Groundwater ages and hydrochemical evolution along a flow path in the Northeastern sector of Guarani Aquifer System (GAS) derived from structural geology, isotope, noble gas and hydrochemical data.

Didier GASTMANS (1)
Hung Kiang CHANG (1)
Praddep AGGARWAL (2)
Neil STURCHIO (3)
Luis J. ARAGUÁS-ARAGUÁS (2)

(1) LEBAC – UNESP – Rio Claro (SP) – Brazil
(2) Isotope Hydrology Section – IAEA – Vienna – Austria
(3) Department of Earth and Environmental Sciences – University of Illinois at Chicago - USA
Guarani Aquifer System (GAS)

- GAS covers about 1,100,000 km² in Brazil, Argentine, Paraguay and Uruguay

- GEF Project “Guarani Aquifer Program for groundwater resource sustainability and environmental protection”
Geological Setting - Results of GAS Project

<table>
<thead>
<tr>
<th>Sedimentary Basin</th>
<th>Country</th>
<th>Uruguay</th>
<th>Argentina</th>
<th>Paraguay</th>
<th>Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST-GAS Ki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentary Basin</td>
<td></td>
<td>Arapéy</td>
<td>Serra Geral or Posadas/Solari (Mariano Boedo in Occidental region)</td>
<td>Alto Paraná</td>
<td>Serra Geral</td>
</tr>
<tr>
<td>GAS J-Ki</td>
<td></td>
<td>(Sup. Member) Tacuarembó (Inf. Member) Itacumbú?</td>
<td>Missiones or Tacuarembó</td>
<td>Missiones</td>
<td></td>
</tr>
<tr>
<td>Sedimentary Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE-GAS P</td>
<td></td>
<td>Buena Vista Yaguari</td>
<td>Buena Vista</td>
<td>Tacuary Independencia Group</td>
<td>Sanga do Cabral</td>
</tr>
</tbody>
</table>

1. Jurassic Inner Basin Unconformity
2. Permo-Eotriassic Regional Unconformity
Geological Setting - Results of GAS Project

Serra Geral

Botucatu / Pirambóia

Corumbataí

Araraquara, SP

Contacto con paleorelieve

Unconformity
Geological Setting - Results of GAS Project

- Outcrops along eastern and western boundaries

- Thickness vary from 50 to more than 600m – average 250m

- Geometry is controlled by major geological structures
Hydrogeological Setting - Results of GAS Project

- Recharge along most outcrop areas
- Main flow path from NNW-S
- Artesian zone in the center of the aquifer
- Higher hydraulic gradients – near boundaries
- Low hydraulic gradients – center
Isotope and Groundwater Ages - Results of GAS Project

- Recharge areas – δ\(^{18}\)O match the present day precipitation values

- Confined areas – δ\(^{18}\)O more negative values than the present day precipitation (up to -3‰ with respect to the present δ\(^{18}\)O)
Isotope and Groundwater Ages - Results of GAS Project

- Recharge areas – Recent groundwaters (110 to 80 pMC)

- Confined zones – Old groundwater (less than 10 pMC)

- Rapid decline in C-14 activities.
Isotope and Groundwater Ages - Results of GAS Project

Source: Aravena (2008) - Final Report Guarani Aquifer Project
Isotope and Groundwater Ages - Results of GAS Project

GAS Northern Compartment

Source: Aravena (2008) - Final Report Guarani Aquifer Project
IAEA/UNESP Project

- Uncertainties about old groundwater ages in GAS confined portion
- Important key for the correct resource management
- Assessment of past recharge conditions – stable isotopes and noble gas
- Dating old groundwater using Kr81
Preliminary Results – Study Area
Preliminary Results – Geological Section

Legend

- Bauru Group
- Basalts (Serra Geral Fm.)
- GAS Sediments (Botucatu and Pirambóia Fms)
- Pre-GAS Sediments
- Basement

Potentiometric Level

Wells

GAS-BR-16 GAS-BR-08 GAS-BR-04 GAS-BR-07 GAS-BR-16 GAS-BR-14 GAS-BR-01 GAS-BR-12

750 m 750 m

400 km 200 km
Preliminary Results – Methods

Sampling groundwater for chemical analysis, stable isotopes, C-14, 81Kr and Noble Gases
Preliminary Results – Water Chemistry

Piper Diagram

Guarani Aquifer System

Total Dissolved Solids
(Parts Per Million)

- GAS-BR-01
- GAS-BR-02
- GAS-BR-04
- GAS-BR-08
- GAS-BR-09
- GAS-BR-10
- GAS-BR-12
- GAS-BR-13
- GAS-BR-16
- GAS-BR-18
Preliminary Results – Water Chemistry

![Graph showing anions concentration (mg/L) vs. estimated distance from recharge area (km). The graph includes points for Alkalinity, Chloride, and Sulfate.]
Preliminary Results – Stable Isotopes

\[\delta^{2}H = 6.55\delta^{18}O - 2.96 \]
Preliminary Results – Stable Isotopes
Preliminary Results – Stable Isotopes

Graph showing the relationship between δ13C (% VPDB) and Alkalinity (mg/L HCO₃).
Preliminary Results – Stable Isotopes

![Graph showing C-14 (pmC) vs. Estimated distance from recharge area (Km)]
Preliminary Results – Stable Isotopes

![Graph showing stable isotopes data](image-url)
SUMMARY

- Groundwaters evolve from Ca-Mg-HCO$_3$ waters in recharge areas to Na-HCO$_3$ and then to Na-Cl-SO$_4$ waters in confined zones.

- Geochemical processes observed are mineral dissolution and ion exchange.

- Recent groundwater in outcrop areas: C-14 activity up to 80pmC and δ^{18}O comparable to present day rain (-6.0 to -6.5‰).

- Rapid decline in C-14 activities followed by isotopic content decrease downdip along the studied transect.
SUMMARY

- Groundwaters with low C-14 activities present more negative $\delta^{18}O$ contents, up to 3‰ V-SMOW lower than present day.

- $\delta^{18}O$ contents suggest three distinct weather conditions during the recharge for GAS, however these need to be confronted to noble gas results.

- 81Kr dating will permit further improvement on the knowledge of groundwater evolution of GAS.
THANK YOU