Progress on the development of ion-based fast ignition

presented by:
Juan C. Fernández
Los Alamos National Laboratory

presented to:
22nd IAEA Fusion Energy Conference
Geneva, Switzerland
October 13 – 18, 2008
Collaborators and acknowledgements:

- Collaborators, LANL
 - B. Albright, M. J. Schmitt, Lin Yin (X-1, Applied Physics)
 - K. Flippo, B. M. Hegelich (P-24 Plasma Physics)
- Collaborators, Universidad Politécnica de Madrid
 - Javier Honrubia, Mario Temporal
- Collaborators, Ludwig Maximiliens Univ., Munich
 - B. M. Hegelich, D. Habs, A. Henig, D. Kiefer, D. Jung
- Collaborators, Queens Univ., Belfast
- Acknowledgements
 - LANL Laboratory Directed Research & Development program
 - DOE NNSA funding for Trident operations
 - Dept. of Energy, Office of Fusion Energy Sciences
 - Trident laser facility (LANL) staff
Summary of fast ignition (FI)

- FI is isochoric ignition (conventional is isobaric)
- Long-pulse (> 10 ns) driver to compress DT to 300 – 500 g/cm3, $\rho r \sim 3$ g/cm2
- Particle beam must deposit ~ 10 kJ in ~ 25 ps (~ 4 PW) within hot-spot (HS) volume (~ 25 -- 50 μm)3, i.e., $\sim 10^{22}$ W/cm3 → laser driver

Alternative schemes:

M. Tabak et al., PoP 1 1626 (1994)

M. Roth et al., PRL 86 436 (2000)

We consider a laser-driven $Z > 1$ ion ignitor beam (e.g., C).
Issues relating to ion-driven fast ignition:

• Fuel assembly
 – shield ion-source from implosion → want large standoff
 – cone → difficult implosion

• Laser conversion efficiency to particle beam
 – Laser → hot e⁻
 – Hot e⁻ → ion ignitor beam

• Fuel $\rho r \sim$ particle range → laser I
 – $e^- \rightarrow \sim 1$ MeV → $I \sim 5 \times 10^{19}$ W/cm2
 – Protons $\rightarrow \sim 13$ MeV → $I \sim 10^{20}$ W/cm2
 – $C \rightarrow \sim 440$ MeV $\rightarrow I \sim 10^6$ W/cm

• Req. power density & I → beam area (BA)
 – BA \gg hot spot area → focus beam
 – Problem for e⁻-based FI

• Finite particle beam energy spread $\delta E/E$
 – High $\delta E/E$ → wasted ignitor energy

• Particle-beam transport
 – Arrival time spread → $\delta E/E$ trade versus standoff
Quasi-monoenergetic low-Z ions (e.g., C) have potential advantages as a fusion ignitor beam.

- **Potential advantages** over electron* or proton-based\(^1\) FI:
 - Quasi-monoenergetic-ion source may be placed far from the fuel
 - Sharper deposition (higher efficiency)
 - Most robust particle-beam transport
 - Many fewer ions than protons required
 - Required thin targets and very high laser contrast now demonstrated!

- **Potential issues**:
 - Laser – ion conversion efficiency: \(\sim 10\%\) desired
 - Focusing C ion beam: only proton focusing demonstrated

<table>
<thead>
<tr>
<th>Beam Ion</th>
<th>Energy (MeV)</th>
<th>Number of Ions</th>
<th>Laser Irrad. (W/cm(^2))</th>
<th>Minimum areal densities, layer thickness @ 0.1 mm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td>7 – 19</td>
<td>(10^{16})</td>
<td>(\sim 10^{20})</td>
<td>(10^{18}) cm(^{-2}), (\sim 2) µm (CH)</td>
</tr>
<tr>
<td>C</td>
<td>400-480</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Tabak et al., PoP 1, 1626 (1994); \(1\) Roth et al., PRL 86, 436 (2001);
\(2\) D. Clark & M. Tabak, Nucl. Fus. 24, 1147 (2007)
Two key technological requirements to study ion acceleration at the ~ GeV level are now in place:

• **Ultra-thin targets (10-100 nm)**
 – Have settled on diamond-like C (DLC) as a technologically convenient species
 – As part of our collaboration with LMU (Munich), they have provided DLC targets in thicknesses of 3, 5, 10, 30, 50 & 60 nm.

