Developments in Predictive Understanding of Plasma Rotation on DIII-D

By
W.M. Solomon

In Collaboration with
K.H. Burrell, A.M. Garofalo, A.J. Cole,
R.V. Budny, J.S. deGrassie,
W.W. Heidbrink, G.L. Jackson,
M.J. Lanctot, R. Nazikian,
H. Reimerdes,
E.J. Strait,
M.A. Van Zeeland, and the
DIII-D Rotation Physics Task Force

1 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
2 General Atomics, San Diego, CA, USA
3 University of Wisconsin-Madison, Madison, WI, USA
4 University of California-Irvine, Irvine, CA, USA
5 Columbia University, New York, NY, USA

22nd IAEA Fusion Energy Conference
Geneva, Switzerland

October 13-18, 2008
Performance of Future Devices Influenced by Attained Rotation Profile

Sources:
Neutral beam, intrinsic ...

Sinks:
Non-axisymmetric fields

Transport:
Diffusivity, Pinch...

Rotation

Turbulence Control
Improved confinement

Modify NTM/RWM stability

Error field thresholds
Locked mode avoidance
n=3 Non-Resonant Magnetic Fields (NRMF) Applied to Slowly Rotating Plasma Leads to Rotation Spin Up

- NBI power and torque constant during time range shown
- Rotation acceleration happens at all minor radii
- Simultaneous improvement in energy confinement

Garofalo, PRL (accepted)
Application of NRMF Drags Plasma Rotation to Neoclassical Offset Rotation

- Neoclassical theory predicts a non-zero “offset rotation” [Cole et al PRL 2007]

\[T_{\text{NRMF}} \sim B^2 (V_\phi - V_0^{0,\text{NC}}) \]

\[V_0^{0,\text{NC}} \approx \frac{k}{Z_i e B_\theta} \frac{dT_i}{dr} \]

- Offset rotation in counter \(I_p \) direction

- Measured torque exhibits offset linear relationship

\[\beta_N \sim 1.9 \pm 13\% \]

\[n_e \sim 4.1 \times 10^{19} \text{ m}^{-3} \pm 5\% \]

Garofalo, PRL (accepted)
Effect of NRMF on Plasma Rotation Can Be Adequately Modeled Throughout the Discharge

- Evolve rotation using momentum balance in TRANSP

\[mnR \frac{\partial V_\phi}{\partial t} = \sum \eta + \nabla \cdot \left(mnR \chi_\phi^{\text{eff}} \frac{\partial V_\phi}{\partial r} \right) \]

- Vary NRMF torque according to I-coil waveform \(B^2 \) and velocity relative to offset

\[\eta_{\text{NRMF}} \sim B^2 (V_\phi - V_\phi^0) \]

- Allow only slow, linear variation of momentum diffusivity \(\chi_\phi^{\text{eff}} \)
Toroidal Rotation Can Be Modified by Strong Reverse Shear Alfvén Eigenmode (RSAE) Activity

- Central rotation almost 2x greater with RSAE activity suppressed
- However, total angular momentum content comparable
- Suggestive of redistribution of fast ions rather than complete loss
 - Change in rotation due to changes in torque profile?

See Van Zeeland EX/6-2 on RSAE's
Torque Profile is Significantly Modified by RSAE-Induced Fast Ion Transport

- Assume change in rotation due to modification of source, rather than changes in momentum transport.

- Use ad hoc anomalous fast ion diffusion in TRANSP to account for effect of RSAE’s on fast ion transport.

- 40% central NB torque reduction required to match rotation.

- Inferred RSAE-induced fast ion transport consistent with:
 - Reduction in neutron rate
 - Reduced fast ion density.

![Graph showing torque density vs. \(\rho \)](image-url)
Intrinsic Rotation Plays a Role in Determining Total Plasma Rotation, Even with Neutral Beam Injection

- **Intrinsic rotation** = rotation without auxiliary torque
 - Observed on C-Mod, JET, JT-60U, Tore Supra…

- On DIII-D, torque scans performed at constant $\beta_N \sim 1.7 \pm 10\%$ to investigate intrinsic + NBI

- Large rotation observed across profile, even with net zero torque from NB
 - Persists even with significant counter injection
Near-Zero Rotation Profile With Finite Neutral Beam Torque Suggests an Intrinsic Torque Source

- From momentum balance equation

\[
m_n R \frac{\partial V_\phi}{\partial t} = \sum \eta - \nabla \cdot \Gamma + S,
\]

where

- \(\sum \eta \) is the sum of momentum sources and sinks,
- \(\nabla \cdot \Gamma \) is the transport term,
- \(S \) is the source term,
- \(\Gamma = -m_n R \left(\chi_\phi \frac{\partial V_\phi}{\partial r} - V_\phi V_{\text{pinch}} \right) \)

