td>
</tr>
<tr>
<td>HGS 365 (C)</td>
<td>4.55</td>
<td>72.3</td>
<td>36.3</td>
<td>4.4</td>
<td>9.2</td>
<td>18.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Discussion

In the present study, gradual reduction in germination and subsequent survival of treated population were observed with corresponding increase in concentration/dose of both mutagens. These findings are consistent with the earlier findings of Rao and Rao (1982) in clusterbean. However, Singh and Chowdhary (1972) did not observe significant effect up to 40 kR on germination, yet there was a considerable effect at 100 and 150 kR doses of gamma irradiation in clusterbean. Frequencies of morphological and chlorophyll mutations were observed in M₂ generation since all the variants are expected to be expressed in M₂ generation. Higher frequency of certain plant types at higher doses might be due to considerable changes at DNA level by the mutagens while lack of any pattern of certain morpho-types or chlorophyll mutants might be due to random nature of mutations. It was observed that both the cultivars manifested differential reactions to the treatment with gamma rays and EMS. Differential behaviour of various mutagens and selective response of cultivars might be due to the mode of action of the mutagens employed and genetic variability among the
cultivars used in the study. These findings are consistent with the findings of Badami and Bhalla (1992) in clusterbean and others in pulses (Kothekar 1989, Waghmare and Mehra 2001 and Gaikwad and Kothekar 2004).

On the basis of mean performance and variance, selected M$_2$ plants were advanced to M$_3$ generation and agronomically superior mutant progenies, and were tested for their stability in M$_4$ generation. The purpose of the present study was to isolate early maturing and high yielding mutant lines. Fifteen mutants, seven derived from RGC 936 and eight from HGS 365 were found to be superior for earliness as well as higher grain yield. Yadav et al., (2004) had also isolated mutants in M$_3$ generation from clusterbean cultivar RGC 197 through gamma irradiation.

Acknowledgement

The authors are thankful to the Indian Council of Agricultural Research, New Delhi for providing financial assistance under the AP-Cess fund scheme for the present study.

References

Production of Doubled Haploids in Tunisian Durum Wheat (Triticum durum Desf.) Cultivars through unpollinated Ovary Culture

O. Slama Ayed1*, Y. Trifá1, Ayed S.1, H. Slim Amara1, J. De Buyser2 and E. Picard2
1Laboratoire d’amélioration génétique des céréales, Institut National Agronomique de Tunisie, 43 Avenue Charles Nicole 1082 Tunis – Mahrajene, Tunisia
2Laboratoire de Morphogénèse Végétale Haploïde Université Paris XI Orsay cedex, France

E-mail: olfa.slama@planet.tn

Abstract

The use of doubled haploid technology improves the efficiency of cultivar development and enables homozygous genotypes to be obtained in one generation. The major problem with this approach is the low efficiency of green plant regeneration particularly for durum wheat (Triticum durum Desf.). In order to improve the efficiency of green doubled haploid gynogenesis, we have analysed the effect of spike pretreatments. Cold treatment is the most efficient and the most genotype-independent for ovary response and calli development. Mannitol treatment is also interesting for its practicality and has quite comparable results to the cold treatment. PEG based treatments were shown to be inefficient for callus induction.

For induction and differentiation media, high 2,4-D, vitamins, glutamine content, and maltose based medium was more efficient for inducing the ovary response and a high rate of callus development. Using the optimised protocol, gynogenesis was performed on three Tunisian genotypes and green fertile doubled haploid plants were obtained. A strong genotypic variation in the gynogenesis response was observed. The Azizi genotype was unresponsive to gynogenesis while the Khiar genotype was the best performing genotype.

Keywords: In vitro gynogenesis; doubled haploid; durum wheat; pretreatment.

Abbreviations: DH- doubled haploid plant; 2,4-D- 2,4 Dichlorophenoxyacetic acid; 2ip- 6-(γ, γ-Dimethylamino)purine; NAA- Naphtaleneacetic acid.

Introduction

Doubled haploid production can accelerate cultivar development by removing the long and slow process of increasing homozygosity by self pollination. This strategy offers the possibility to obtain in one generation perfectly homozygous plants. Doubled haploid lines can be obtained by androgenesis (De Buyser et al., 2002; Zheng et al., 2003; Patel et al., 2004; Soriano et al., 2008), gynogenesis (Mdarhri-Alaoui et al., 1998 ; Sibi et al., 2001; Slama-Ayed and Slim-Amara, 2007), and inter specific or inter generic crosses (Kasha et al., 2003; Szarejko, 2003). Durum wheat is considered as a recalcitrant species to androgenesis as regeneration often results in sterile plantlets (Cistué et al., 2006; Slama-Ayed et al., 2006; Labbani et al., 2007). It was shown that many cultivars produce exclusively albino plantlets (Labbani et al., 2005).

Gynogenesis has been suggested as an alternative to androgenesis in durum wheat as albino plantlets are not produced. Gynogenesis was shown to be an efficient method for regenerating green haploid plants (Mdarhri-Alaoui et al., 1998; Sibi et al., 2001). In sugar beet, it was shown to be the most successful method for doubled haploid plant production (Gürel et al., 2000). In gynogenesis, the embryogenesis is indirect starting with a cal- lus development from the unpollinated ovary followed by regeneration of haploid plantlets. In fact, this technique can be divided into three important steps: (i) the pretreatment, commonly applied in order to switch the gametophytic pathway into a sporophytic development to induce embryogenesis (Touarev et al., 2000); (ii) the induction and differentiation phases, which results in the callus formation. Step two is strongly dependent on culture conditions and is the most delicate phase of the process (Slim-Amara, 2000). Finally, (iii) the regeneration phase with development of haploid plantlets.

The overall efficiency of gynogenesis in developing doubled haploids is quite low and many attempts were undertaken in order to improve it. The only pretreatment tested so far is the cold treatment of the spikes. It was shown that the best response was observed when the spikes were placed in water at 4°C for 5 to 15 days, before ovary extraction (Mdarhri-Alaoui et al., 1998; Sibi et al., 2001). In order to further improve the rate of doubled haploid production through gynogenesis, we have studied the effect of cold pretreatment associated with or without mannitol and/or PEG. In solution, mannitol and PEG are used to induce an osmotic stress. This pretreatment creates more negative water potential, facilitating a water-restricted environment (Ilié-Grubor et al., 1998). We also compared the efficiency of two different induction and differentiation media for ovary response and callus development. Finally, using the best protocol identified, we have developed doubled haploid plants by unpollinated ovary culture from three different durum wheat genotypes.

Materials and methods

Donor

Three Tunisian durum wheat cultivars were used in this study: Hmira, Azizi and Khiar. Plants were grown in the
experimental fields of the National Agronomic Institute of Tunisia. Spikes were collected when the microspores were at the late uninucleate or binucleate stage and stored in the different pre-treatment solutions in the dark at 4°C.

Culture media

Spikes were collected and subject to two pretreatments T1 and T2 consisting in 14 days in the dark at 4°C and 0.3M Mannitol for 7 days at 4°C in the dark respectively. Twenty ovaries of 1 to 1.5 mm length were cultivated on 5.5 cm Petri dishes sealed with parafilm, containing the different induction media in dark at 27°C for 5 to 6 weeks (Sibi and Fakiri, 1994; Mdarhri-Alaoui et al., 1998). Responding ovaries, whose size had increased, were transferred to the differentiation media for 6 weeks at 25°C with a 16-hour photoperiod at a light intensity of 80-100 μE m⁻² s⁻¹ to induce the callus development.

We have used the Sibi et al., (2001) induction (Ind M₁) and differentiation (Diff M₁) media, and the modified Mdarhri-Alaoui et al., (1998) induction (IndM₂) and differentiation (Diff M₂) media. The compositions of media are presented in Table 1.

Table 1. Composition of media for induction, differentiation and development

<table>
<thead>
<tr>
<th>Components</th>
<th>Ind M₁</th>
<th>Ind M₂</th>
<th>Diff M₁</th>
<th>Diff M₂</th>
<th>Dev M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroelements g/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>0.160</td>
<td>0.825</td>
<td>0.160</td>
<td>1.650</td>
<td>0.160</td>
</tr>
<tr>
<td>CaCl₂·4H₂O</td>
<td>0.440</td>
<td>0.220</td>
<td>0.440</td>
<td>0.440</td>
<td>0.440</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.370</td>
<td>0.185</td>
<td>0.370</td>
<td>0.370</td>
<td>0.370</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>0.170</td>
<td>0.085</td>
<td>0.170</td>
<td>0.170</td>
<td>0.170</td>
</tr>
<tr>
<td>KN₃</td>
<td>1.900</td>
<td>0.950</td>
<td>1.900</td>
<td>1.900</td>
<td>1.900</td>
</tr>
<tr>
<td>FeEDTA</td>
<td>0.040</td>
<td>0.060</td>
<td>0.040</td>
<td>0.060</td>
<td>0.040</td>
</tr>
<tr>
<td>Microelements mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>6.20</td>
<td>6.20</td>
<td>6.20</td>
<td>6.20</td>
<td>6.20</td>
</tr>
<tr>
<td>MnSO₄·2H₂O</td>
<td>22.30</td>
<td>16.88</td>
<td>22.30</td>
<td>16.88</td>
<td>22.30</td>
</tr>
<tr>
<td>ZnSO₄·2H₂O</td>
<td>8.60</td>
<td>8.60</td>
<td>8.60</td>
<td>8.60</td>
<td>8.60</td>
</tr>
<tr>
<td>Na₂MoO₄·4H₂O</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>CuSO₄·5H₂O</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>CoCl₂·6H₂O</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Vitamins mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Pyridoxine HCL</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Thiamine HCL</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pyruvate Na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Aminoacids mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>750</td>
<td>-</td>
<td>146</td>
<td>-</td>
<td>146</td>
</tr>
<tr>
<td>Glycine</td>
<td>-</td>
<td>2</td>
<td>2.25</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td>L-asparagine</td>
<td>-</td>
<td>150</td>
<td>-</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Myo-Inositol</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Growth regulators mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAA</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kinetai</td>
<td>0.5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2iPA</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maltose g/l</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saccharose</td>
<td>-</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Purified Agar</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Ind M₁ and Ind M₂: Induction media; Diff M₁ and Diff M₂: Differentiation media; Dev: Development medium.
Spike Pretreatments

Spikes were subject to four pretreatments T1: 14 days in the dark at 4°C; T2: 0.3M Mannitol for 7 days at 4°C in the dark. T3 consisted in a solution of PEG4000 1% at 4°C for 5 days in the dark and T4 in a solution of PEG4000 1% at 4°C for 10 days.