• **Laser pulses with ultrahigh contrast (~ 10^{10}) and no prepulse**
 – Have discovered that post-pulses can turn into prepulses.
 – Invented new scheme for pulse cleaning (“SPOPA”).*
 – Improved laser contrast ratio on Trident (10^7): prepulses < 5×10^{-10} & ns pedestal < 2×10^{-12}.
 – These targets (down to 3 nm) have been fielded successfully on Trident with new high-contrast front end.

Target damage measurement @ 5×10^8 W/cm2
Ion-driven FI design issues

• Assume fuel assembly design as given

• Does it matter which ion species?

• What is the operating space for high gain?
 – Ion-beam requirements (e.g., ion energy)
Integrated LASNEX designs in 2D for proof of principle experiments using the LASNEX hydro code

• Simulated experiment (preliminary design):
 – Capsule with cryogenic DT, plastic ablator
 – Various ignitor beam species

• Capsule implosion
 – Compression with radiation source
 – 14.2 ns pulse (foot + \(P \sim t^{3.5} \) pulse)
 – Energy absorbed: 35.5 kJ
 – Fuel density: \(\rho_{\text{DT}} \sim 150 \text{ g/cc} \)

• Two (symmetric) ignitor beams
 – Vary ion energy (C: 375 – 750 MeV ± 10%)
 – Beam energy: 7.2 kJ Ea.
 – Gain \(\equiv \) fusion energy / (35.5 + 14.4) kJ

\[T_r (\text{keV}) \]
\[\text{time (ns)} \]

\[\text{Vary ion energy} \]
Fusion gain is similar for all ignitor ion species when properly optimized.

- Beams are a pair of counter-propagating 7.2 kJ ion beams injected along capsule symmetry axis

- Energy spread: +/- 10%

- Beams injected so that deposition occurs at time max DT fuel density in compressed capsule

- Maximum gain peaks with slight beam overlap.
 - Importance of ion-stopping model.
Requirements for high gain with C ignitor beam have been explored with the SARA* code.

- **SARA design code:**
 - Hydrocode
 - Multi-group radiation transport
 - Fusion burn
 - Ion-beam package with Monte Carlo transport

- **C ion ignitor beam**
 - $\delta E/E = 10\%$ (unless otherwise indicated)
 - Assumed to be focused to 31 μm in diameter

- **Three DT fuel assemblies considered**
 - Isochoric sphere @ 500 g/cc
 - Supergaussian (SG)
 - Direct drive (DD) implosion, 485 kJ laser energy

For a C ignitor beam, energy minima for ignition & high gain (~ 50 – 100) lie @ 300 – 500 MeV ion energies.*

- Details of the DT density profile matter due to finite beam-energy losses on the way to the fuel core.
- C-ion energy spread should be modest (~ 10%).

Summary of laser-driven ion acceleration:

- Laser couples to target electrons
 - Ponderomotive force \(-q^2 \nabla E^2 / 4m \omega^2\)
 - Heating (with linear polarization)
 - Pressure (circular polarization)

- Relativistic e\(^-\) population out of equilibrium
 - \(\lambda^2 > 1.33 \times 10^{18} \text{ Wcm}^{-2} \mu\text{m}^2\)
 - KE > rest mass
 - High energy Effic.
 - \(\sim 30 – 50\%\)
 - Directed motion
 - Expansion

- Relativistic e\(^-\) population couples to ions
 - Charge separation
 - Kinetic instability

- Directed ion beam
 - MeV – GeV
 - Born in ps
 - Neutralized \(\rightarrow\) high current

- Very large multi-scale computational problem in relativistic laser-plasma interactions
We are applying unique LANL resources to discover & model ion-beam generation physics.

- World’s most powerful PIC code (VPIC) on the world’s most powerful supercomputer (Roadrunner): first sustained ~ Petaflop performance, 10^{12} particles
- VPIC has been extensively validated in relativistic laser matter interactions, LPI, magnetic reconnection, etc.