This equation represents the rate of change of momentum, with momentum sources and sinks, transport, and intrinsic torque contributions. The intrinsic torque term is particularly emphasized.
Near-Zero Rotation Profile With Finite Neutral Beam Torque Suggests an Intrinsic Torque Source

- From momentum balance equation
 \[mnR \frac{\partial V_\phi}{\partial t} = \sum \eta - \nabla \cdot \Gamma + S, \quad \Gamma = -mnR \left(\chi_\phi \frac{\partial V_\phi}{\partial r} - V_\phi \frac{\partial \phi}{\partial r} \right) \]

- If \(V_\phi \) zero and constant, then net torque to plasma must be zero

- Situation essentially realized here
 - Despite one net counter NB source
 - Direct evidence of intrinsic source

\[\Omega (\text{krad/s}) \]

\[T_{NBI} \sim 5 \text{ Nm} \quad (3 \text{ co} + 0 \text{ ctr NB}) \]

\[T_{NBI} \sim -2.5 \text{ Nm} \quad (1 \text{ co} + 2 \text{ ctr NB}) \]
Intrinsic Source Approximately Equivalent to One Neutral Beam Source

- Intrinsic source must cancel NBI torque

\[\eta_{NBI} + S = 0 \quad \rightarrow \quad S = -\eta_{NBI} \]
Intrinsic Source Approximately Equivalent to One Neutral Beam Source

- Intrinsic source must cancel NBI torque
 \[\eta_{NBI} + S = 0 \quad \Rightarrow \quad S = -\eta_{NBI} \]

- Additional fast ion transport alters calculated NBI torque
 - Inferred intrinsic source becomes more peaked at edge

- Evidence of “Residual Stress”?
Angular Momentum Transport Is Investigated Using Perturbative Techniques

- Toroidal rotation evolves according to momentum balance eq.

\[mnR \frac{\partial V_\phi}{\partial t} = \sum \eta - \nabla \cdot \Gamma + S, \quad \Gamma = -mnR \left(\chi_\phi \frac{\partial V_\phi}{\partial r} - V_\phi V_{\text{pinch}} \right) \]

 - Rate of change of momentum
 - Momentum sources/sinks
 - Transport
 - "Intrinsic source"
 - Diffusion
 - Pinch

- In modulated cases, equilibrium sources and sinks do not have to be known
 - Removes many uncertainties

- If one can compute perturbed sources/sinks, then \(\Gamma_\phi \) is determined

- Model \(\Gamma_\phi \) evolution to determine diffusive and convective contributions
Neutral Beam Torque Pulses at Constant Power Are Used to Create Non-Local Rotation Perturbations

- Clearly see effect of torque pulses in rotation measurements
- Must change V_ϕ independently of $\frac{dV_\phi}{dr}$ during perturbation
Inward Pinch of Momentum Inferred From Neutral Beam Torque Perturbations

- Inclusion of pinch in momentum improves fit to momentum flux evolution
- Pinch alters inference of momentum diffusivity
 - Can exceed a factor of 2
 - Most significant when transport high (low rotation, reduced ExB shear)

Inward momentum pinch also seen on JT-60U, JET and NSTX
Good Agreement Found Between Theoretical and Experimentally-Determined Pinch Velocity

- Theory predicts drive of momentum pinch through low-\(k\) turbulence
 - Peeters et al. PRL (2007)
 \[V_{\text{Peeters}} = \frac{\chi \phi}{R} \left[-4 - \frac{R}{L_n} \right] \]
 \[V_{\text{Hahm}} = \frac{\chi \phi}{R} [-4] \]

- No obvious distinction between theories experimentally
 - \(L_n\) term only appreciable in DIII-D toward the edge

- However, results from NSTX suggest \(L_n\) term does matter
 [Kaye et al, this meeting EX/3-2]
Summary

- Non-resonant magnetic fields apply a torque to the plasma, which can result in a spin up of the plasma at low rotation
 - Including associated improvement in confinement

- Strong RSAE activity has been shown to modify the rotation profile, while leaving the total angular momentum content unchanged
 - Modification of NB torque profile

- Intrinsic source inferred directly from momentum balance

- Experimental observation of momentum pinch in reasonable agreement with theoretical predictions
Application of NRMF Drags Plasma Rotation to Neoclassical Offset Rotation

- Neoclassical theory predicts a non-zero "offset rotation" [Cole et al PRL 2007]
 \[T_{NRMF} \sim B^2 (V_\phi - V_{\phi,NC}^0) \]
 \[V_{\phi,NC}^0 \approx \frac{k}{Z_i e B_\theta} \frac{dT_i}{dr} \]

