KSTAR PROJECT

Korea Superconducting Tokamak Advanced Research

KSTAR ASSEMBLY

21st IAEA Fusion Energy Conference

October 16-21, 2006
Chengdu, China

H. L. Yang and the KSTAR Team
Contents

◆ Introduction
 ● Overview
 ● Scope of the KSTAR Assembly

◆ Key Features

◆ Progress
 ● Before TF Magnet Assembly
 ● TF Magnets
 ● After TF Magnet Assembly
 ● PF Coils
 ● CS Coils

◆ Status

◆ Integrated Commissioning
 ● Goal Parameters
 ● General Procedure
 ● Overall Schedule

◆ Summary and Future Milestone
Overview

KSTAR Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Radius, R_0</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Minor Radius, a</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Plasma Current, I_p</td>
<td>2.0 MA</td>
</tr>
<tr>
<td>Elongation, κ</td>
<td>2.0</td>
</tr>
<tr>
<td>Triangularity, δ</td>
<td>0.8</td>
</tr>
<tr>
<td>Toroidal Field, B_0</td>
<td>3.5 Tesla</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>300 sec</td>
</tr>
</tbody>
</table>

| Dimension | 8.6 m (H) |
| | 8.8 m (D) |

Superconductor	Nb$_3$Sn, NbTi
Magnet Weight	270 Ton
Cryogenic System	9 kW
Scope of the KSTAR Assembly

◆ Assembles all of the major systems

◆ Regulates the schedule, interface, space allocation, safety, and QS for In-cryostat components and ancillary systems including

 ● Current feeder system
 ● He piping system
 ● Diagnostics for 1st plasma
 ● Heating systems for 1st plasma
 ● In-Vessel components for 1st plasma
 ● Local I&C sensors and cables
 ● Fueling & glow discharge systems
 ● Port blanking

◆ Establishes and maintains the survey and alignment (S&A) network system

◆ Design, fabrication, and construction of the assembly jigs & tools system
Major Systems of the KSTAR

Warm Structures
- PFC & IVCC
- VV & PORT
- CRYOSTAT
- ASSEMBLY TOOLS

Cold Structures
- SC COILS
- MAGNET STRUCTURE
- THERMAL SHIELD
Key Features

1. Coordinate System

- Two coordinate sets during the assembly
- The 1st coordinate is established from the geometry of cryostat support beam
- After assembly completion of the TF, the 2nd data is set-up to provide a reference for SC magnet installation
- Reference in the 2nd data set has offsets from 1st set to coincide each other in cryogenic temp.

- ✓ Mid-plane Level of VV & Cryostat : 4,200 mm
- ✓ Mid-plane level of the SC magnets: 4,205 mm
- ✓ The TF is assembled 7 mm outward in radial direction @ room temp.

Illustration - thermal contraction of the TF
2. Assembly of the VV and TF Magnets

- TF magnet is inserted through the 22.5° gap of the VV, and positioned one by one
- Narrow clearance between VV (VVTS) and TF magnet
- Assembly tolerance requirement of the TF: within ±1mm
- VV sector 3 is divided into 24 small pieces
- It needs a special jig system
Main Assembly Jig System
Key Features

3. Assembly of the Central Solenoid

- Segmented CS coils operating in difference current values
- Compressive force during reference scenario
- Separation force between CS1 & CS2: about 10MN (MRF condition)
- Preload on CS coils to prevent coil separation and lateral movement
- Designed preload: ~1,000 tons
- Strategy:
 - Heating the shells
 - Measuring strain
Progress – Before TF Magnet Assembly

- Cryostat Base
- Gravity Support
- Assembly Jig for the TF Magnet
- Install. of the VVTS
- VV 337.5° Sector
- Site Weld of the VV
- Positioning of the VV & VVTS
- Pre-Install. Of the Lower PF Coils
- Assembly Jig Test with TF00
Progress—Assembly of the TF Magnet

1. Site Delivery of a TF Magnet
2. Insulation Plates Bonding
3. Start Site Assembly of the TF Magnet
4. Loading on the Assembly Tool
5. Insertion through 22.5° Gap of the V.V.
6. Installation on the Gravity Support
7. Measurement & Alignment
8. Shear Key Insertion
9. TF Magnet System after Assembly Finish
Components between Two TF Magnet

Cylindrical Shear Key

Rectangular Shear Key

Conical Bolt

Bolt & Nut
Alignment Result of the TF Magnet
After the TF Magnet Assembly
Assembly of the PF Coils

PF6U Coil
PF7U/L Coil
PF6L Coil
PF5L Coil
Assembly of the Central Solenoid (CS)

- Setup jig installation
- Bottom block assembly
- Lower buffer assembly
- CS4L subassembly
- CS4L turning over
- CS4L standing
- CS4L assembly
- CS4L alignment
- CS3L assembly
- CS2L assembly
- CS1L assembly
- CS1U assembly
- CS2U assembly
- CS3U assembly
- CS4U assembly
- Wedges & block & shells
- Shell heater assembly
- Support lug assembly
- Preloading

Main Assembly
Pre-Loading of the CS

Heating the CS Structure for Preloading

Results

- Max. Temperature: 140°C at outer shell
- Expansion of the shell: 6 mm
- Preloading @ room temperature: 800 tons
Installation of the CS on the TF
Summary of the KSTAR Assembly Progress

- Cryostat Support
- Base Frame of Main Jig
- Cryostat Base
- Supports of Rail System
- Gravity Support
- Partly Removal of Main Jig
- Accept. Test of Main Jig
- Assembled Main Jig
- Top Frame of Main Jig
- Main Column of Main Jig
- Install. VV and VVTS
- Re-assemble of Main Jig
- Assembly of 1st TF
- Assembly of the Last TF
- VV Sector 3 after Site Weld

It took more than 1 year
Summary of the KSTAR Assembly Progress

- Mechanical Assembly Completion
- Port Blanking
- Basic Diagnostic Install.
- 1st Heating Device Install.
- Ready for Integrated Machine Commissioning
Status - Current Feeder System

see Y. M. Park, et. al, FT/P7-1
Status – Inside of the Vacuum Vessel
Integrated Commissioning - Objectives

• Objective:
 - to test the engineering performance and operational reliability of the KSTAR device
 ✓ assembly status of the tokamak structures
 ✓ superconducting magnet system & interfaces
 ✓ vacuum system & gas fueling system
 ✓ cryogenic facility for cool-down
 ✓ power supply & quench protection system
 ✓ control system & local I&C
 ✓ plasma heating and diagnostics
 ✓ Safety & interlock

• Key parameters to achieve
 ✓ Vacuum in VV : 5.0 e-7 torr
 ✓ Vacuum in cryostat : 1.0 e-4 torr at room temp.
 ✓ Thermal shield temperature : 80 K
 ✓ Coil temperature : 5 K
 ✓ Toroidal magnet flux density : 1.5 T
 ✓ Plasma heating device test : ECH system (0.5 MW)
 ✓ 1st Plasma : about 100 kA
Overall Commissioning Procedure

- System Assembly
 - Individual System Test
 - Evacuation & Leak check
 - Cool-down
 - Coil Excitation
 - 1st Plasma Scenario
Overall Commissioning Schedule

<table>
<thead>
<tr>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
2. 2006. Mar: Completion of TF Magnet Assembly
3. 2006. Oct: Completion of CS Magnet Assembly
4. 2007. Mar: 154 kV Power Connection (50MVA)
5. 2007. Aug: Tokamak Assembly Finish
Thank You for Attention