Demonstration of ITER Operational Scenarios on DIII-D

E.J. Doyle¹, for R.V. Budny², J.C. DeBoo³, J.R. Ferron³, G.L. Jackson³, T.C. Luce³, M. Murakami⁴, T.H. Osborne³, J.-M. Park⁴, P.A. Politzer³, H. Reimerdes⁵, T.A. Casper⁶, C.D. Challis⁷, R.J. Groebner⁸, C.T. Holcomb⁶, A.W. Hyatt³, R.J. La Haye³, J. Kinsey³, G.R. McKee⁸, T.W. Petrie³, C.C. Petty³, T.L. Rhodes¹, M.W. Shafer⁸, P.B. Snyder³, E.J. Strait³, M.R. Wade³, G. Wang¹, W.P. West³, and L. Zeng¹

1 University of California, Los Angeles
2 PPPL
3 General Atomics
4 ORNL
5 Columbia University
6 LLNL
7 Euratom/UKAEA Fusion Association, Culham, Oxon, UK
8 University of Wisconsin, Madison

Presented at
22nd IAEA Fusion Energy Conference
Geneva, Switzerland
October 13-18, 2008
DIII-D Demonstration Discharges Meet ITER Normalized Performance Targets

- Four ITER missions addressed on DIII-D:
 - **Baseline scenario:** \(Q = 10 \) on ITER at \(I_p = 15 \) MA, with conventional ELMy H-mode operation
 - **Steady-state scenario:** full non-inductive operation with \(Q \sim 5 \) at \(I_p \sim 9 \) MA
 - **Hybrid scenario:** high neutron fluence at reduced current \(I_p \sim 12 \) MA, \(Q \geq 5 \)
 - **Advanced inductive scenario:** \(Q \geq 20 \) and 700 MW fusion power production at \(I_p \geq 15 \) MA

\[G \equiv \beta_N H_{89}/q_{95}^2 \]

\(G \) is a measure of fusion performance

Key ITER physics issues are discussed

Projections to ITER

Doyle/IAEA/Oct 2008
DIII-D has Unique Capability to Evaluate ITER Scenarios While Matching Design Shape and Aspect Ratio

- With size reduced by factor of 3.7, the DIII-D discharges match the ITER design values for:
 - Plasma cross section
 - Aspect ratio
 - Value of $\frac{I}{aB}$ (normalized current)

- Target values for β_N and H_{98} were matched or exceeded
 - Evaluations concentrate on flat-top phase
 - Dominant co-NBI used throughout study

Doyle/IAEA/Oct 2008
ITER Baseline Scenario Performance Matched on DIII-D

- I/aB equivalent to 15 MA operation on ITER, q_{95} of 3.1
- 3 s H-mode period is $\sim 3\tau_R$,
 \sim same normalized duration as ITER
 - However, plasma is non-stationary
- Absolute density \sim same as ITER, $n/n_{GW} \sim 0.65$ (ITER 0.85)
- Operation limited to $\beta_N \leq 2$, with disruptions even at lower β_N when 2/1 tearing modes appear
Confinement is at ITER Target Level Despite Operation Close to Predicted L-H Power Threshold

- Baseline discharges operate close to or below \(P_{\text{Loss}} / P_{\text{th}} = 1 \) throughout H-mode phase

- L-H power threshold \((P_{\text{th}}) \) calculated using latest scaling prediction
 - \(P_{\text{th}} = 0.049 n^{0.72} B^{0.8} S^{0.9} \)
 - Y. Martin, et al., 2008

Doyle/IAEA/Oct2008
Fractional Energy Loss at ELMs in Baseline Scenario Substantially Exceeds ITER Limits

- Type I ELMs in Baseline scenario plasmas have large radial extent, to $\rho \sim 0.5$
 - Not due to synchronized ELMs and sawteeth
- Energy loss/ELM is $>10\%$ of total plasma stored energy, $\sim 25\%$ of pedestal energy
- Further motivates need for ELM control system on ITER

ITER limits, Loarte, IT/P6-13; ELM control, Evans, EX/4-1
Doyle/IAEA/Oct2008
Steady-State Scenario: Fully Non-inductive Operation Demonstrated in ITER Shape

- Fully non-inductive operation obtained in 8.5 MA equivalent discharge with $\beta_N=3.1$
 - High bootstrap fraction (~70%)

- Steady-state discharges utilize off-axis ECCD to maintain stable q-profile with $q_{\text{min}} \geq 1.5$

Doyle/IAEA/Oct2008
Trade-off Between Fusion Performance and Non-inductive Fraction Seen with Variation in q_{95}

- Detailed analysis performed for discharges at ends of q_{95} range.

- At higher currents ($q_{95}=4.7$), $G=0.3$ for $Q=5$ target was matched.

