Neoclassical Tearing Mode Control with ECCD and Magnetic Island Evolution in JT-60U

A. Isayama 1), G. Matsunaga 1), T. Kobayashi 1), S. Moriyama 1), N. Oyama 1), Y. Sakamoto 1), T. Suzuki 1), H. Urano 1), N. Hayashi 1), Y. Kamada 1), T. Ozeki 1), Y. Hirano 1), L. Urso 2), H. Zohm 2), M. Maraschek 2), J. Hobirk 2), K. Nagasaki 3) and the JT-60 team 1)

1) Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
2) Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany, EURATOM Association
3) Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan

22nd IAEA Fusion Energy Conference, 13-18 October 2008, Geneva, Switzerland
Neoclassical Tearing Modes (NTMs)
- appear in a high β plasma with positive shear
 ITER Standard and Hybrid scenarios
- set achievable beta at $\beta_N < \beta_N$
- sometimes cause disruption

NTM control is important
... In particular, $m/n=3/2$ and $2/1$

Two scenarios for NTM suppression
- Avoidance of onset through $p(r)$ & $j(r)$ control T. Suzuki et al., EX/1-4Rc
- Active NTM stabilization This talk

Active control tool:
Electron Cyclotron Current Drive (ECCD)
- Highly localized current drive
- Flexible ECCD location with steerable mirror
NTM stabilization with ECCD in JT-60U

Previous results in JT-60U
• Stabilization with O1 & X2 ECCD
• Stabilization with real-time mirror steering
• Preemptive stabilization
• Simulation with TOPICS code

Remaining issues
• How much is the minimum EC wave power for complete stabilization?
• How much is the allowable misalignment?
• Is modulated ECCD really effective? If yes, how much?

Investigation of \(m/n=2/1 \) NTM is important because it is more dangerous

This talk
• Identification of minimum EC wave power
• Effect of misalignment on NTM stabilization \(m/n=2/1 \)
• Stabilization with modulated ECCD
Typical discharge of m/n=2/1 NTM stabilization

- 2/1 NTM onset at t=5.8s
- Step down of NB power + bal. to ctr injection at 7s
- ECCD from 9.5s

Detailed island structure measurement by ECE diagnostic
Minimum EC-driven current for complete stabilization has been identified in two regimes

- Previous experiments: *overstabilized* i.e. $P_{EC} > P_{EC}^{\text{min}}$

- For efficient stabilization, identification of I_{EC}^{min} ($\sim P_{EC}^{\text{min}}$) is necessary

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_p [\text{MA}]/B_t [\text{T}]$</td>
<td>1.5 / 3.7</td>
<td>0.85 / 1.7</td>
</tr>
<tr>
<td>$\beta_N^{\text{sat}} / \beta_N^{\text{marg}}$</td>
<td>0.9 / 0.4</td>
<td>1.5 / 0.8</td>
</tr>
<tr>
<td>$W_{\text{sat}} / W_{\text{marg}}$</td>
<td>0.12 / 0.06</td>
<td>0.15 / 0.08</td>
</tr>
<tr>
<td>d_{EC}</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>$(j_{EC}/j_{BS})_{\text{min}}$</td>
<td>0.35-0.45</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>$(I_{EC}/I_{BS}){@W{\text{marg}}}$</td>
<td>0.78</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>($d_{EC}>W_{\text{marg}}$)</td>
<td>($d_{EC}<W_{\text{marg}}$)</td>
</tr>
</tbody>
</table>

* $I_{BS}=2\pi \rho_s W_{\text{marg}} j_{BS} (\rho=\rho_s)$

- Different ECCD deposition width
 - Case 1: $W_{\text{marg}}/d_{EC}=0.75$ Wide ECCD
 - Case 2: $=1.6$ Narrow ECCD

- Future work: extrapolation to ITER
 - Note $W_{\text{marg}}/d_{EC}<<1$ in ITER
More precise alignment of ECCD location is required for narrower ECCD width

- For effective stabilization, ECCD misalignment should be small
- In reality, there is some misalignment

- $W_{\text{sat}}/d_{\text{EC}} \approx 1.5$ for case 1 (wider ECCD), $W_{\text{sat}}/d_{\text{EC}} \approx 3$ for case 2 (narrower ECCD)
- Similar V-shape is obtained by normalizing to d_{EC}
- Allowable misalignment: $|\rho_{\text{EC}} - \rho_{q=2}|/d_{\text{EC}} \approx 0.5$
ECRF system in JT-60U has been upgraded to achieve power modulation at $>\sim 5\text{kHz}$