Ion Acceleration Mechanisms:

<table>
<thead>
<tr>
<th>Ion Acceleration Mechanism</th>
<th>Max. Ion Energies</th>
<th>Ion Accel. Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-Normal Sheath Acceleration (TNSA)¹</td>
<td>10’s MeV</td>
<td>Charge separation (virtual cathode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Laser-based ion acceleration mechanisms:

<table>
<thead>
<tr>
<th>Ion acceleration mechanism</th>
<th>Max. Ion Energies</th>
<th>Ion Accel. process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-Normal Sheath Acceleration (TNSA)(^1)</td>
<td>10’s MeV</td>
<td>Charge separation (virtual cathode)</td>
</tr>
<tr>
<td>Break out afterburner (BOA)(^2)</td>
<td>~ GeV</td>
<td>Kinetic Instability (Buneman): relative e-i drift</td>
</tr>
</tbody>
</table>

Ion acceleration mechanisms:

<table>
<thead>
<tr>
<th>Ion acceleration mechanism</th>
<th>Max. Ion Energies</th>
<th>Ion Accel. process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-Normal Sheath Acceleration (TNSA)(^1)</td>
<td>10’s MeV</td>
<td>Charge separation (virtual cathode)</td>
</tr>
<tr>
<td>Break out afterburner (BOA)(^2)</td>
<td>~ GeV</td>
<td>Kinetic Instability (Buneman): relative e-i drift</td>
</tr>
<tr>
<td>Radiation Pressure Acceleration (RPA)(^3)</td>
<td>~ GeV</td>
<td>Charge separation</td>
</tr>
<tr>
<td>Aka Plasma Piston</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOA

- \(n_{\text{crit}} = \omega_{\text{pe}} 5500.00\)
- 30 nm C foil + proton impurities
- Laser carbon

RPA

- 100 nm H @ 100 \(n_{\text{crit}}\)
- Laser
Stages to reach the Breakout Afterburner (BOA) phase of ion acceleration (discovered with VPIC)

1. TNSA
 - SP laser
 - cold electrons
 - hot electrons

2. Enhanced TNSA
 - all electrons hot

3. BOA
 - SP laser
 - Buneman instability
 - mono-energetic ion acceleration stage
 - energy broadening + ion acceleration stage

- volumetric e⁻ heating
- e⁻ drift
Discovery of the laser-breakout afterburner* (BOA): a path to high efficiency & high energy ion beams

- **Requirements:**
 - $I \sim 10^{20} \text{ -- } 10^{21} \text{ W/cm}^2$
 - Ultra-thin targets (e.g., ~ 30 nm C)
 - Ultra-high laser contrast ($\sim 10^{10}$)

- **1D, 2D, 3D Simulations using VPIC code**
 - Start with solid density C, including cases with H contaminants

- **Ion acceleration mechanism:**
 - Enhanced TNSA
 - Laser penetration across target
 - Electron heating & drift relative to ions
 - Electron energy \rightarrow ion energy via kinetic Buneman instability.

- **Initial simulations** ($I \sim 10^{21} \text{ W/cm}^2$, 30 nm targets, C):
 - 35% (in 1D), 15% (in 2D) of all ions accelerated to 0.3 GeV ± 7%, 4% efficiency.
 - C-ion acceleration is “immune” to surface or volumetric proton contamination!

* L. Yin et al., Phys. Plasmas 14, 056706 (2007); Laser and Part. Beams 24, 291 (2006);
High laser-pulse contrast on thin targets improves Carbon acceleration.

- Up to 200 MeV Carbon with 40 J laser energy on target at high contrast using plasma mirrors.
- Compared to 36 MeV C5+ with 20 J at low contrast.
- Would expect 75 MeV from TNSA scaling [Fuchs, Nature Phys. 2007]
- VPIC predictive capability
- Probably accessed Enhanced TNSA

* B. M. Hegelich, et al., Nature

Results

\begin{itemize}
 \item \texttt{C6+ for 50nm Diamond Target}
 \item \texttt{“1D” VPIC Simulation}
 \item \texttt{~ 106 \times 50 MeV} \times 100 msrd = \texttt{5 \times 109 ions}
 \item \texttt{Trident 20 J}
 \item \texttt{TNSA cutoff}
\end{itemize}
Higher laser greatly improves performance: ion energy and number of particles.