Ovary culture, plantlets regeneration and chromosome doubling

One thousand ovaries from the pretreated spikes per genotype were isolated and subject to the in vitro culture as described above using the IndM1 and the Diff M1 media. The percentage of responding ovaries and developed calli were then calculated. The ovaries that had developed callus were transferred to development medium and kept in the same conditions for regeneration. The composition of the development medium is indicated in Table 1. The ploidy level of the developed plantlets was determined before and after colchicine treatment for all regenerated plantlets using the chromosome count protocol of Jahier et al., (1992).

Colchicine treatment was performed by placing the plantlets at the three-leaf stage in 0.1% colchicine solution (Barnabás and Szakács, 2000), then rinsed carefully for 0.5-1h before plants were transferred to soil.

Data Analysis

Analysis of variance (ANOVA) was conducted using SAS computer software (1988). The data were analyzed as two factors for culture media and pretreatment and as one factor for pretreatment and for genotype.

Results and discussion

Effect of pretreatment and media

Two major reports have described doubled haploid development using gynogenesis for durum wheat (Mdarhri-Alaoui et al., 1998 and Sibi et al., 2001). The protocols use different induction and differentiation media. In order to compare the efficiency of these media and their interaction with different pretreatments, 1600 ovaries were assayed from the three genotypes and were subjected to the previously described T1 and T2 pretreatment and cultivated using the different induction and differentiation media. Table 2 refers to the percentage of responding ovaries and the percentage of developed calli.

Table 2. The response and calli formation of durum ovaries cultured on different media after different pretreatment

<table>
<thead>
<tr>
<th>Culture media</th>
<th>Responding ovaries (%)</th>
<th>Calli (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cold treatment at 4°C for 14d</td>
<td>Cold treatment at 4°C for 7d in 0.3M Mannitol</td>
</tr>
<tr>
<td>Ind M1 / Diff M1</td>
<td>68.37a</td>
<td>61.67b</td>
</tr>
<tr>
<td>Ind M2 /Diff M2</td>
<td>63.93ab</td>
<td>61.94b</td>
</tr>
</tbody>
</table>

Culture media Ind M1, Diff M1, Ind M2 and Diff M2 see table 1; Data with different letters are significantly different at $p \leq 0.05$ (Newman and Keuls test).

For induction, the T1 treatment (14 days cold) gave better results than the T2 treatment (mannitol 0.3M) especially using the Ind M1 media, while there was no sharp difference between the two induction media. However, callus development was significantly higher using the Differentiation media M1 than the Differentiation M2. Diff M1 is characterized by the presence of high organic nitrogen (glutamine), 2,4-D content and maltose rather than sucrose. Based on these results, a 14 days cold treatment coupled with Ind M1 and Diff M1 media were the most efficient conditions for ovary responsiveness and calli development of the studied durum wheat genotypes. Based on these results, we chose the M1 (Sibi et al., 2001) media (induction and differentiation) for the following experiments and preselected the pretreatment: 14 days cold at 4°C.

Effect of pretreatment

In order to improve the overall efficiency of gynogenesis on durum wheat and identify the most efficient treatment, we have attempted to analyze the effect of different spike pretreatments on the ovary response to the in vitro culture and on the callus development.

Spikes were subject to four pretreatments before ovary extraction. T1 was a 14 days cold treatment which has been used in other experiments (Mdarhri-Alaoui et al., 1998; Sibi et al., 2001). T2 consisted of a 0.3M mannitol treatment at 4°C during 7 days. T3 and T4 are PEG treatments at 4°C for 5 and 10 days respectively.

Our results showed that induction and differentiation phases were significantly different using the diverse pre-
treatments for the three genotypes (Fig. 1). It was shown that pretreatment was used to trigger ovary development from gametophytic to sporophytic pathways. For gynogenesis, only cold treatments were used so far. Sibi et al., (2001) used cold treatments for 7 to 14 days and showed that some genotypes exhibit the highest rate of ovary response at 7 days while others at 11 days. Mdarhri-Alaoui et al., 1998 showed that the best response was obtained with 5 to 15 days pretreatments. In our study, 14 days cold treatment was effective in inducing the ovary response and the callus development in all three studied genotypes.

Mannitol was showed to be an efficient pretreatment in androgenesis (Cistué et al., 2006). In gynogenesis, our results showed that, except in ovary response in the Khiar genotype, mannitol pre-treatment is as effective as the cold treatment. However, mannitol treatment is efficient as it only requires 7 days while T1 is a 14 days long treatment. PEG can induce an osmotic stress and was tested for the first time as a pretreatment in this study. We have shown that the T3 ovary response was comparable, for all genotypes to the cold treatment. However, the number of calli developed with T3 is significantly lower than T1 for Khiar and Hmira. T4 pretreatment is a 10 days cold treatment in PEG while T3 lasts only five days. It appears that the long PEG based pretreatments can improve calli production but only in some genotypes such as Khiar. PEG based pretreatments are not only less efficient but also more genotype-dependent than mannitol based and cold treatments.

![Figure 1. Effect of pretreatments on gynogenesis in durum wheat in terms of ovary response (left panel) and calli formation (right panel). Pretreatment of ovaries was performed (T1) in water at 4°C for 14 days, or (T2) in 0.3 M Mannitol at 4°C for 7 days, or (T3) in 1%PEG4000 at 4°C for 5 days, or (T4) in 1% PEG4000 at 4°C for 10 days. Data with different letters are significantly different at p ≤ 0.05 (Newman and Keuls test).](image)

Durum wheat doubled haploid production

The optimized protocol indicated above was used to develop doubled haploid plants using three durum wheat genotypes as donor plants. Unpollinated ovaries (Fig. 2-a) were cultivated on the Ind M1 medium to obtain responding ovaries (swelling ovaries) (Fig. 2-b). These were transferred on the Diff M1 medium and exposed to light and lead to calli differentiation (Fig. 2-c). These calli were transferred to development medium and developed green shoots (Fig. 2-d), and the regenerated plantlets (Fig. 2-e) were subject to chromosome counting to assess their ploidy level (Fig. 2-f1). Haploid plants were treated with colchicine 0.1% to obtain fertile doubled haploid plants (Fig. 2-f2 and Fig. 2-g).
Genotypic variation in the gynogenesis response

More than 5000 unpollinated ovaries were cultured from the three genotypes of durum wheat (Azizi, Khiar and Hmira) using the same procedure described above. Gynogenesis response is dependent on the donor parent genotype. The Azizi genotype was not responsive to gynogenesis as no haploid plant could be obtained. Khiar and Hmira expressed high gynogenetic capacity with respectively 21 and 39 regenerated plantlets. Chromosome counting showed that all these plantlets were haploid, indicating that the regeneration was obtained from unpollinated ovaries and not from diploid ovary tissues. Haploid plantlets were recovered from Khiar at a percentage of 3.1% and from Hmira at a percentage of 3.5% of the responding ovaries (Table 3). In our study, the rate of haploid plants regenerated was comparatively good according to previous studies with durum wheat (Sibi et al., 2001 and Mdarhri-Alaoui et al., 1998). The 60 regenerated haploid plants were all green.

Table 3. Gynogenic response in three durum wheat Tunisian genotypes: Azizi, Khiar and Hmira

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Cultured ovaries number</th>
<th>Responsive ovaries number</th>
<th>Calli number</th>
<th>Green shoots formed number</th>
<th>Haploid plants number</th>
<th>Doubled haploid plants number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azizi</td>
<td>1600</td>
<td>988</td>
<td>61</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Khiar</td>
<td>1790</td>
<td>680</td>
<td>74</td>
<td>38</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Hmira</td>
<td>2000</td>
<td>1100</td>
<td>269</td>
<td>126</td>
<td>39</td>
<td>5</td>
</tr>
</tbody>
</table>

The Number presented is the means of six replicates.

Six doubled haploid out of 21 Khiar haploid plants and five out of 39 Hmira haploid plants could be obtained using colchicine chromosome doubling (Table 3). This low frequency can be accounted for the toxic effect of the colchicines as reported by Barnabàs and Szakács (2000).

However, these plants did not show any abnormality in the chromosome number or in the morphology of the plant. Moreover, all the doubled haploid plants obtained were green and fertile. In fact, anther and microspore culture has been long used to develop doubled haploid plants in cereals (Jaiti et al., 2000; Dogramaci-Altunetpe et al., 2001; Picard and De Buyser, 2002; Liu et al., 2002; Jacquard et al., 2006). But in most cases, the high rate of albino plants is considered as a major limitation of this technique.

This study reports an efficient protocol for developing green and fertile doubled haploid plants using gynogene-
sis of some genotypes of durum wheat. This protocol can be implemented and applied in breeding programs.

Acknowledgements

We are grateful to Mr. P.J.L. Lagoda and Ms. M. Spencer for their technical assistance on the project FAO/IAEA: ‘Identification and pyramiding of mutated genes: novel approaches for improving crop tolerance to salinity and drought’.

References

Genetic Improvement of an Indigenous Aromatic Variety ‘Jajai 77’ through Mutagenesis

H.R. Bughio, M.A. Asaad, I.A. Odhano, M.A. Arain and M.S. Bughio
Nuclear Institute of Agriculture, Tando Jam, Pakistan
*E-mail: azeem_nia@yahoo.com

Abstract

The mutant Jajai-25/A has been developed from an indigenous aromatic rice variety Jajai 77 through radiation by gamma rays (250 Gy). The mutant Jajai-25/A was initially selected on the basis of short plant stature, lodging resistance and improved yield components. After confirmation, the performance was evaluated in preliminary and advanced yield trials. The analysis of variance of different trials revealed significant differences among all the mutants, parents and check varieties. This mutant was significantly better than its mother variety Jajai 77 in respect of all the yield and yield contributing traits. It has shown consistency in better paddy yield than all the mutant lines, including its parent and local check in preliminary and advanced yield varietal trials. Jajai-25/A produced 57% higher paddy yield than its parent Jajai-77 and 33% higher than the check variety Super Basmati. The mutant maintained its yield superiority in the zonal trials in Sindh province and produced 3911 kg/ha in comparison to Super Basmati (2941 kg/ha). In the national trials, it exhibited yield superiority and ranked first (4372 kg/ha) at the national level (NURYT-2006).