- At lower current ($q_{95}=6.3$), 100% NI (or overdriven) operation was achieved, but with lower fusion performance.
Wall Stabilization is Necessary for Steady-State Scenario Operation in ITER with $\beta_N > 3$

- Higher β_N achieved with smaller plasma-wall gap
- This change is not due to variation of the no-wall limit

Difficult to simultaneously match ITER shape and plasma-wall separation

Doyle/IAEA/Oct2008
Excellent Confinement and Stability in the ITER Shape Obtained in Hybrid Scenario Discharges

- Example shown utilized ITER large bore plasma startup scenario (Jackson, IT/P7-2)

- \(I/aB \) equivalent to 11.6 MA operation on ITER, \(q_{95} \) of 4.1

- Alternative route to \(Q=10 \) mission, at lower \(I_p \) and with lower disruptivity

- Issues: Requirements for access in ITER, performance with more ITER relevant conditions

DIII-D hybrid research, Petty EX/1-4Rb
Doyle/IAEA/Oct2008
Excellent Confinement and Stability are also Obtained in Advanced Inductive Scenario Discharges

- Advanced inductive scenario has sustained high performance at $\beta_N = 2.8$ with excellent confinement, $H_{98} = 1.5$

- I/aB equivalent to 14.8 MA operation on ITER, q_{95} of 3.3

- Issues for advanced inductive scenario are similar to those for hybrid, except operation is at a higher current

Doyle/IAEA/Oct2008
DIII-D Results Have Impacted the ITER Design, e.g., Increase in Operating Range for ITER Shape Control System

- ITER shape control was designed for internal inductance in the range of $l_i(3) = 0.7-1.0$ at 15 MA.

- Measured $l_i(3)$ on DIII-D during flattop phase are outside this range.
 - Would lead to loss of plasma shape control.

- The design range for ITER has been increased, based on results from DIII-D and other machines.

Results from multiple devices, Sips, IT/2-2; Change to ITER design, Hawryluk, IT/1-2

Doyle/IAEA/Oct2008
DIII-D Experimental Profiles are Utilized for Both Transport Modeling and ITER Performance Projections

- Baseline and hybrid scenarios have $T_e \sim T_i$

- At 1.9 T, advanced scenarios have the same pressure as baseline scenario at lower I_p, or higher pressure at equal I_p

- All discharges have co-NBI
Good Fit to Pedestal Conditions in the ITER Scenarios Obtained from Predictive Model

- Data from the ITER scenarios are being added to the database used to test the EPED1 predictive pedestal model

EPED1 model, Snyder IT/P6-14; Experimental tests, Groebner EX/P3-5

Doyle/IAEA/Oct2008
Performance Projections Support ITER Reaching its Physics and Technology Objectives, with Margin

- DIII-D discharges projected to ITER assuming same β_N and H, with $n_e/n_{GW}=0.85$, using range of confinement scalings:
 - ITER-89P, Bohm-like,
 - IPB98y2, intermediate,
 - DS03, gyroBohm-like

- ITER P_{fus} target met or exceeded in all cases

- Margin can cover differences due to quantities not matched to ITER, e.g. plasma rotation

- For details of projection method see T.C. Luce, Phys. Plasmas 11, 2627 (2004)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Hybrid</th>
<th>AI</th>
<th>Steady-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_N (DIII-D)</td>
<td>1.8</td>
<td>2.8</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>P_{fus} (ITER)</td>
<td>400</td>
<td>400</td>
<td>700</td>
<td>350</td>
</tr>
<tr>
<td>Fusion Gain (Q)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89P</td>
<td>10.3</td>
<td>5.8</td>
<td>13.5</td>
<td>2.7</td>
</tr>
<tr>
<td>98y2</td>
<td>22.4</td>
<td>23.3</td>
<td>∞</td>
<td>5.8</td>
</tr>
<tr>
<td>DS03</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>19.8</td>
</tr>
<tr>
<td>ITER target</td>
<td>10</td>
<td>5</td>
<td>≥20</td>
<td>5</td>
</tr>
</tbody>
</table>

* P_{aux} required is greater than Day-one value of 73 MW

Doyle/IAEA/Oct2008
Summary: DIII-D Has Demonstrated the Performance Required to Meet ITER Goals for Four Key Scenarios

- The demonstration discharges address many key ITER physics issues, e.g. ELMs, L-H transition, pedestal scaling, beta limits, etc.

- DIII-D results have impacted the ITER design, e.g., the required operating range of the plasma shape control system

- DIII-D evaluations of ITER scenarios can be extended and improved:
 - Vary NBI power and torque to operate with reduced plasma rotation
 - Extend $T_e=T_i$ operation to more scenarios
 - Determine sensitivity of performance to shape
 - Assess impact of ELM suppression on performance
 - Extend demonstration to startup and ramp-down phases