Underground radioactivity measurements *in HADES and Europe*

Mikael Hult

Gerd Marissens, Erica Andreotti, Raquel Gonzalez de Orduna, Namik Sahin

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/

http://www.jrc.ec.europa.eu/
NEW TECHNOLOGIES

• New technological developments drive science and society forward

• Developments in low-level radioactivity measurements open opportunities for studying more processes in nature (atmosphere/ocean water/food chain…)

Background Comparison – Gamma-ray spectrometry

International Symposium on Isotopes in Hydrology, 27 March - 1 April 2011, Monaco

Energy (keV)

A: “Normal”
B: “Low-level”
C: Felsenkeller
D: HADES
E: Gran Sasso

511 keV
1460 keV
2614 keV

Ge(n,n'γ)
Pb(n,n'γ)

Normalised count rate (keV⁻¹ d⁻¹ kg⁻¹ Ge⁻¹)

0 250 500 750 1250 1500 1750 2000 2250 2500

0.0001 0.001 0.01 0.1 1 10 100 1000 10000
Primary cosmic ray: $10^3 \text{ m}^{-2} \text{s}^{-1}$

9 % α

90 % p

1 % heavier nuclei (up to Fe)

Extremely high energies from outer space, GeV range from sun

Atmosphere

Earth

225 m underground ($\text{m}^{-2}\text{s}^{-1}$)

<table>
<thead>
<tr>
<th>π^\pm</th>
<th>p</th>
<th>μ^\pm</th>
<th>ν_μ</th>
<th>n_{therm}</th>
<th>n_{fast}</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2</td>
<td>40</td>
<td>60</td>
<td>200</td>
<td>500</td>
<td>10^{11}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n_{therm}</th>
<th>n_{fast}</th>
<th>μ^\pm</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td><2</td>
<td>0.1</td>
<td>10^{11}</td>
</tr>
</tbody>
</table>
\[A = \frac{C}{t_m P_{\gamma} \varepsilon} \]

- \(A \) = Activity (Bq)
- \(C \) = Net peak counts
- \(t_m \) = Measurement time (s)
- \(P_{\gamma} \) = Gamma-ray emission probability
- \(\varepsilon \) = detection efficiency
Activity calculations with correction factors

\[A = C_{TOT} - C_{Peak} - C_{Continuum} \times \frac{\epsilon_{MC}}{\epsilon_{REF}} \times \frac{\epsilon_{Sample}}{\epsilon_{REF}} \times e^{\lambda t_d} \times \frac{\lambda}{(1-e^{-\lambda t_m})} \times K_1 K_2 K_3 \]

- \(K_1 \) = summing correction
- \(K_2 \) = Branching correction
- \(K_3 \) = Equilibrium correction

\(t_d \) = decay time (to a reference date)
\(t_m \) = measurement live time

Combined activities from several gamma-rays to activity for one radionuclide

Ex.: \(^{226}\)Ra from \(^{214}\)Bi and \(^{214}\)Pb

Combined activities from several daughters to one parent

Reference sample similar (sum corrected?)

Correction factor from e.g. MonteCarlo code

Equilibrium?
Minimum Detectable Activity

\[MDA \propto \frac{\sqrt{CR_{Bkg}}}{\sqrt{t_m}} \cdot \frac{1}{\varepsilon} \]

MDA = Minimum Detectable Activity (Bq)

CR sub *Bkg* = Background Count Rate (s^-1)

tm = Measurement time (s)

\varepsilon = detection efficiency
Improving MDA

$$MDA \propto \sqrt{\frac{CR_{Bkg}}{t_m}} \cdot \frac{1}{\varepsilon}$$

\(\varepsilon\): Increasing detector size will also increase background.

\(\varepsilon\): Increasing sample size may also increase background.

\(t_m\): “only” scales with square root.