Keywords: Rice, landrace, aroma, quality, mutagenesis

Introduction

Rice feeds more people than any other food crops in the world. In Pakistan it is grown on an area of about 2.581 million hectares, producing 5.438 million tonnes with an average yield of 2107 kg per hectare. Rice has emerged as an important commodity for earning foreign exchange (Anonymous 2006-07). Each year, about 1.8 million tonnes of non-scented rice is being produced in Sindh for export. High yielding, non-aromatic rice varieties are cultivated on about 85% of the total arable area in Sindh, while the remaining 15% of the area is covered by traditional tall, scented (Sugdasi) varieties like Sohneri Sugdasi, Sada Gulab, Kangni and Jajai 77, as well as other non-scented varieties.

Mutation breeding provides the means for enhancing the genetic variation and genetic variability may also be created by modulating the effects of mutagens. Mutation techniques have played an important role in the evolution of high yielding varieties of crops, particularly rice (Maluszynski, et al., 1986). Genetic variability induced in rice through gamma rays for selecting new genotypes with improved grain quality and high yield potentials have been documented (Rutger, 1983; McKenzie and Rutger, 1986; Liu et al., 2004). Being indigenous aromatic rice, Jajai-77 possesses good aroma and well is adapted in Sindh, however, due to tall plant habit, it frequently lodges, has poor grain set and produces low yield. Therefore, the present study was conducted to induce genetic variability through gamma rays in Jajai-77, for the development of new genotypes with relatively shorter plant structure, tolerant to lodging, and having high grain yield potential with in-built good grain quality.

Materials and methods

During the year 1997, three different doses (150, 200, 250 Gy of 60Co source) of gamma rays were used to irradiate pure and dry seeds (14% moisture content) of an indigenous aromatic rice variety, Jajai-77, and popular variety Basmati 370. Irradiated and non-irradiated seeds were sown in nursery beds separately. Seedlings (25 - 30d old) were transplanted in the standing water in the field at a uniform distance of 20 × 20 cm between plant to plant and row to row. The mother panicle of each M$_1$ plant was harvested. M$_2$ generation was grown from each panicle separately and mutants with productive traits such as synchrony in flowering, with more tillers per plant, increased panicle fertility percentage, panicle size, thousand grain weight and reduced plant height were selected. Mutants that were confirmed for the mutated attributes in M$_3$ and M$_4$ generations were retained and data was statistically analyzed (Steel and Torrie, 1986; Duncun, 1955). Finally, a mutant line Jajai 25/A was selected and tested with other promising mutants of Basmati 370 and Sonehri Sugdasi in replicated fashion in micro, preliminary and station varietal trials at NIA experimental farm, Tando Jam, during the years 2001, 2002 and 2003, respectively.

Further evaluation was done in zonal varietal trials for two years (2004 and 2005) over eight different sites in Sindh for adaptability testing. These trials were designed in a randomized complete block design with three replications at each site in each year with a plot size of 5m × 3m. Data on days to 50% flowering, plant height, number of productive tillers per plant, panicle length, fertile grains per panicle, thousand grain weight and grain yield (kg/ha) were recorded at Tando Jam site. Data for paddy yield (kg/ha) and mean yield performance of genotypes at individual sites was recorded. The data on paddy yield was statistically analyzed to determine the significant differences among the genotypes. On the basis of better yield performance, Jajai 25/A was promoted in national trials during 2006.
Results and Discussion

Selection of mutant lines

The mean performance of the mutants evaluated in M₄ generation is shown in Table 1. There were significant differences among the mutants for all the characters except the panicle length. The minimum height was observed in Bas.15-22 (109.0 cm) followed by Jajai 25/A (110.3 cm) and Sada Gulab 15-4 (118.3 cm). This indicates that radiation has induced shortness in plant height. Short stature plants have the advantage to utilize more inputs and possess resistance to lodging as compared to tall ones, hence produce better yield (Baloch et al., 1999; Hu, 1991). The maximum number of productive tillers per plant was found in the mutant Bas.15-22 (17) followed by the mutant Jajai 25/A (16), which was significantly more than in the check variety (14). There was no significant difference in panicle length among all the genotypes. Higher numbers of fertile grains per panicle and panicle fertility percentage was observed in the mutant Jajai 25/A, while thousand grain weight was found higher in the mutant Bas.15-5 (23.2 g). Jajai 25/A showed 10-15 days (50% heading) earliness compared to its mother and check varieties. The better yield components and earliness in maturity contributed significantly, and mutant line Jajai 25/A yielded better than all other contesting mutants, parent and check variety, with a yield of 25.7 g per plant, followed by Bas.15-22 (23.4 g).

<table>
<thead>
<tr>
<th>Table 1. Agronomic performance of different mutant lines in M₄ generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutants/Varieties</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Basmati 370 (P)</td>
</tr>
<tr>
<td>Bas-15-5</td>
</tr>
<tr>
<td>Bas-15-22</td>
</tr>
<tr>
<td>Bas-213</td>
</tr>
<tr>
<td>Jajai 77 (Parent)</td>
</tr>
<tr>
<td>Jajai 77-25/A</td>
</tr>
<tr>
<td>Sada Gulab (P)</td>
</tr>
<tr>
<td>S.G,15-4</td>
</tr>
<tr>
<td>Super Bas (Check)</td>
</tr>
</tbody>
</table>

Micro and zonal yield trials

In the micro yield trial (Table 2) Jajai 25/A produced 4912 kg/ha paddy yield which was more than double than its mother variety (2387 Kg/ha) and 62% higher than check variety Super Basmati (3037 Kg/ha). In a preliminary yield trial, Jajai 25/A yielded 54% and 97% higher than its mother variety and check variety, respectively. The performance of Jajai 25/A was again outstanding in station yield trials (Table 2). The three years data of the trials revealed that the yield of Jajai 25/A was 182.4% higher than the mother variety and 64.1% than the check variety (Table 2).

<table>
<thead>
<tr>
<th>Table 2. Performance of different rice mutant lines for paddy yield (Kg/ha) in different varietal trials conducted during 2001, 2002, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varieties/Mutants</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Basmati 370 (P)</td>
</tr>
<tr>
<td>Bas-15-5</td>
</tr>
<tr>
<td>Bas-15-22</td>
</tr>
<tr>
<td>Bas-213</td>
</tr>
<tr>
<td>Jajai 77 (P)</td>
</tr>
<tr>
<td>Jajai 77-25/A</td>
</tr>
<tr>
<td>Sada Gulab (P)</td>
</tr>
<tr>
<td>S.G,15-4</td>
</tr>
<tr>
<td>Super Bas (C)</td>
</tr>
</tbody>
</table>
The Sindh province has diversified ecological zones; therefore, genotypes with wide adaptability are required to be identified. Similarly, crop stability is the ability of a crop to exhibit minimum interaction with both, predictable and unpredictable environments (Qayyum et al., 2000; Akram et al., 1999). Varieties that have low \(g \times e \) interaction and have high stable yields are desirable to crop breeders. Therefore, evolution of rice varieties with better stability performance over a wide range of environments will ensure long term plentiful harvests (Fan et al., 2000; Fehr, 1987; Hulmel and Lecomte, 2003). Jajai 25/A along with other advanced mutants, their parents and check variety were evaluated at eight different sites of Sindh in replicated zonal varietal trials during 2004 and 2005 (Table 3). Jajai 25/A maintained its yield over a range of environments in Sindh province and produced 3980 kg/ha, 27.5% and 38% more yield than its parent and the check variety at Tando Jam site. At Badin site it produced 76% more yield than the mother variety and comparatively similar yield to the check variety. Likewise, the mutant Jajai 25/A produced 154% and 19% more yield than both, the parent and check varieties at Thatta in both years, 2004 and 2005. At Sanghar, Dadu and Larkana sites the mutant Jajai 25/A produced higher yield than the mother and check varieties. At Shikarpur and Jacobabad, Jajai 25/A was significantly better than the mother variety in paddy yield but not found significantly different from the check variety. On average of all the sites, Jajai 25/A ranked first and yielded better with a paddy yield of 3249 kg/ha, which was 114% and 11.84 more than the parent and the check variety, respectively, followed by Basmati 15-14 and Basmati 15-5.

Table 3. Average performance of different rice mutant lines for paddy yield (Kg/ha) in zonal varietal trials conducted during 2004 and 2005