- Offset rotation in counter I_p direction

- Measured torque exhibits offset linear relationship

Garofalo, PRL (accepted)
Magnitude and Radial Dependence of Offset Rotation in Semi-Quantitative Agreement with Theory

- Neoclassical model gives offset rotation of form
 \[V^0_{\varphi,NC} \equiv \left(k_c / Z_i e B_\theta \right) \left(dT_i / dr \right) \]
 with \(k_c \) depending on collisionality regime

- Values of \(k_c(\rho) \) fall within theoretical limits for \(\nu \) and \(1/\nu \) regimes
 - Apparently highly non-linear connection between regimes

Garofalo, PRL (accepted)
Modeling of NRMF Torque At Low Rotation Must Consider Role of Intrinsic Rotation

- Evolve measured NRMF torque profile from initial step according to $B^2(V_\phi - V_\phi^0)$
- Assume intrinsic source constant in time
- Scale τ_ϕ with τ_E
- For each ρ, solve for intrinsic source giving best fit to integrated angular momentum evolution

$$\frac{dL}{dt} = -\frac{L(t)}{\tau_\phi(t)} + T_{\text{NBI}}(t) + T_{\text{NRMF}}(t) + T_{\text{intrinsic}}$$
At Low NBI Torque, Modeling of NRMF Torque Is Consistent With Expectations for Intrinsic Rotation

- Intrinsic source profile similar to previous results

\[
\frac{dL}{dt} = -\frac{L(t)}{\tau_\phi(t)} + T_{\text{NBI}}(t) + T_{\text{NRMF}}(t) + T_{\text{intrinsic}}
\]
Both Becoulet’s $1/\nu$ Regime and Park’s “General” Formula Predict Very Large NRMF Torques in ITER

- ITER (Scenario 2) with ELM suppression fields
 - $\tau_{\text{dam}} \sim 10 \text{ ms (} 1/\nu \text{ regime)}$
 - [Becoulet, et al., IAEA (2008)]
- NRMF Torque is very large compared to NBI torque
 - $\tau_L \sim \tau_E = 3.7 \text{ s}$
 - $T_{\text{NRMF}}/T_{\text{NBI}} = \tau_L/\tau_{\text{dam}} \sim 370$

- ITER (Scenario 2) with ELM suppression fields
 - $\tau_{\text{dam}} \sim 10\text{-}100 \text{ ms (general formula)}$
 - [Park, et al., IAEA (2008)]
- Still, NRMF Torque is very large compared to NBI torque
 - $T_{\text{NRMF}}/T_{\text{NBI}} = \tau_L/\tau_{\text{dam}} \sim 37\text{-}370$
Calculated Neutral Beam Torque Profile May be Questionable in the Presence of Alfvén Eigenmodes

- Neutral Beams are Primary Source of Angular Momentum on Most Large Tokamaks

- Torque profile deposited by neutral beams typically calculated by codes like TRANSP
 - Classical transport of fast ions included

- Most DIII-D plasmas exhibit various Alfvén Eigenmode
 - Redistribute fast ions, non-classical transport
ECH has been Used as a Means of Controlling Reverse Shear Alfvén Eigenmode (RSAE) Activity

- **ECH near $\rho(q_{\text{min}})$**
 - RSAEs suppressed
- **ECH near axis**
 - RSAEs present

See Van Zeeland poster JP8.00087
Analysis of Momentum Transport Gives Estimate of Anomalous Fast Ion Diffusion Driven by RSAEs

- Assuming classical fast ion (FI) transport
 - Local diffusivity χ^eff_ϕ is notably larger for $\rho<0.7$ for shot with RSAE’s (wrong source profile)
Analysis of Momentum Transport Gives Estimate of Anomalous Fast Ion Diffusion Driven by RSAEs

- **Assuming classical fast ion (FI) transport**
 - Local diffusivity χ_{ϕ}^{eff} is notably larger for $\rho<0.7$ for shot with RSAE's (wrong source profile)

- **If use $D_{fi}=0.3\rightarrow0$ m2/s profile**
 - Better match for χ_{ϕ}^{eff} for $\rho<0.7$

- **Torque profile altered by inferred RSAE-induced fast ion transport**
 - 50% reduction in core
Deduced Anomalous Diffusion Consistent with Fast Ion Measurements

- Classically, discharge with RSAE’s expected to have slightly greater fast ion pressure.
- Measurement of fast ion profiles (FIDA) shows it has lower pressure.
- Anomalous fast ion diffusivity also consistent with change in measured neutron rate.
Anomalous FI Diffusion Deduced from Momentum Transport Accounts for RSAE Neutron Deficit

- Large deficit in neutron rate compared with classical computation
 - Enhanced when RSAEs present

- Neutron rate recalculated based on deduced anomalous fast ion diffusion profile

