(OV/4-4) Experimental Progress on Zonal Flow Physics in Toroidal Plasmas

A. Fujisawa1), T. Ido1), A. Shimizu1), S. Okamura1), K. Matsuoka1), Y. Hamada, K. Hoshino2), Y. Nagashima3), K. Shinohara2), H. Nakano1), S. Ohshima1), Y. Miura2), K. Itoh1), S.I. Itoh3), M. Shats4), H. Xia4), J. Q. Dong5), L. W. Yan5), K. J. Zhao5), G. D. Conway6), U. Stroth7), A. Melnikov8), L.G. Eliseev8), S.E. Lysenko8), S.V. Perfilov8), C. Hidalgo9), G. R. Tynan10), G. R. Mckee11), C. Holland10), R. J. Fonck11), D. K. Gupta11), P. H. Diamond10)
1) National Institute for Fusion Science, Toki, Japan
2) JAERI, Japan
3) Research Institute for Applied Mechanics, Japan
4) Australian National University, Australia
5) Southwestern Institute of Physics, China
6) Max-planck institute, Germany
7) Universitšt Stuttgart, Germany
8) Kurchatov Institute, Russia
9) CIEMAT, Spain
10) University of california, San Diego, U. S. A.
11) Univ. of Wisconsin, U. S. A.

Abstract.   Fundamental physical understanding of zonal flows (ZFs) is absolutely necessary to precisely predict confinement properties of forth-coming devices such as ITER. The experiments on zonal flows (ZF) - a crucial element to clarify the turbulence transport - have made a large progress recently regardless of difficulty in their detection. Besides the trials to identify stationary zonal flows and geodesic acoustic modes using modern diagnostics techniques, the couplings between turbulence and zonal flows are quantified with advanced analyzing techniques. The paper aims at integrating the experimental knowledge on ZFs distributed in worldwide devices to obtain a unified view of ZF structure and dynamics, dependencies of zonal flow characteristics on plasma parameters and magnetic configurations, their impacts on the turbulence and transport. In this paper, the present status of the ZF experiments is overviewed and the integrated knowledge on the ZF is presented.

Full paper and slides available (PDF)