<table>
<thead>
<tr>
<th>Mutants/ varieties</th>
<th>T.jam</th>
<th>Badin</th>
<th>Thatta</th>
<th>Sanghar</th>
<th>Dadu</th>
<th>Larkana</th>
<th>Shikarpur</th>
<th>Jacobabad</th>
<th>Mean over Genotypes</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basmati - 370</td>
<td>1827 f</td>
<td>1567 e</td>
<td>1133 f</td>
<td>1353 f</td>
<td>1947 e</td>
<td>2307 d</td>
<td>1013 d</td>
<td>1940 f</td>
<td>1636</td>
<td>10</td>
</tr>
<tr>
<td>Basmati -15-5</td>
<td>3247 b</td>
<td>3313 b</td>
<td>2407 cde</td>
<td>2726 c</td>
<td>3033 b</td>
<td>3272 b</td>
<td>2553 ab</td>
<td>2740 c</td>
<td>2906</td>
<td>3</td>
</tr>
<tr>
<td>Basmati -15-14</td>
<td>3527 b</td>
<td>3700 a</td>
<td>2720 b</td>
<td>3000 b</td>
<td>3387 a</td>
<td>3420 a</td>
<td>2780 a</td>
<td>3073 b</td>
<td>3201</td>
<td>2</td>
</tr>
<tr>
<td>Basmati - 30-2</td>
<td>2427 d</td>
<td>2793 c</td>
<td>2547 bcd</td>
<td>2720 c</td>
<td>2700 c</td>
<td>2813 c</td>
<td>2427 b</td>
<td>2353 dc</td>
<td>2598</td>
<td>7</td>
</tr>
<tr>
<td>Basmati - 1.5-16</td>
<td>2807 c</td>
<td>3167 b</td>
<td>2613 bcd</td>
<td>3253 a</td>
<td>2553 d</td>
<td>3233 b</td>
<td>1940 c</td>
<td>2613 cd</td>
<td>2772</td>
<td>6</td>
</tr>
<tr>
<td>Basmati -2.0-11</td>
<td>2080 ef</td>
<td>2660 e</td>
<td>2347 de</td>
<td>2360 d</td>
<td>2080 e</td>
<td>2600 c</td>
<td>2047 c</td>
<td>2280 e</td>
<td>2307</td>
<td>9</td>
</tr>
<tr>
<td>Jajai, 77-P</td>
<td>1060 g</td>
<td>1880 d</td>
<td>1107 f</td>
<td>1240 f</td>
<td>1567 f</td>
<td>2033 d</td>
<td>1160 d</td>
<td>2093 ef</td>
<td>1518</td>
<td>11</td>
</tr>
<tr>
<td>Jajai-15/B</td>
<td>3320 b</td>
<td>3240 b</td>
<td>2653 bc</td>
<td>1927 c</td>
<td>2800 c</td>
<td>3213 b</td>
<td>2573 ab</td>
<td>3220 a</td>
<td>2868</td>
<td>5</td>
</tr>
<tr>
<td>Jajai – 25/A</td>
<td>3980 a</td>
<td>3313 b</td>
<td>2816 a</td>
<td>3013 b</td>
<td>3420 a</td>
<td>3527 a</td>
<td>2613 ab</td>
<td>3307 a</td>
<td>3249</td>
<td>1</td>
</tr>
<tr>
<td>Jajai-30-2</td>
<td>2173 de</td>
<td>2618 c</td>
<td>2120 c</td>
<td>2580 cd</td>
<td>2767 c</td>
<td>3253 b</td>
<td>2100 c</td>
<td>2320 de</td>
<td>2491</td>
<td>8</td>
</tr>
<tr>
<td>S. Basmati (c)</td>
<td>2880 c</td>
<td>3360 b</td>
<td>2373 cde</td>
<td>2747 c</td>
<td>2727 c</td>
<td>3433 a</td>
<td>2480 ab</td>
<td>3240 a</td>
<td>2905</td>
<td>4</td>
</tr>
</tbody>
</table>

Means followed by the same letters are not significantly different from each other at 5% level

National yield trials

The ecological zones where rice is cultivated differ widely in temperature, rainfall and other environmental factors. Such diversified environments demand the extensive testing of newly evolved varieties in all the rice growing zones (Lafitte and Courtois, 2002; Singh and Payasi, 1999; Yang et al., 2001). The multi-environmental National Uniform Yield Trials (NUYT) are a vital link between genetic improvements and the production environments. Candidate lines contributed by rice breeders of the country are tested for their yield, adaptability, disease and insect pest reaction in different rice growing ecologies. The data generated from these trials serves as the basis for recommendations of the Variety Evaluation Committee (VEC) to provincial and national seed councils, regarding the approval and release of new varieties. Jajai 25/A was sent to NUYT to evaluate its yield performance and adaptability testing in different rice growing ecologies of the country. Results revealed that Jajai 25/A produced better yield than all the mutants at all locations. It yielded 54.5% more yield than the check variety at Jamra followed by 42.3%, 38.7% and 18.0% at Bhimber, Larkana and Kala Shah Kaku, respectively. The mean yield over all the sites indicated that the Jajai 25/A has produced a yield of 4372 kg/ha and ranked first among all the contesting candidates and check varieties in the NUYT (Table 4).

Conclusion

The high yielding rice mutant Jajai 25/A with fine grain has been developed from a land race Jajai 77 through gamma rays (250 Gy). It has delivered consistently better
yield as compared to its parent and other promising mutants and the commercial check variety Basmati Super. Thus, mutant Jajai 25/A has potential for release as a new variety for general cultivation. It will significantly contribute towards national agriculture production and improve the socio-economic conditions of the farming community of Pakistan, especially in Sindh.

Table 4. Performance of aromatic candidate rice varieties in National Uniform Rice Yield Trials - 2006

<table>
<thead>
<tr>
<th>Designation</th>
<th>Mingora</th>
<th>Bhimber</th>
<th>Sialkot</th>
<th>Gwl</th>
<th>KSK</th>
<th>Faroqabad</th>
<th>D.I.Khan</th>
<th>Bwp</th>
<th>Osta</th>
<th>M. Dokri Larkana</th>
<th>Jamra</th>
<th>T Jam</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARC-278</td>
<td>X</td>
<td>3045 b</td>
<td>4967 b</td>
<td>6067</td>
<td>3685 abc</td>
<td>3460 abc</td>
<td>5769 ab</td>
<td>1715 bc</td>
<td>3580 f</td>
<td>4522</td>
<td>5944 a</td>
<td>3611 abc</td>
<td>4571 cd</td>
</tr>
<tr>
<td>PARC-279</td>
<td>4427 a</td>
<td>3360 b</td>
<td>3967 ed</td>
<td>5640</td>
<td>3234 abc</td>
<td>3453 abc</td>
<td>5279 abc</td>
<td>1619 bcd</td>
<td>4320 a</td>
<td>5255</td>
<td>5722 a</td>
<td>3066 cde</td>
<td>4011 cde</td>
</tr>
<tr>
<td>PARC-280</td>
<td>X</td>
<td>4075 a</td>
<td>5833 a</td>
<td>4973</td>
<td>3627 abc</td>
<td>3200 c</td>
<td>6366 ab</td>
<td>1593 bcd</td>
<td>4210 ab</td>
<td>4688</td>
<td>4944 b</td>
<td>3111 cde</td>
<td>4112 f</td>
</tr>
<tr>
<td>PARC-281</td>
<td>X</td>
<td>3135 b</td>
<td>4400 ed</td>
<td>4240</td>
<td>3606 bc</td>
<td>3879 c</td>
<td>678 e</td>
<td>3970 ed</td>
<td>5100 a</td>
<td>4757</td>
<td>5922 b</td>
<td>3384 f</td>
<td>4372</td>
</tr>
<tr>
<td>PARC-282</td>
<td>5382 a</td>
<td>3112 b</td>
<td>5033 b</td>
<td>4440</td>
<td>2578 c</td>
<td>4806 bc</td>
<td>2715 a</td>
<td>4074 bc</td>
<td>5178 a</td>
<td>4777</td>
<td>4861 b</td>
<td>3931 de</td>
<td>4114</td>
</tr>
<tr>
<td>PARC-283</td>
<td>X</td>
<td>2911 bc</td>
<td>3900 cd</td>
<td>4067</td>
<td>3677 ab</td>
<td>5278 abc</td>
<td>636 de</td>
<td>3977 cd</td>
<td>5233 a</td>
<td>2044</td>
<td>5208 a</td>
<td>4231 cde</td>
<td>4038</td>
</tr>
<tr>
<td>PARC-284</td>
<td>2191 a</td>
<td>3191 b</td>
<td>5433 ab</td>
<td>4300</td>
<td>3160 bc</td>
<td>2900 c</td>
<td>1619 bcd</td>
<td>4757 a</td>
<td>4210 ab</td>
<td>5028</td>
<td>4320 a</td>
<td>4231 cde</td>
<td>4038</td>
</tr>
<tr>
<td>PARC-285</td>
<td>(Jajai 25/A)</td>
<td>X</td>
<td>3191 b</td>
<td>4123 cd</td>
<td>5080</td>
<td>3667 abc</td>
<td>2973 bc</td>
<td>6594 a</td>
<td>1108 cde</td>
<td>3892 d</td>
<td>5033</td>
<td>5833 a</td>
<td>4144 abc</td>
</tr>
<tr>
<td>PARC-286</td>
<td>X</td>
<td>2203 cd</td>
<td>5883 a</td>
<td>5387</td>
<td>3873 a</td>
<td>4073 ab</td>
<td>5740 ab</td>
<td>1481 cde</td>
<td>4147 bc</td>
<td>5199</td>
<td>3244 bc</td>
<td>3877 de</td>
<td>4946 ab</td>
</tr>
<tr>
<td>PARC-287</td>
<td>4422 a</td>
<td>2735 bcd</td>
<td>4117 cd</td>
<td>3473</td>
<td>3694 abc</td>
<td>4193 a</td>
<td>5878 ab</td>
<td>1278 cde</td>
<td>4106 bc</td>
<td>4666</td>
<td>5472 a</td>
<td>3700 abde</td>
<td>3880 e</td>
</tr>
<tr>
<td>PARC-288</td>
<td>4338 a</td>
<td>2121 d</td>
<td>3683 d</td>
<td>4327</td>
<td>2227 e</td>
<td>4360 a</td>
<td>5268 abc</td>
<td>1593 bcd</td>
<td>3570 f</td>
<td>4674</td>
<td>4122 b</td>
<td>4011 abcd</td>
<td>3819 de</td>
</tr>
<tr>
<td>PARC-289</td>
<td>4145 a</td>
<td>2801 bcd</td>
<td>4307 cd</td>
<td>3140</td>
<td>2554 de</td>
<td>3013 bc</td>
<td>5989 ab</td>
<td>1696 bcd</td>
<td>3320 g</td>
<td>4400</td>
<td>5694 a</td>
<td>2833 cde</td>
<td>4822 b</td>
</tr>
<tr>
<td>PARC-290 S. Basmati</td>
<td>X</td>
<td>2243 cd</td>
<td>5817 a</td>
<td>4887</td>
<td>3107 cd</td>
<td>2880 c</td>
<td>6418 ab</td>
<td>1874 bc</td>
<td>4220 ab</td>
<td>5022</td>
<td>5666 a</td>
<td>2988 de</td>
<td>3819 de</td>
</tr>
</tbody>
</table>

Figures followed by the same letters are not significantly different at 5% level by DMR test.
X = Not matured

References

Mutant Varieties

Binachinabadam-4: A High Yielding Mutant Variety of Groundnut with Medium Pod Size

M.A.K. Azad, M.A. Hamid* and F. Yasmine

*Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh Agricultural University Campus, Mymensingh-2202, Bangladesh

*E-mail: makazad_bina@yahoo.com

Abstract

With a view to develop a high yielding variety of groundnut with medium sized pod and kernel, 1000 seeds of the local popular cultivar Dacca-1 with smaller pod size were irradiated with 200 Gy gamma rays in 1997. At maturity, all M₁ plants were harvested and pods were kept separately. During M₂–M₄ generations, selection was conducted following high mean and high/low variances compared to the check Dacca-1. Fourteen true breeding lines were selected in a preliminary yield trial at M₁ generation, based on pod size and yield performance. Based on the same criteria, in an advance yield trial, only 8 mutant families were further selected. From zonal yield trials, 3 top yielding mutant lines were selected. Of these three mutant lines, D₂/20/3M-30 produced the highest average yield with pod size significantly bigger than the parent variety but smaller than Binachinabadam-2, a variety with bold pod size, found in both, farmer’s field and on-station trials. D₂/20/3M-30 has been registered as Binachinabadam-4 for commercial cultivation in 2008.