- Trident shot #20570: 9/2008 with high-contrast front end
- Target: 58nm DLC foil
- Laser pulse on target: 90.1 J in 0.54 ps
- Focal spot radius: 3.5 μm (46% of energy)
- Intensity: 2×10^{20} W/cm²

Results

Preliminary
Summary:

• The FI requirements & issues have been summarized.

• A novel FI concept based on a laser-driven C-ignitor beam has been presented

• FI designs yield encouraging results

• Technological advances to study beam generation are now in place
 – Ultrahigh laser-pulse contrast
 – Ultrathin laser targets

• Experiments to validate ion acceleration mechanisms are now beginning

Please visit us in the Thursday PM poster session!
Outline:

- Summary of general fast ignition (FI) requirements, issues & challenges
- Why ion-based FI
 - *E.g.*, C-ion based
- Requirements from ion-based FI designs
- Realizing the required laser-driven ion beams
- Initial results
- Summary
3D simulation of RPS Carbon acceleration

Circular polarization, 30nm C and $I_0 = 10^{21}$ W/cm2 & 312 fs pulse

Our largest simulation to date on ion acceleration (run on Roadrunner base system):

- Physical domain 25x25x20 μm w. solid target density
 14×10^9 cells, 21×10^9 particles, 4096 processors
- Contrasting with sim. size at the time of the proposal:
 0.5×10^9 cells, 2.2×10^9 particles, 510 processors
- 3D visualization using EnSight server-of-servers mode enables viewing, analysis of very large (multiple-TB) data sets.

- VPIC has been modified to run efficiently on Roadrunner (Opteron hosted hybrid supercomputer with 12960 IBM Power Xcell 8i chips)
- We anticipate an additional factor of ~ 10 in speed over Opteron, enabling routine trillion-particle PIC simulations
- We have obtained a significant allotment of time (13 million hours, $>1/3$ of time when whole system is available) on the full 3 Pflop/s (single precision) Roadrunner system
Max proton energies on Trident with thin targets match or exceed published, contrast-limited scaling laws.

Enhanced Trident exceeds scaling laws by an order of magnitude at low irradiance. At high irradiance, it approaches scaling laws, i.e., contrast limited.

Petawatt Performance at 120 TW
- Trident: 50 MeV at 5×10^{19} W/cm²
- NOVA Petawatt: 58 MeV at 3×10^{20}
- RAL PW: 53 MeV at 6×10^{20}
Simulations have been carried out with the SARA-2D code

- Comparison with Atzeni et al. ignition energies of DT at 400 g/cm³ by monoenergetic proton beams [Atzeni, Temporal and Honrubia, NF 42, L1 (2002)].

- Graph showing minimum ignition energy (kJ) as a function of proton beam energy (MeV) with data points for SARA-2D and Atzeni et al.
Brief Overview of Laser-Ion Acceleration
Target Normal Sheath Acceleration (TNSA)

1. Preplasma Formation
 - Pre-plasma
 - Target

2. Pre-pulse
 - Hot e Generation
 - Reflected sp laser
 - Target

3. Ion Acceleration
 - Cold return current e
 - Refluxing e
 - Recirculation
 - Pre-plasma
 - Target

- Pre-plasma formation
- Hot electron generation
- Ion acceleration

Laser-driven TNSA proton beams have extremely low transverse emittance.

- Hot e \rightarrow MV/µm electrostatic fields at the target rear surface (virtual cathode).

- Measured transverse emittance of TNSA proton beams at Trident (LANL) and LULI (Ecole Politechnique).

- For 8 MeV component of the Trident beam, the upper bound on the transverse normalized beam emittance is 0.004 mm mrad, $\sim 100\times$ better than typical LINACs.*

Laser-produced ion beams have been focused.