It is worth while spending efforts to reduce background in order to obtain better MDAs.
Background

Note that for low-background systems peak count-rates may decrease more than continuum levels

<table>
<thead>
<tr>
<th></th>
<th>Peak count rate / d$^{-1}$ per kg Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>295 keV</td>
</tr>
<tr>
<td>"Normal"</td>
<td>2953</td>
</tr>
<tr>
<td>Low-background</td>
<td>0.75</td>
</tr>
<tr>
<td>ultra-low-background</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Detection limits

Interference free detection limits for a 7-day measurement

<table>
<thead>
<tr>
<th></th>
<th>Air filter mBq</th>
<th>Water on 2L Marinelli mBq/L</th>
<th>Water on filter* Ba Co-prec. mBq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>140Ba</td>
<td>0.2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>137Cs</td>
<td>0.1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>226Ra</td>
<td>0.2</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Depends on amount of water used. Here 2 L.
How long measurement time can you afford?

1 mBq ~ decay per hour
1 μBq ~ decay per week

⇒ To carry out big projects and measurement of numerous samples, networking is essential

Collaboration of European Low-level underground LAboRatories
Collaboration of European Low-level underground LAboRatories

Mission: To promote higher quality and sensitivity in ultra low-level radioactivity measurements for the improvement of crisis management, environment, health and consumer protection standards of Europe.
• Modane - France (-2200 m)
• Gran Sasso - Italy (-1700 m)
• Asse/PTB - Germany (-415 m)
• HADES – EU/Belgium (-225 m)
• Unirea, Romania (-208 m)
• University of Iceland (-165 m)
• Baradello Hill, Italy (-100 m)
• Ferrière (LEGOS)-France (-80 m)
• Felsenkeller - Germany (-50 m)
• CAVE – Monaco (-15 m)
• MPI-Heidelberg - Germany (-10 m)
+ associated partners
 e.g. Solotvina salt mine (Ukraine)
Unirea salt mine, Romania

Experiments for radiation background measurement

- high resolution spectrometry systems (Canberra, Ortec)
- TLDs
- Eberline FH 40G
- epithermal neutron activation analyses of salt and salt impurities
- passive Radon detectors
HADES = High Activity Disposal Experimental Site
– Operated by EURIDICE* and located at SCK•CEN in Mol

*European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment

HADES

Overburden:
~ 175 m sand
~ 50 m clay

Location of IRMM’s ULGS setup

First shaft
Constructed 1999

Second shaft
Constructed 1999

Connecting gallery
Constructed 2003

Test drift
67 m

PRACLAY gallery

223 m

84 m

39 m
Going underground...
The Sandwich Spectrometer

Increased solid angle

Pb shield = radiopure lead, 4 cm, 2.5 Bq/kg
+14.5 cm lead, 20 Bq/kg

Cu lining = radiopure copper, 3.5 cm

Detector mass ~ 1.9 kg each
Low-level measurements – a growing field!

Isotopic fingerprints
- Hiroshima
- Neutrinos / $\beta\beta$

JET
- Tokai-mura
- Safeguards

Ref. measurements
- Decay data
- Radiation Protection

HADES 1999-2002 (FP5)
- Small samples
- High temporal resolution
- Benchmarking
- Fast measurements
- Radiopurity for detector construction

- 210Pb in lung cells 3%
- 210Pb and Th in human bones 15%
- 26Al intercomparison 3%
- Neutron data 3%
- Reference materials 4%
- 60Co in steel from Hiroshima 3%
- 60Co in German steel 1%
- Maintenance and new installations 7%
- Various 7%
- 137Xe in GaAs 2%
- BOREXINO 5%
- Nuclear safeguards 3%
- Decay data 3%
- Neutrinos 3%
- JCO accident 11%
- Bkg+calibration 19%
- Radioprotection 14%
- Ref.measurements 4%
- Neutrinos / $\beta\beta$ 7%
- Maintenance and new installations 7%
- 60Co in German steel 1%
- 210Pb in lung cells 3%
- 60Co in steel from Hiroshima 3%
- Various 7%
- Reference materials 4%
- Neutron data 3%
- 26Al intercomparison 3%
- Radiopurity for detector construction
At present: Decay energy of 115In(9/2+) \rightarrow 115Sn(3/2+) 1.7 ± 4.0 keV ($\Delta m = 499$ keV)

⇒ Not for sure if it is energetically possible or not
Lowest decay energy known to man

Half-life: 4.1×10^{20} years

Decay energy: 155 eV
Low-level measurements – a growing field!

