Plutonium in Southern Hemisphere Oceans

*Sophia University

E-mail: hirose45037@mail2.accsnet.ne.jp
Objective

• Review on levels and distribution of plutonium in Southern Hemisphere Ocean waters
• SHOTS results
• Roles of plutonium as an oceanic tracer (biogeochemical processes, deep water advection)
Background

• Sources of plutonium in Southern Hemisphere Oceans.
 ⇒ Global fallout
 ⇒ Close-in fallout from the French nuclear explosions (South Pacific).
 (less contribution of close-in fallout such as Bikini explosions and radioactive discharge)

• Radioactivity measurements in the Southern Hemisphere Oceans
 ⇒ Very small number of data, especially in deep waters
Plutonium in Southern Hemisphere Oceans
Sampling stations before SHOTS (HAM database)

Aoyama and Hirose, SWJ, 2004
Sampling and method

• Sampling stations ⇒ 48 stations (South Pacific Ocean), 20 stations (Indian Ocean), 15 stations (Atlantic Ocean)
⇒ Vertical distribution (5 stations in the South Pacific Subtropical Gyre)
• Sample volume ⇒ 5-60 liters of filtered seawater.
• Analytical method
 Fe-coprecipitation
 Radiochemical separation
 alpha-spectrometry (South Pacific surface water)
 ICP-MS (South Pacific vertical samples, Indian and Atlantic surface water)

Only 239Pu concentration can be determined for ICP-MS because of smaller sample volumes and low plutonium concentration.
Sampling stations including SHOTS stations
Results: Plutonium in the Southern Hemisphere Oceans

- SHOTS data: plutonium in surface waters
- Temporal change of surface plutonium
- Vertical profiles of plutonium in the South Pacific (SHOTS)
- Plutonium/137Cs ratios as a proxy of geochemical processes (SHOTS(South Pacific), GEOSECS(South Atlantic))
- Deep plutonium
Comparison between alpha spectrometry and ICP-MS (assuming that 240Pu/239Pu atom ratio is equal to global fallout (0.18))
239Pu concentration in surface waters of Southern Hemisphere oceans

Hirose et al., STOTEN, 2007
Gautaud et al., Prog. Oceanogr. 2011
Temporal change of surface 239,240Pu in Southern Hemisphere oceans

Sea area
- Western South Pacific
- South Pacific Subtropical Gyre
- Eastern South Pacific
- Eastern Indian Ocean
- Western South Atlantic

Half-residence time (year)
- Western South Pacific: $34 +^{17}_{-8}$
- South Pacific Subtropical Gyre: $19 +^{2}_{-1}$
- Eastern South Pacific: $22 +^{2}_{-1}$
- Eastern Indian Ocean: $20 +^{15}_{-5}$
- Western South Atlantic: $12 +^{13}_{-6}$

Graphs
- **Eastern Indian Ocean**
- **Western South Atlantic**
Vertical sampling sites of BEAGLE2003

Vertical sampling sites of Pu
Cross section of ^{239}Pu in the South Pacific subtropical gyre

Hirose et al.,
Prog. Oceanogr. 2011
$^{239}\text{Pu}/^{137}\text{Cs}$ ratio is an indicator of biogeochemical processes.

1. $^{239}\text{Pu}/^{137}\text{Cs}$ ratios exponentially increased from surface to 1500 m depth.
2. The ratios were almost constant in deep water. However, lower ratios occurred in the depth range of 4000 m to 5000 m.

Hirose et al., JER, 2008
Hirose et al., Prog.Oceanogr., 2011
Vertical profiles of 239,240Pu in South Atlantic Ocean (GEOSECS; 1972)

239,240Pu/Cs activity ratio

239Pu/137Cs ratios exponentially increased from surface to 1200 m depth for South Atlantic.