- **Modulated ECCD**: more effective than unmodulated ECCD
 Experimental verification is important for ITER
 Modulation at several kHz is technically challenging

Progress in modulation
- NTM stabilization
- Heat wave propagation

Synchronization with NTM
- Magnetic probe signal to synchronize with NTM rotation

S. Moriyama et al., FT/P2-26
Frequency tracking was successful

- Modulated ECCD: phasing is required for O-point ECCD
- NTM frequency ~ plasma rotation: change in time
 => Frequency tracking is necessary for accurate phasing
 => Parameters for gyrotron operation were optimized in real time

- Trigger signal was generated as expected while the mode frequency changed from 4.3 to 6.1kHz
- Delay from trigger signal is also taken into account
Stabilization effect is significantly affected by the phase difference between dB/dt and ECCD

- 0° phase difference: stabilization effect
- 90° phase difference: no clear effect
- 180° phase difference: destabilization effect

=> Phasing is important
Detailed phase scan showed that phase error should be smaller for effective stabilization

\[\tau_{\text{decay}}: \text{minimum at } \sim -10^\circ \]
\[\Rightarrow \text{O-point ECCD} \]

\[\text{Allowable phase error: e.g. } \tau_{\text{decay}} < 1.5 \tau_{\text{decay}}^{\text{min}} (\sim 1.8 \text{s}) \]
\[\Rightarrow |\Delta \alpha| < \sim 50^\circ \]

ECCD efficiency: \(\eta_{\text{EC}} \)

\[\eta_{\text{EC}} = \int_{-1}^{\infty} j_{\text{EC}}(\Omega) \frac{R(\Omega)}{S(\Omega)} d\Omega \]
\[R(\Omega) = \int \frac{\cos \alpha d\alpha}{\sqrt{\Omega + \cos \alpha}}, \quad S(\Omega) = \int \frac{d\alpha}{\sqrt{\Omega + \cos \alpha}} \]

Modified Rutherford equation

\[\frac{dW}{d\tau} = f(W) - \eta(W)g(W) \]
\[\alpha_c \]

\[\text{Similar to experiments} \]

JT-60U

Hegna, PoP '97
Perkins EPS '97
Giruzzi, NF '99
Superiority of modulated ECCD to unmodulated ECCD has been demonstrated

- **EC wave power**
 - #3: 0-100% modulation
 O-mode power: 0.49MW
 - #2: 20-100% modulation
 O-mode power: 0.52MW
 - #1: no modulation
 O-mode power: 0.56MW

Similar power: ~0.5MW

- **ECCD location of #1-3: ~same**
 (from ray tracing & F-P code)

- **Island center: ~same**
 (rather toward better alignment)

The difference is mainly due to the difference in ECCD pattern

=> modulated ECCD is more than twice effective
Summary

Active control of \(m/n=2/1 \) NTM with ECCD has been extensively performed in JT-60U

Minimum EC-driven current for complete stabilization
- Range of the minimum required current has been identified in two different regimes
 - \(j_{EC}/j_{BS}=0.35-0.45 \) for \(W_{\text{marg}}/d_{EC}=0.12/0.08 \)
 - \(j_{EC}/j_{BS}=0.2-0.4 \) for \(W_{\text{marg}}/d_{EC}=0.08/0.05 \)

Effect of misalignment on NTM stabilization
- Higher precision of ECCD alignment for narrower ECCD width
- Misalignment \(|\rho_{EC}-\rho_{q=2}|/d_{EC} <\sim 0.5 \) for efficient stabilization

Stabilization by modulated ECCD
- Successful modulation at \(\sim 5kHz \) including phase tracking
- Phasing is important: Phase error \(<\sim 50^\circ \) for >50% degradation
 Consistent with theoretical model
- Modulated ECCD is more than twice effective than CW ECCD
Issues in synchronizing EC wave with NTM: Disturbances by other NTMs, ELMs, ...

- Trigger signal was disturbed at ELM ($f_{\text{ELM}} \ll f_{\text{NTM}}$)
- $\text{dB/dt signal: } 2/1 + 3/2$
- ITER Standard / Hybrid operations: ELMy H-mode & prone to 2/1 + 3/2

 => Development of pre-processing scheme is also important