Isotopic fingerprints

Hiroshima

Neutrinos / $\beta\beta$

JET

Tokai-mura

Ref. measurements

Decay data

Radiation Protection

HADES 1999-2002 (FP5)

Small samples

High temporal resolution

Benchmarking

Fast measurements

Radiopurity for detector construction
Gamma-ray spectrum of one of the spoons measured in HADES (red) and background above ground (black) and in HADES (blue).
Thermal neutrons fluence values estimated from measurement of 60Co and 51Cr in stainless steel spoons (106 cm$^{-2}$)
Why Gamma-ray Spectrometry?

• Easy sample preparation
 • Non destructive
 • Low running cost

Why Ultra Low-level Gamma-ray Spectrometry?

In addition to above:
 • Low detection limits
 (improvement: 10-300 times)
 • More robust
 • Potentially faster
 • Potential to achieve higher temporal resolution
 • Potential to sample small volumes

⇒ More interesting applications are feasible
“Reference” for other methods

• No sample preparation!
 Direct measurement; Non-Destructive

• There is a need to check methods
 that require sample preparation

Radiochemical methods Mass spectrometry methods

Some examples

^{40}K in water (ICP-MS), ^{26}Al in meteorites (AMS)

Zn in GaAs (ERS and GDMS), ^{60}Co (radiochemistry)

Checking of neutron detectors
International collaborations

To compare radioactivity measured in different laboratories one need to ascertain correct measurements

- reliable and comparable measurement results are based on their traceability to measurement units
- participation in Proficiency Testing schemes to confirm

IRMM is organising Proficiency Testing for nominated European laboratories monitoring radioactivity in the environment

- ^{137}Cs in air filters (2007)
- ^{137}Cs, ^{40}K, ^{90}Sr in milk powder (2008)
- ^{226}Ra, ^{228}Ra, ^{234}U, ^{238}U in mineral waters (2010)
- run at present: radionuclides in soil, among them several NORM
Euratom comparisons

IRMM approach to these comparisons

• EU member states nominate monitoring laboratories to participate in European comparisons (Treaty obligation)

• IRMM provides comparison samples, carrying reference values traceable to SI and SIR

• example: in anticipation of a new European directive on drinking water quality, IRMM organised a water comparison to see where monitoring laboratories stand.

Metrology approach to being correct and accepted by other laboratories

• allows realistic estimate of accuracy under routine conditions

• reliable monitoring results are necessary to assess the exposure of the population as a whole (done by DG ENER of the European Commission)
Key comparisons and traceability

Key Comparisons

IRMM

NMIs world-wide

Nat. Calibr. Service

CIPM/BIPM

K-C-Ref-Value
input ⇒ SIR
≈ 60 Rad.Nucl.

IRMM Ref-Value

Monitoring labs

REM intercomparison

Hospitals

Industry
Comparison results mineral water

Lab means* compared with reference value $A_{ref} \pm U_{ref}$

226Ra - W1

Laboratory Activity concentration / mBq.L$^{-1}$

* 41 submitted results
Comparison results mineral water

Lab means* compared with reference value

$^{238}\text{U} - \text{W1}$

Activity concentration / mBq.L$^{-1}$

32 labs $< \pm 20\%$

4 labs $>2\times$

40 submitted results
Not always necessary for obtaining the lowest detection limits

Much better control of background components than above ground ⇒ more robust measurements ⇒ Important for better QC of reference samples.
...a growing field of science, engineering and metrology
Thank you for your attention!
EXTRA SLIDES