Keywords: groundnut; Binachinabadam-4; mutant variety; Gamma ray irradiation; yield trial

Introduction

Groundnut (*Arachis hypogaea* L.) is the second most important oil seed crop in Bangladesh following mustard/rapeseed, with an annual production of 130,000 metric tons (AIS, 2009). Its seeds contain 45-56% high quality edible oil, 25-30% proteins (Savage et al., 1994) and 20% carbohydrate together with vitamins E and B. A pound of peanuts provides food energy that is equivalent to 2 pounds of beef, 9 pints of milk or 36 medium sized eggs (Woodroof, 1983). Being a multipurpose crop, it can help alleviate vegetable oil and protein shortages in the country. Apart from its use as manure, its oil cake is excellent cattle feed. Groundnut can also fix atmosphere N₂ @ 80-160 kg/ha through its root nodule bacteria and helps to maintain sustainable crop production and friendly environment (Lee, 1998). Recently, it was discovered that its oil is free from cholesterol. Groundnut varieties with bold sized pod and kernel take longer periods to mature, need consequently more seeds per unit area and have lower shelf out percentage than the smaller one. Thus, this study was initiated to develop high yielding varieties of groundnut with medium sized pod. Genetic improvement of any yield attributes, both qualitative and quantitative in nature, has been successful through this technique (Shaikh, 1991; Mia et al., 1996; Begum et al., 1997; Das et al., 1995; Shamsuzzaman et al., 1998; Hamid et al., 2006). The present efforts of mutation application on groundnut were therefore undertaken with a view to developing high yielding groundnut variety with medium sized pods.

Materials and methods

One thousand seeds of a local popular cultivar Dacca-1 were irradiated with 200 Gy gamma rays. Treated seeds of Dacca-1 were immediately sown at BINA farm, Mymensingh, in November 1997. At maturity, M₁ plants were harvested and dry pods were kept separately for growing M₂ population. M₂ progenies were evaluated following augmented design. In this generation, ten plants with competitive yields from each and every M₂ progenies, including the check varieties, were recorded. Sixty-two progenies that produced significantly higher numbers of pods and pod yield than the checks were selected. The exact same procedure of selection was practiced in M₃ generation. A preliminary yield trial was carried out with 24 M₃ true breeding mutant families, of which 14 were selected. These true breeding M₄ mutant families were then put into advanced yield trials in 2002-2003 at BINA farm, Mymensingh, and BINA sub-station farm, Ishurdi, Pabna. Based on yield performance and earliness, 8 top yielding mutant families were further selected for zonal yield trials the following year. From the zonal trials, three top yielding mutant lines were selected for on-station and on-farm trials. In all following yield trials, spacing, fertilizer doses, cultural and intercultural operations, and data collection methods were the same. Spacing between plants and rows were 15cm and 30cm, respectively. Fertilizers were applied following the Fertilizer Recommendation Guide (BARC, 2005) during final land preparation. Recommended cultural and intercultural operations were also followed. Data on plant height, number of primary branch and pod, pod yield per plant and 100-pod weight were gathered after harvested from 10 randomly selected competitive plants.

Preliminary yield trial

This experiment was carried out with 23 M₅ mutant families and their parent Dacca-1 at BINA headquarters farm, Mymensingh, and Ishurdi sub-station farm, during 2001-2002, following RCB design with three replications. A unit plot size was 2m × 1m. Pod yield was recorded from
an area of 1.26 m² from each of the plots and weighed after being properly sun dried. It was then converted to pod yield per hectare. Finally, all the recorded data underwent proper statistical analysis and are presented in Table 1.

Advanced yield trial

This experiment was carried out with 12 M₆ mutants and 2 check varieties at BINA headquarters and Ishurdi sub-

station farms during 2002-2003, following RCB design with 3 replications, and set on 28 and 21 November 2002, respectively. A unit plot comprised 11 rows of 1.8 m length and was separated from each other by 50 cm. Pod yield was recorded from an area of 1 m² from each of the plots and weighed after being properly sun dried. Then it was converted to pod yield per hectare. Finally, all the recorded data underwent proper statistical analysis and is presented in Table 2.

Table 1. Means of pod yield attributes of 23 M₆ mutants of groundnut

<table>
<thead>
<tr>
<th>Mutants/check</th>
<th>Plant height (cm)</th>
<th>Primary branch/plant (no.)</th>
<th>Pod/plant (no.)</th>
<th>Pod weight/plant (g)</th>
<th>100-pod weight (g)</th>
<th>Pod yield/ha (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁/20/3M-5</td>
<td>34.10</td>
<td>6.90</td>
<td>30.53</td>
<td>22.12</td>
<td>72.74</td>
<td>2657</td>
</tr>
<tr>
<td>D₁/20/3M-8</td>
<td>37.13</td>
<td>6.03</td>
<td>31.00</td>
<td>28.07</td>
<td>90.81</td>
<td>3210</td>
</tr>
<tr>
<td>D₁/20/3M-9</td>
<td>42.73</td>
<td>5.93</td>
<td>29.04</td>
<td>19.07</td>
<td>65.89</td>
<td>2322</td>
</tr>
<tr>
<td>D₁/20/3M-13</td>
<td>38.27</td>
<td>6.50</td>
<td>28.33</td>
<td>19.05</td>
<td>67.25</td>
<td>2284</td>
</tr>
<tr>
<td>D₁/20/3M-17</td>
<td>37.70</td>
<td>5.80</td>
<td>32.60</td>
<td>20.40</td>
<td>62.63</td>
<td>2532</td>
</tr>
<tr>
<td>D₁/20/3M-22</td>
<td>38.80</td>
<td>6.77</td>
<td>37.70</td>
<td>23.36</td>
<td>62.18</td>
<td>2753</td>
</tr>
<tr>
<td>D₁/20/3M-24</td>
<td>32.87</td>
<td>5.73</td>
<td>32.70</td>
<td>22.55</td>
<td>68.96</td>
<td>2871</td>
</tr>
<tr>
<td>D₁/20/3M-30</td>
<td>37.03</td>
<td>6.57</td>
<td>39.10</td>
<td>28.18</td>
<td>72.08</td>
<td>3335</td>
</tr>
<tr>
<td>D₁/20/3M-31</td>
<td>40.63</td>
<td>5.93</td>
<td>32.30</td>
<td>21.89</td>
<td>67.79</td>
<td>2455</td>
</tr>
<tr>
<td>D₁/20/3M-33</td>
<td>38.60</td>
<td>6.33</td>
<td>35.47</td>
<td>22.21</td>
<td>62.64</td>
<td>2815</td>
</tr>
<tr>
<td>D₁/20/4M-37</td>
<td>36.63</td>
<td>6.17</td>
<td>31.53</td>
<td>19.44</td>
<td>61.68</td>
<td>2458</td>
</tr>
<tr>
<td>D₁/20/3M-38</td>
<td>39.20</td>
<td>6.27</td>
<td>30.47</td>
<td>21.16</td>
<td>69.55</td>
<td>2944</td>
</tr>
<tr>
<td>D₁/20/3M-43</td>
<td>39.17</td>
<td>6.23</td>
<td>30.80</td>
<td>24.55</td>
<td>79.71</td>
<td>2871</td>
</tr>
<tr>
<td>D₁/20/4M-9(1)</td>
<td>38.73</td>
<td>5.60</td>
<td>32.63</td>
<td>18.56</td>
<td>56.99</td>
<td>2288</td>
</tr>
<tr>
<td>D₁/20/4M-7(1)</td>
<td>36.70</td>
<td>5.73</td>
<td>28.93</td>
<td>18.08</td>
<td>62.53</td>
<td>1995</td>
</tr>
<tr>
<td>D₁/20/4M-37(2)</td>
<td>35.80</td>
<td>5.90</td>
<td>32.30</td>
<td>18.09</td>
<td>55.95</td>
<td>2249</td>
</tr>
<tr>
<td>D₁/20/4M-116(1)</td>
<td>35.67</td>
<td>5.80</td>
<td>29.13</td>
<td>19.41</td>
<td>66.61</td>
<td>2136</td>
</tr>
<tr>
<td>D₁/20/4M-132(1)</td>
<td>29.53</td>
<td>5.10</td>
<td>26.33</td>
<td>18.45</td>
<td>70.11</td>
<td>2067</td>
</tr>
<tr>
<td>D₁/20/4M-315(1)</td>
<td>33.87</td>
<td>5.30</td>
<td>27.17</td>
<td>18.88</td>
<td>69.30</td>
<td>2196</td>
</tr>
<tr>
<td>D₁/20/4M-35(1)</td>
<td>36.93</td>
<td>5.70</td>
<td>35.70</td>
<td>21.06</td>
<td>59.13</td>
<td>2025</td>
</tr>
<tr>
<td>D₁/20/4M-41</td>
<td>36.17</td>
<td>5.57</td>
<td>28.17</td>
<td>21.28</td>
<td>75.60</td>
<td>2567</td>
</tr>
<tr>
<td>D₁/20/4M-116</td>
<td>37.33</td>
<td>6.23</td>
<td>26.63</td>
<td>18.94</td>
<td>71.04</td>
<td>2664</td>
</tr>
<tr>
<td>D₁/20/4M-117</td>
<td>37.57</td>
<td>6.07</td>
<td>33.90</td>
<td>20.37</td>
<td>60.13</td>
<td>2013</td>
</tr>
<tr>
<td>Dacca-1(Check)</td>
<td>38.40</td>
<td>6.50</td>
<td>30.07</td>
<td>18.85</td>
<td>62.68</td>
<td>2003</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>4.50</td>
<td>NS</td>
<td>2.22</td>
<td>2.48</td>
<td>9.06</td>
<td>182</td>
</tr>
</tbody>
</table>
Table 2. Means of pod yield and yield attributes of 14 M₆ mutants of groundnut