32.97S 42.52W
Vertical changes of 239Pu/137Cs in shallow layer (South Pacific)

- The 239Pu/137Cs ratios in surface layers

 Low values ($0.56 - 1.1 \times 10^{-3}$) comparing with that in global fallout (0.009)

- The 239Pu/137Cs ratios exponentially increased from surface to 1500 m depth.

$$R_{\text{Pu/Cs}(z)} = R_{\text{Pu/Cs},o} \exp(\lambda z) \text{ HRD} = 0.693/\lambda$$

<table>
<thead>
<tr>
<th>Stn.</th>
<th>$R_{\text{Pu/Cs},o} \times 10^3$</th>
<th>λ value</th>
<th>HRD(m)</th>
<th>correlation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>0.95</td>
<td>0.0032</td>
<td>220</td>
<td>0.967</td>
</tr>
<tr>
<td>156</td>
<td>0.74</td>
<td>0.0028</td>
<td>250</td>
<td>0.959</td>
</tr>
<tr>
<td>145</td>
<td>0.43</td>
<td>0.0034</td>
<td>200</td>
<td>0.986</td>
</tr>
<tr>
<td>136</td>
<td>0.52</td>
<td>0.0031</td>
<td>220</td>
<td>0.991</td>
</tr>
<tr>
<td>127</td>
<td>0.53</td>
<td>0.0037</td>
<td>190</td>
<td>0.957</td>
</tr>
</tbody>
</table>

HRD: half-regeneration depth
Vertical changes of $^{239,240}\text{Pu}/^{137}\text{Cs}$ in shallow layer (South Atlantic)

- The $^{239,240}\text{Pu}/^{137}\text{Cs}$ ratios in surface layers
 Low values ($2.0 - 4.1 \times 10^{-3}$) comparing with that in global fallout (0.008) (GEOSECS, 1972)
- The $^{239,240}\text{Pu}/^{137}\text{Cs}$ ratios exponentially increased from surface to about 1000 m depth.

\[
R_{\text{Pu/Cs}}(z) = R_{\text{Pu/Cs},o} \exp(\lambda z) \quad \text{HRD} = 0.693/\lambda
\]

<table>
<thead>
<tr>
<th>Latitude</th>
<th>$R_{\text{Pu/Cs},o} \times 10^3$</th>
<th>λ value</th>
<th>HRD(m)</th>
<th>correlation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>15\degree S</td>
<td>0.9</td>
<td>0.0080</td>
<td>87</td>
<td>0.960</td>
</tr>
<tr>
<td>21\degree S</td>
<td>1.3</td>
<td>0.0046</td>
<td>150</td>
<td>0.997</td>
</tr>
<tr>
<td>33\degree S</td>
<td>4.1</td>
<td>0.0021</td>
<td>340</td>
<td>0.942</td>
</tr>
<tr>
<td>45\degree S</td>
<td>4.0</td>
<td>0.0020</td>
<td>350</td>
<td>0.919</td>
</tr>
</tbody>
</table>
Relationship between plutonium maximum layer depth and half-regeneration depth

GEOSECS South Atlantic
Chemical tracers in deep waters of the Pacific Ocean

Latitudinal distributions of CFC-11 (P-15) and C-14(P-14) (WOCE Atlas)

North Pacific Deep Water (2000 - 3000 m depth)
Plutonium in deep water

- Weak biological activities \Rightarrow less important biogeochemical processes
- The $^{239}\text{Pu}/^{137}\text{Cs}$ ratios in deep water showed no increase with increasing depth. The relatively low values occurred the depth range from 4000 to 5000 m depth. $\Rightarrow 0.01 - 0.03$ (0.009: global fallout)
- Plutonium in the South Pacific deep water is supplied by advection rather than biogeochemical processes.

Closed circle: Central Pacific
Possible pathway of the North Pacific Deep Water (2000-3000 m)

Bikini-derived Pu with higher $^{240}\text{Pu}/^{239}\text{Pu}$ atom ratios is tracing decadal flow of the North Pacific Deep Water.
Conclusion

- A level of 239Pu activity concentration in the South Pacific surface waters is similar to that in the Indian Ocean, and higher than that in the South Atlantic.
- The 239Pu/137Cs ratio in the South Pacific and South Atlantic, a proxy of biogeochemical processes, exponentially increased in shallow layer (0 – ca.1500 m).
- Plutonium in deep waters (2000-3000 m) of the Pacific showed latitudinal distribution with high in the North Pacific and low in the South Pacific. Plutonium is a transient tracer of the North Pacific Deep Water.
Plutonium is the most powerful tracer to solve ocean processes.

Thank you for your attention!