- Additional neutron deficit associated with case with RSAE’s accounted for
Significant Alfvén Eigenmode Activity in These Discharges Again Has Visible Effect on Fast Ions

- TRANSP over-predicts neutrons by 20–30%.
- TRANSP total stored energy high compared with kinetic EFIT.
- Assuming other kinetic profiles are correct, suggests fast ions not behaving classically.
Anomalous Fast Ion Diffusion Can Bring Neutron Rate and Stored Energy Into Agreement

- Anomalous diffusion $D_{fi} \sim 2 \text{ m}^2/\text{s}$ brings neutron rate down to measured value
- Central fast ion pressure reduced $> 30\%$
- Central torque density reduced $> 50\%$
Different Response of Angular Momentum to Torque Observed in Hybrid Scenario

- $q_{95} \sim 4.5$, $\beta_N \sim 2.5$

- Still have significant angular momentum at zero NB torque

- Scan does not get to zero angular momentum
 - 3/2 mode slows and locks
 - Can’t estimate anomalous torque

- Can still get incremental momentum confinement time
 - Shows improvement with increasing rotation

![Graph showing the relationship between torque and confinement time.]
For Hybrids, Relative Importance of ExB Shear Diminished as Rotation Reduced

- Uses measured density, toroidal rotation, and current profiles
- At high rotation, ExB shear essential to reproduce measured temperature profiles
- At low rotation, ExB shear (not surprisingly) plays little role
ExB Shear Appears To Be Much Less Important in the Previous H-mode plasmas

- Agreement of temperature profiles is not dramatically improved by including ExB shearing
- Underlying degradation of momentum confinement with torque can be masked by strong ExB shear.
Non-Axisymmetric Magnetic Fields Apply a Torque to the Plasma

- Non-axisymmetric fields practically unavoidable, and may be deliberately applied (e.g., ELM suppression)
- Both resonant and non-resonant fields affect plasma rotation

Resonant braking \[T \propto \frac{1}{V_\phi} \]

Non-Resonant braking \[T \propto V_\phi \]

[Graphs showing the relationship between I-coil current and toroidal velocity over time, with labeled regions for different time periods and shading for specific cases.]
However, Correlation is Not Always Seen Even at DIII-D Aspect Ratio

- Momentum and ion thermal diffusivities comparable at large rotation
 - Standard result
- But, diffusivities show different dependence on rotation
- Important to correct for intrinsic rotation at low torque
- Momentum diffusivity increases with rotation esp. for $\rho \geq 0.5$
- Including momentum pinch may restore correlation between both quantities

Solomon PPCF 2007
Total Mechanical Angular Momentum Reveals Non-Linear Response to Total Neutral Beam Torque

- Suggests momentum confinement time is dependent on torque
 \[\tau_\phi \sim \frac{L}{T} \]

- Simple quadratic fits data
 \[L - L_0 = AT - BT^2 \]
 \[L_0 \equiv \text{Intrinsic angular momentum} \]

- Need to include torque associated with intrinsic rotation
 - If \(L \) doesn’t go to zero with \(T \), then \(\tau_\phi \) blows up
 - If \(L \) positive when \(T \) negative, get negative \(\tau_\phi \)
Momentum Confinement Shows Improvement as the Neutral Beam Torque is Reduced

- Momentum confinement time recomputed allowing for intrinsic torque
 \[\tau_\phi \sim \frac{L}{(T_{\text{NBI}} + T_{\text{intrinsic}})} \]

- Find same improvement at low torque when analyze dynamic behavior
 \[\frac{dL}{dt} = T(t) - \frac{L(t)}{\tau_\phi^{\text{relax}}} \]

![Graph showing relationship between \(T_{\text{NBI}} + T_{\text{intrinsic}} \) and \(\tau_\phi \)]

- Steady state
- Transient
Including Momentum Pinch Improves Fit to Momentum Flux Evolution

- Non linear least squares fit of χ_ϕ, V_ϕ^{pinch} profiles
 - Assumed constant in time
- Inclusion of pinch improves reconstruction of momentum flux at some radii on NSTX
 - Still not perfect \rightarrow Other off-diagonal terms? χ_ϕ, V_ϕ^{pinch} changing...?
• Rotation plays an important role in fusion plasmas
 – Turbulence suppression
 – RWM and NTM stabilization

• Therefore, performance of future devices depends on attained rotation profile

• Achieving predictive understanding of rotation and exploiting this knowledge to generate optimal rotation profile will result in significant payoff for fusion

• Problem can be broken down into three key areas
 – Sources (Neutral beam, intrinsic …)
 – Sinks (Resonant and non-resonant magnetic fields…)
 – Momentum transport (confinement, diffusivity, pinch…)

WM Solomon/IAEA/Oct2008