<table>
<thead>
<tr>
<th>Mutants/check</th>
<th>Plant height (cm)</th>
<th>Primary branches/plant (no.)</th>
<th>Pods/plant (no.)</th>
<th>Pod weight/plant (g)</th>
<th>100-pod weight (g)</th>
<th>Pod yield/ha (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁/20/3M-8</td>
<td>44.5</td>
<td>4.5</td>
<td>13.6</td>
<td>8.1</td>
<td>69.5</td>
<td>1749</td>
</tr>
<tr>
<td>D₁/20/3M-13</td>
<td>42.6</td>
<td>4.8</td>
<td>15.9</td>
<td>9.1</td>
<td>67.1</td>
<td>1948</td>
</tr>
<tr>
<td>D₁/20/3M-22</td>
<td>43.9</td>
<td>4.5</td>
<td>16.6</td>
<td>9.1</td>
<td>62.0</td>
<td>1496</td>
</tr>
<tr>
<td>D₁/20/3M-24</td>
<td>40.7</td>
<td>4.8</td>
<td>16.7</td>
<td>9.7</td>
<td>61.3</td>
<td>1820</td>
</tr>
<tr>
<td>D₁/20/3M-30</td>
<td>41.2</td>
<td>4.9</td>
<td>17.4</td>
<td>10.3</td>
<td>60.6</td>
<td>1962</td>
</tr>
<tr>
<td>D₁/20/3M-31</td>
<td>45.4</td>
<td>4.8</td>
<td>16.4</td>
<td>9.5</td>
<td>62.0</td>
<td>1629</td>
</tr>
<tr>
<td>D₁/20/3M-33</td>
<td>42.6</td>
<td>4.8</td>
<td>19.4</td>
<td>11.1</td>
<td>63.0</td>
<td>2089</td>
</tr>
<tr>
<td>D₁/20/3M-38</td>
<td>43.8</td>
<td>4.8</td>
<td>18.9</td>
<td>10.7</td>
<td>62.1</td>
<td>2133</td>
</tr>
<tr>
<td>D₁/20/3M-43</td>
<td>43.4</td>
<td>4.9</td>
<td>15.9</td>
<td>9.4</td>
<td>68.5</td>
<td>1976</td>
</tr>
<tr>
<td>D₁/20/4M-9(1)</td>
<td>44.5</td>
<td>4.6</td>
<td>19.4</td>
<td>11.8</td>
<td>66.1</td>
<td>2182</td>
</tr>
<tr>
<td>D₁/20/4M-41</td>
<td>46.6</td>
<td>4.8</td>
<td>17.2</td>
<td>10.5</td>
<td>57.3</td>
<td>1787</td>
</tr>
<tr>
<td>D₁/20/4M-116</td>
<td>43.8</td>
<td>4.7</td>
<td>17.1</td>
<td>10.1</td>
<td>61.5</td>
<td>2034</td>
</tr>
<tr>
<td>Binachinabadam-2 (Check)</td>
<td>30.8</td>
<td>4.7</td>
<td>14.8</td>
<td>9.5</td>
<td>73.1</td>
<td>2013</td>
</tr>
<tr>
<td>Dacca-1 (Check)</td>
<td>46.1</td>
<td>4.6</td>
<td>15.8</td>
<td>10.0</td>
<td>62.1</td>
<td>1695</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>4.0</td>
<td>NS</td>
<td>4.1</td>
<td>2.5</td>
<td>6.8</td>
<td>479.4</td>
</tr>
</tbody>
</table>

Zonal yield trial

This experiment was carried out with eight M₇ mutant lines and two check varieties at three locations for selecting high yielding, disease/insect-pest resistant/tolerant mutants. Unit plot sizes of 4.0m × 3.0m were used in each location. Seeds were sown on 17 and 24 December 2003 and 1 January 2004 at BINA farm, Mymensingh, Ishurdi and Magura, respectively. Pod yield was recorded from an area of 5m² from each plot after being properly sun dried and finally converted to yield per hectare. All the recorded data underwent proper statistical analysis and is presented in Table 3.

Table 3. Means of pod yield and yield attributes of 14 M₆ mutants of groundnut

<table>
<thead>
<tr>
<th>Mutants/check</th>
<th>Plant height (cm)</th>
<th>Primary branches/plant (no.)</th>
<th>Pods/plant (no.)</th>
<th>Pod weight/plant (g)</th>
<th>100-pod weight (g)</th>
<th>Pod yield/ha (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁/20/4M-41</td>
<td>61.08</td>
<td>4.35</td>
<td>23.15</td>
<td>16.27</td>
<td>70.83</td>
<td>2394</td>
</tr>
<tr>
<td>D₁/20/3M-38</td>
<td>60.82</td>
<td>4.05</td>
<td>19.17</td>
<td>13.55</td>
<td>70.29</td>
<td>2163</td>
</tr>
<tr>
<td>D₁/20/3M-33</td>
<td>58.37</td>
<td>4.37</td>
<td>22.57</td>
<td>14.92</td>
<td>65.49</td>
<td>2459</td>
</tr>
<tr>
<td>D₁/20/4M-116</td>
<td>62.82</td>
<td>4.47</td>
<td>20.52</td>
<td>15.25</td>
<td>76.67</td>
<td>2512</td>
</tr>
<tr>
<td>D₁/20/3M-43</td>
<td>61.10</td>
<td>4.60</td>
<td>25.85</td>
<td>18.16</td>
<td>70.53</td>
<td>3159</td>
</tr>
<tr>
<td>D₁/20/3M-30</td>
<td>57.98</td>
<td>4.22</td>
<td>24.83</td>
<td>16.77</td>
<td>66.88</td>
<td>2088</td>
</tr>
<tr>
<td>D₁/20/3M-13</td>
<td>61.72</td>
<td>4.62</td>
<td>22.83</td>
<td>17.46</td>
<td>75.40</td>
<td>2059</td>
</tr>
<tr>
<td>D₁/15/62-30</td>
<td>67.22</td>
<td>4.40</td>
<td>24.53</td>
<td>15.90</td>
<td>64.25</td>
<td>2405</td>
</tr>
<tr>
<td>Dacca-1</td>
<td>59.13</td>
<td>4.40</td>
<td>23.32</td>
<td>16.66</td>
<td>71.26</td>
<td>2398</td>
</tr>
<tr>
<td>Binachinabadam-2 (Check)</td>
<td>39.70</td>
<td>4.58</td>
<td>16.80</td>
<td>13.29</td>
<td>79.48</td>
<td>2808</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>5.47</td>
<td>NS</td>
<td>2.24</td>
<td>1.29</td>
<td>6.70</td>
<td>216</td>
</tr>
</tbody>
</table>

Plant Mutation Reports, Vol. 2, No. 2, June 2010
On-station and farmer’s field trial with M₈ mutants of groundnut

This experiment was performed with two M₈ mutant lines and an earlier developed mutant, D₁/15/62-30 at four locations. The cultivar, Dacca-1, and Binachinabadam-2 were also included in this experiment as check varieties. The on-station trials were set at BINA headquarters farm, Mymensingh, and at BINA substation farm, Ishurdi, on 23 November and 11 December 2004, respectively. Apart from these, two Farmer’s Field Trials were set at Haybatpur, Natore and Boda, Panchagar, on 31 January and 12 February 2005, respectively. All the trials followed RCB designs with three replications. A unit plot size was 5.0 m × 4.0 m. Pod yield was recorded from an area of 6 m² from each plot of each location after proper sun drying and finally converted to yield per hectare. All the recorded data underwent proper statistical analysis and is presented in Table 4.

Table 4. Means of yield and yield attributes of M₈ groundnut mutants, averaged over all the locations

<table>
<thead>
<tr>
<th>Mutants/ Checks</th>
<th>Plant height (cm)</th>
<th>Primary branch/ plant (no.)</th>
<th>Pod/ Plant (no.)</th>
<th>Pod yield/ plant (g)</th>
<th>100-pod weight (g)</th>
<th>Yield (kg/ha)</th>
<th>Mymensingh</th>
<th>Ishurdi</th>
<th>Natore</th>
<th>Boda</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁/20/3M-43</td>
<td>48.78</td>
<td>3.94</td>
<td>14.9/3</td>
<td>10.66</td>
<td>71.78</td>
<td>1495</td>
<td>1499</td>
<td>2352</td>
<td>1623</td>
<td></td>
</tr>
<tr>
<td>D₁/20/3M-30</td>
<td>45.56</td>
<td>4.05</td>
<td>18.2/5</td>
<td>13.38</td>
<td>72.47</td>
<td>1055</td>
<td>2134</td>
<td>2528</td>
<td>2745</td>
<td></td>
</tr>
<tr>
<td>D₁/15/62-30</td>
<td>47.44</td>
<td>4.05</td>
<td>18.0/5</td>
<td>12.37</td>
<td>67.92</td>
<td>1538</td>
<td>1617</td>
<td>2410</td>
<td>2166</td>
<td></td>
</tr>
<tr>
<td>Dacca-1</td>
<td>45.42</td>
<td>4.13</td>
<td>15.3/3</td>
<td>9.65</td>
<td>62.43</td>
<td>1936</td>
<td>1411</td>
<td>1940</td>
<td>1822</td>
<td></td>
</tr>
<tr>
<td>Binachinabadam-2</td>
<td>32.21</td>
<td>3.91</td>
<td>13.5/4</td>
<td>10.28</td>
<td>76.84</td>
<td>1435</td>
<td>1587</td>
<td>2352</td>
<td>1940</td>
<td></td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>2.96</td>
<td>Non-significant</td>
<td>1.50</td>
<td>0.80</td>
<td>8.02</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results and discussion

Performance in preliminary yield trial

Three mutants D₁/20/3M-24, D₁/20/4M-132(1) and D₁/20/4M-315(1) had significantly shorter plant height than the parent variety Dacca-1. This means that it is possible to generate a dwarf mutant of groundnut by treating its seeds with 200Gy gamma rays. This result is in conformity with that of Hamid et al., (2006), who also developed two dwarf varieties of groundnut by irradiating the seeds of a tall mutant of groundnut with 200 Gy doses of gamma ray. It appears that the number of primary branches/plant did not differ significantly from that of its parent in preliminary, advance, zonal and even in the on-farm and on-station trials (Tables 1, 2 and 3). This means that the primary branch number is the most non-mutated trait to gamma rays, while pod number and pod yield/plant, pod size and pod yield/ha were the most mutated traits, particularly in the preliminary yield trial, although this higher rate of mutation did not appear in the later generations (Tables 1, 2 and 3).

Finally, twelve mutant families, including one dwarf mutant D₁/20/3M-24 that produced significantly higher pod yield than the check Dacca-1, were selected for advanced yield trial in the following year.

Performance in advanced yield trial

Two mutant lines, D₁/20/3M-24 and D₁/20/3M-30, had significantly shorter height than their parent Dacca-1 in this trial, although the latter had significantly taller height in M₈ and later generations (Tables 1 and 3). This means that with change of location the mutant D₁/20/3M-30 had no consistency in height. None of the 12 mutants had significantly higher numbers of branches, pods or higher pod yield/plant than the parent, except mutant D₁/20/3M-8, which had significantly higher pod size, expressed here as 100-pod weight (Table 2). 10 mutant families had produced considerably higher yield/ha than the parent, including D₁/20/4M-41. Only this mutant had produced significantly higher yield/ha. Seven mutant families were selected for the zonal yield trial in the following year. These were: D₁/20/4M-41, D₁/20/3M-38, D₁/20/3M-33, D₁/20/4M-116, D₁/20/3M-43, D₁/20/3M-30, and D₁/20/3M-13.

Performance in zonal yield trial

The mutant D₁/20/3M-43 had produced the highest yield, followed by D₁/15/62-30 and D₁/20/3M-30, sharing equal rank among them. Dacca-1 had a statistically similar rank to most of the mutants, except Binachinabadam-2 and D₁/20/3M-38. The mutant D₁/20/3M-38 produced the lowest yield of all the mutants and checks.
At Mymensingh, the mutant D_i/20/3M-43 had produced the highest pod yield/ha followed by Binachinabadam-2 and D_i/20/3M-33. However, at Ishurdi, the mutant D_i/20/3M-30 had produced the highest yield, followed by D_i/15/62-30.

Performance in on-station and farmer’s field trial

This experiment was performed with two M₈ mutant lines and an earlier developed mutant, D_i/15/62-30, at four locations. The cultivar, Dacca-1, and Binachinabadam-2 were also included in this experiment as check varieties. The on-station trials were set at BINA headquarters farm, Mymensingh, and at BINA substation farm, Ishurdi, on 23 November and 11 December 2004, respectively. Apart from these, two farmer’s field trials were set at Haybatpur, Natore, and Boda, Panchagar, on 31 January and 12 February 2005, respectively. All the trials followed RCB designs with three replications. A unit plot size was 5.0 m <times> 4.0 m. Pod yield was recorded from an area of 6 m² from each plot of each location after being properly sun dried and finally converted to yield per hectare. All the recorded data underwent proper statistical analysis and are presented in Table 4.

Mean yield over all locations was the highest in D_i/20/3M-30, not significantly different from D_i/15/62-30. Moreover, this mutant line had significantly bigger pod size than its parent Dacca-1, but smaller than Binachinabadam-2, a variety with bold size pods. The check variety, Dacca-1, had produced the lowest yield. Locations, means of yield and yield attributes are presented in Table 6. The mutant lines/check varieties had shown different responses at different locations for pod number, pod yield/plant and yield/ha. The mutant D_i/20/3M-30 showed the highest scores for all these three traits at all the locations except in Mymensingh.

Registration of new variety

The National Seed Board of Bangladesh has registered D_i/20/3M-30 as Binachinabadam-4 for commercial cultivation by the farmers of Bangladesh in 2008.

References

Short Communication

Gamma Phytotron: A New Chronic Gamma Irradiation Facility

Si-Yong Kang*, Jin-Baek Kim, Geung-Joo Lee, Dong Sub Kim
Radiation Research Center for Bio-technology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, Jeongeup, Jeonbuk, 580-185, Republic of Korea
*E-mail: sykang@kaeri.re.kr

Genetic improvement by chronic irradiation is another important option of mutation breeding technique, especially when a wide array of mutants and minimal growth arrest are needed. Therefore, a chronic irradiation of living plant materials has been favored to induce useful mutants in mutation breeding. Unfortunately, these kinds of facilities are scarce and only a few Asian countries including Japan, Malaysia, and Thailand have operational chronic irradiation facilities such as gamma field, gamma greenhouse, and gamma phytotron, respectively. There are still many factors to consider when operating these types of facilities such as security and management issues. For this purpose, we constructed a new gamma phytotron (Fig. 1) in the Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, Rep. of Korea.

Figure 1. The front view of the gamma phytotron

The gamma phytotron in ARTI can be occupied with living pot plants or cultured callus during long periods of chronic irradiation at lower doses (Fig. 2). The ionizing source is 60Co with the radioactivity strength of about 400 curies. The facility consists of an irradiation room, a non-irradiation room, a glasshouse for acclimation, an operating room, and an office. The total area of the irradiation room is about 104.16m^2. The target plant materials for a gamma ray irradiation can be arranged from 2m (612.9 mGy/h) to 7m (60.1 mGy/h) from the 60Co source at present. For safety reasons, the building, where the 60Co source is located, is surrounded by concrete walls with 1.2m depth and a twofold lead shielded door between the control room and the irradiation room. Moreover, the irradiation room is equipped with two CCD camera systems, which enable an inner situation check of the control room. The irradiation room and non-irradiation control room have automatic control systems for various ranges of temperature (15–35°C), humidity (50–80%) and light condition (maximum 30,000lux), which can be finely set up according to the growth conditions of targeted plants (Fig. 3). The difference of mutagenic effects of the acute and chronic irradiation can be compared using the same treatment dose. To date, we have finished the chronic irradiation of Arabidopsis, rice, tobacco and many ornamental plants to examine the biological effect. Also, microarray experiments were designed to compare expression shift of target genes responding to the acute and chronic irradiation in Arabidopsis and rice. It is expected that the heavy applications of the chronic gamma phytotron in ARTI will be extended to other crops and plants, which are eventually provided to domestic and global communities for mutation breeding and fundamental research.

Figure 2. The inner part of irradiation room in gamma phytotron. Light source can be controlled up and down for the optimum light intensity.
Figure 3. The simplified design of the gamma ray source and manipulation apparatus
Short Communication

Malaysian Nuclear Agency Gamma Greenhouse

R. Ibrahim
Malaysian Nuclear Agency, Bangi, 43000 Kajang, Malaysia
E-mail: rusli_ibrahim@nuclearmalaysia.gov.my

Description of the facility

The irradiation facility is located in a slope valley and is surrounded by areas classified as alert zone, safe zone and clear zone (Fig. 1a, b). The facility comprises of an open topped irradiation area 30 meters in diameter (Fig. 1c). The central portion is covered with a translucent polycarbonate roof with no biological shielding effect. The irradiator is centrally located and is fitted with a sky shine hood directly above the exposed source. The sky shine hood incorporates a water deluge system, which may be connected to the fire detection system. The 30-meter diameter irradiation area is protected by a partial concrete wall with an entry maze and the site topography. This irradiation area is protected by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe storage position if any safety device is compromised.

Figure 1. Malaysian nuclear agency gamma greenhouse a) Schematic view of the facility with different safety levels, b) birds view of the facility and surrounding area, c) a full view of the gamma greenhouse.
The irradiator utilizes lead encased in steel for the biological shield when in the safe storage position. The steel jacket is designed to maintain the integrity of the lead in the event of a severe fire. The main irradiation area is further protected by a 300-metre diameter exclusion zone, which is also protected by the safety interlock circuit. The source is only exposed when the entire 300-meter diameter site is free from personnel. The irradiation source is double-encapsulated 800 Ci RSL6050 Caesium-137 Source Pencil. The entry exit maze is fitted with an override system, which allows a person trapped within the maze to open the gate. This action automatically breaks the safety interlock circuit causing the source to automatically return to the safe storage position. The facility also incorporates an emergency refuge area close to the normal entry exit gate at the 15-meter diameter point. This provides a safe area for any person trapped in the facility.

Description and assessment of dose rate

Dose rate assessments have been carried out around the shielding wall and above the sky shine shield. Dose rates have also been calculated at the nearest access point to the source in the exposed position, which is at the fence situated 150 meters from the source. The design of the irradiation facility, known as PPS/Cs800/021 is shown in the Fig. 1. The design is an open topped facility with the irradiator positioned centrally. The nearest access point, when the source is in exposed position, is 150 meters from the source. Dose assessments are carried out for three positions: 1) on the outer face of the concrete biological shield, 2) immediately above the sky shine hood, and 3) at the 150-metre point, which is the closest access point when the source is in the exposed position. The dose assessment is calculated at 2 meters above ground level. The biological shield was designed to ensure the safety of personnel at the 150-meter barrier fence. The design will ensure the radiation dose level at the 150-meter fence and in all areas that are normally occupied during operation that this panoramic irradiator will not exceed 0.02 millisievert (2 millirems) per hour.

Calculation 1: Dose rate on the outside face of the concrete biological shield has been calculated to <0.011734 micro-sieverts per hour.

Calculation 2: Dose rate immediately above the sky shine hood been calculated to be <0.004813 micro-sieverts per hour.

Calculation 3: Dose rate at the 150-meter diameter fence has been calculated to be <0.000718 micro-sieverts per hour.

Main function and applications

Function of the facility

The facility can be utilized 1) to conduct research activities in mutation techniques using chronic irradiation for crop improvement, especially in producing new mutant varieties with desired characters such as high yield, resistance to abiotic and biotic stress, and improved quality traits, which are highly potential to be commercialized; 2) to establish a centre for the collection and storage of database of radiation response of the tropical and subtropical crops, with special references to fruit trees, ornamentals, vegetables, landscaping plants, herbal and medicinal plants, forest trees, mushrooms and also microorganisms such as bacteria and fungi; 3) to be the Training Center for Nuclear Technology in Agriculture in Malaysia to enable plant breeders and scientists to understand radiation technology and mutation techniques and to be able to apply these techniques successfully in their plant breeding programs; 4) to establish Nuclear Malaysia as a ‘One-Stop Irradiation Centre’ for providing gamma irradiation services to plant breeders and scientists in Malaysia as well as in the ASEAN Region.

The ultimate goals of the Center are to transfer the technology, disseminate useful information and release beneficial new mutant plant varieties for the farmers and end-users.

Practical Application

In order to achieve high rate of mutations, it is proposed that agriculture samples be exposed to chronic gamma irradiation for 20h/day. For this facility, irradiation exposure will start from 12.00 pm until 08.00 am the following day. The source will be shut off for 4 hours (from 08.00 am to 12.00 pm) for sample preparation before irradiation and maintenance work. This irradiation facility will be used for chronic irradiation of a wide variety of agricultural and biological samples such as seeds, cuttings, pot plants, tissue culture materials and also other samples such as bacteria and fungi. In such cases, samples will be exposed to low dose gamma radiation over long periods of time (hours, weeks, months or even years), depending on the nature and sensitivity of the samples. Exposures that are continued over long periods of time (usually weeks, months or years) are referred to as chronic. Exposures delivered in minutes or a few hours are referred to as acute.
Radiation sensitivity of plants towards chronic gamma irradiation

Crop species are listed according from the least sensitive to the most sensitive:

- Grass family: such as rice, corns, etc (placed close to the source)
- Broad-leaf ornamental plants
- Broad-leaf tree plants
- Forest species (placed furthest from the source)

Crop plants with big genome are the most sensitive and plants with small chromosomes are less sensitive towards gamma irradiation. Example, Lily plant (ornamental) has big genome, therefore most sensitive and Chrysanthemums are considered as moderately sensitive. In addition, plants with high ploidy level have high tolerance towards irradiation. Types of tissue culture materials to be irradiated usually depend on the types of characteristics to be improved. For example, if the colour of the flower is to be changed, then flower parts (petals) should be tissue cultured and irradiated and the same principle applies to leaves.
Short Communication

Gamma Radiation Facilities at the Institute of Radiation Breeding

H. Nakagawa
Institute of Radiation Breeding, National Institute of Agrobiological Sciences, P.O. Box 3, Kami-Murata, Hitachi-Ohmiya, Ibaraki 319-2293, Japan
E-mail: ngene@affrc.go.jp

Introduction

It was estimated that more than 20 gamma fields had been established all over the world including the Brookhaven National Laboratory, the largest one in the USA (Kawara, 1969). In Japan in 1959, the construction of gamma field was launched and the Committee for the Establishment of the Institute of Radiation Breeding was put together to discuss the building location site, structure and the irradiation source, etc. The committee members consisted of university professors, researchers from the National Institute of Agricultural Science, Riken and the National Institute of Genetics. The committee also included researchers from the Architecture Research Institute and the Japan Physico-Chemistry Institute, who considered the structure’s safety against strong earthquakes estimating the amount of scattered radiation of the Gamma Field by conducting field experiments. As a result, Japan’s Gamma Field structure, irradiation mechanism, shape of the source, is different from those of the other countries with respect to the changes of exposure rates and energy of gamma irradiation (Kawara, 1969).

The Institute of Radiation Breeding (IRB) has been engaged in the development of new crop strains through mutation induction, and has been conducting research into more efficient methods for inducing mutation. While working on contribution towards breeding of new varieties of various seed-propagated, vegetatively propagated and woody crops, the IRB is also involved in the development of mutant resources for genomic analysis and new technologies for plant breeding, including the elucidation of gene expression mechanisms in mutants. The IRB provides irradiation services and cooperative research at the request of universities, private industries, prefectural experiment stations, and incorporated agencies of the Ministry of Agriculture, Forestry and Fisheries in Japan.

Irradiation facilities

The following radiation sources exist in the IRB: Gamma Field and Gamma Greenhouse for chronic irradiation for growing plants, and Gamma Room for acute irradiation.

Gamma field

It is now the world’s largest radiation field for plant breeding (Fig. 1): 100 m radius (31,400 m²) with 88.8 TBq 60Co source at the center and surrounded by a shield-

Figure 1. The gamma field in the Radiation Breeding Institute, Japan. A) The location of the gamma field B) Irradiation tower of the gamma field C) Its shielded box of 60Co
Since 1962, the ^{60}Co source has been renewed every 2 years. At the outset of the operation, a daily irradiation of 20 hours (from 12 a.m. to 8 a.m. of the following day) was conducted. Currently, the daily irradiation time has been reduced to 8 hours (from 12 a.m. to 8 p.m.). Furthermore and as a result of the recommendation of the International Commission on Radiological Protection (ICRP), which was made in 2001, restricted areas have been extended. Now, the irradiation dose of the gamma ray at the nearest point of the field (10m from the ^{60}Co source) is about 2 Gy/day, which is almost 300,000 times to the natural condition. This means the total dose for 1 000 years under natural condition is applied to the plants in one day. And the furthest point (100 m from the center) is approximately 2 000 times to the natural condition.

Gamma room

The Gamma Room, a square room of 54 m2 (6m x 9m), is located in a shielded building with a 44.4 TBq ^{60}Co source (Fig. 2). It was constructed in 1966 and used for acute irradiation of seeds, bulbs, tubers scions, small plants and *in vitro* materials. As it is a shielded building, one can walk around the building during irradiation. Its ^{60}Co source has been renewed every 4-years.

Gamma greenhouse

The Gamma Greenhouse is an octagonal greenhouse (150 m2) of 7 m radius with a 4.81 TBq ^{137}Cs source (Fig. 3). It was constructed in 1964 and has been used for the chronic irradiation of tropical and subtropical crops, such as sugarcane, pineapple and banana etc., throughout the year as the temperature inside of the greenhouse is controlled at ca. 20°C in winter.

References

New FAO/IAEA Database of Mutant Varieties and Genetic Stocks

Welcome to our new FAO/IAEA Database of Mutant Varieties and Genetic Stocks! At the moment, we just completed construction of the part for Mutant Variety Database, which is still in the process of information updating. We will add the other part for Mutant Genetic Stocks in due time. The new database has improved over the FAO/IAEA Mutant Variety Database in many ways. We are working to make the new database as the global information source of mutant varieties and mutant genetic stocks, as well as activities and events related to plant mutation breeding and research.

The key feature of the database is that you can register your mutant varieties from your desktop. For this purpose, you need first register an account; then you will be authorized to submit or edit a mutant variety.

We would greatly appreciate your support by registering your mutant variety in our database. Once the variety is registered, it will have its own ‘homepage’ (see below). Therefore, you can use it as an important platform to showcase your new varieties (The introduction of this variety may be shown in local language).

Please visit the website http://mvgs.iaea.org and send us your valuable suggestions and comments regarding the structure and content of this database. Please also send us other information, related to plant mutation breeding and mutant varieties, genetic stocks; we may post them on the website.

YOU MAY STILL SEND US INFORMATION ON YOUR MUTANT VARIETY AND WE WILL UPLOAD THEM INTO THE SYSTEM, IF IT IS DIFFICULT FOR YOU TO DO SO.
PLANT MUTATION REPORTS AUTHOR’S GUIDELINES

Scope

Plant Mutation Reports (PMRs) publishes (mini) reviews, short communications and complete research papers in all areas of plant mutation research which focuses on mutagenesis, mutation induction, mutant characterization, and mutant applications. It also publishes description papers on mutant germplasm and mutant varieties. Papers on social-economic impact analysis of induced mutations and mutant varieties are also accepted.

Style

The manuscript should be concisely written with the following sections:

Title page

• Title: the title should be as short as possible, but should contain adequate information regarding the contents.

• Authors: Initials of given name followed by full family name.

• Affiliation(s)/Address(es):

• Email address: the corresponding author’s email address should be given.

Abstract and Keywords

A brief and informative summary of the paper not exceeding 150 words. Optional for short communications. Each paper should have 3-5 keywords.

Main text

• Review articles may be organized according to their specific requirements.

• Research articles should include: Introduction, Materials and Methods, Results (and) Discussion (this could be combined for Short communications).

• New mutant germplasm should include a short description of initial material used and the mutagen and doses applied; selection process; mutated characteristics and its genetic and agronomic analysis. Description of mutant variety should, in addition, include its performance in yield trials for varietal release and the releasing committee, when applicable.

Acknowledgements

• Acknowledgements of grants, support etc, should follow the text and precede the references.

References

The literature references should be cited either as John (1990) for single author paper, John and Johnson (2000) for papers with two authors, or John et al., (2000) for papers with more than two authors throughout the text, and alphabetically listed in the Reference following the style shown below:

Figures and Tables

• All tables and figures, i.e., photographs, graphs and diagrams should be referred to as either ‘Table’ or ‘Fig.’ and be numbered consecutively (1, 2, etc.) in the text.

• In tables, footnotes are preferred over long explanatory material in the heading or table body. Such explanatory footnotes, identified by superscript letters, should be placed immediately below the table.

• Do not use boxes; use horizontal lines only. Figures and tables should be placed on separate pages.

Units and symbols

The standard SI units and symbols should be used throughout (www.scenta.co.uk/tcaep/science/siunit/index.htm).

Publication

This is a biennial publication of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency, Vienna, Austria.

Submission

Electronic submission through email is encouraged. Before a permanent address is set for this, you may submit it to the Agency’s official email address: Official.Mail@iaea.org.

Index

PMR is now indexed by CABI ABSTRACTS and GLOBAL HEALTH databases.

IMPORTANT!

AS WE CONTINUE TO IMPROVE OUR PUBLICATIONS, AS OF NEXT ISSUE THESE AUTHOR’S GUIDELINES SHOULD BE FOLLOWED, IN PARTICULAR, THE CITING OF LITERARY REFERENCES (PLEASE REFER TO THE SAMPLE USED ABOVE)
Impressum

Plant Mutation Reports
Vol. 2, No. 2

The Plant Mutation Reports is prepared twice a year by the Plant Breeding and Genetics Section, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture and FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf.

International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Printed by the IAEA in Austria, June 2010.