- Neutralized beam: not bound by usual current and space-charge limits
- May be focused with quadrupole lenses and ballistically

Quadrupole lens focusing

Ballistic (shaped target)

M. H. Key et al., Fusion Science & Technology 49 (2006) 440
M. H. Key, Phys. Plasmas 14 (2007) 055502
Overview of Radiation-Pressure Acceleration of Ions

1. Ponderomotive push
 - Circularly polarized SP laser
 - Cold electrons

2. Charge separation
 - SP laser
 - Electrons displaced

3. Ion acceleration
 - SP laser
 - Electrons displaced
Radiation Pressure Acceleration (RPA) is another path to ~ GeV laser-driven ion beams.*

The key to realizing RPA is to push on the target electrons, rather than heating them.

- Uses *circularly* polarized light
- Electrons pushed by light pressure, minimal heating
- Charge-separation electric field bunches ions
- Mono-energetic ions are accelerated to high energies
- Requirements:
 - \(I \sim 10^{20} \text{ -- } 10^{21} \text{ W/cm}^2 \) with ultra-high laser contrast
 - Ultra-thin targets (e.g., \(\sim 30 \text{ nm C} \))
 - Circularly polarized light

VPIC has been used to study RPA acceleration of C, showing acceleration to ~ GeV.

- Requirements:
 - $I \sim 10^{21} \text{ W/cm}^2$ with ultra-high laser contrast
 - Ultra-thin targets (e.g., ~ 30 nm C)
 - Circular polarization

- 1D simulations using solid density C and 208 fs pulse (blue curve)
 - 60% of ions accelerated to $450 \text{ MeV} \pm 10\%$, 13% conversion eff.
 - 1D scaling with pulse length
 - C-beam energy increases with pulse length

- Concern: effects of higher-dimensions

- 3D VPIC simulations show:
 - high sensitivity to curvature, which may negate benefits of circular polarization
 - ~ GeV energies

- Further optimization is needed.

RPA deserves further consideration for ~ GeV ion acceleration.
VPIC demonstrates that proper tailoring of the laser pulse enables RPA acceleration of C in 2D.

- 2D Simulation conditions (example, idealized case):
 - $I \sim 10^{21}$ W/cm2
 - Supergaussian in space $\sim \exp\{-[r^2/(2w^2)]^3\}$ where $w = 10$ micron
 - Supergaussian in time with $w = 9$ fs
 - Circular polarization

- Results at 104 fs:
Contrast:
The dirty truth about short-pulse lasers

Contrast comes in several varieties:

- Amplified Spontaneous Emission (ASE) Contrast: a laser pulse is only as good as its regen.
- Pre-pulse contrast, reflections can lead to pre-pulses from saturation effects of post-pulses
- Extinction ratio, a laser pulse is only as good as its Pockel’s Cells to extinguish pulse train

1.053 micron pulse, ω_0 typical ASE pedestal 10^7

Gaussian Fit of CPA Pulse

Short-pulse pre-pulse

ASE pedestal

FWHM = .6 ps

Peak of CPA Pulse

$m_e v_o^2 = m_e c^2$

Intensity (W/cm²)

Power 10^{19}

10^{18}

10^{17}

10^{16}

10^{15}

10^{14}

10^{13}

10^{12}

10^{11}

Time (ps)

10^1 10^2 10^3 $<10^{11}$

Plasma Expansion

Target Ionization

Target Vaporization

Have just achieved this.

A 3 -- 4 order improvement!
We used high-contrast laser pulses produced with plasma mirrors to validate our understanding of pre-pulse effects.

- Done while awaiting for high-contrast front end on Trident.
- **We shot ultra-thin DLC targets (10-50 nm)**
 - Provided by LMU
 - Hosted 2 LMU grad students and 1 QUB grad student for the run.

- Laser pulse contrast was enhanced by using two consecutive plasma mirrors in the focusing chain.
 - Improve contrast by $\sim 10^4$ (based on published results)
 - Paid high energy penalty
 - Demonstrated good performance down to 30 nm thickness.
LANL has extended TNSA acceleration to heavy ions based on a reliable laser heating technique.
Joule heating of Pd foils (evaporate surface impurities) yields on beam with a significant yield of highly ionized heavy ions.

- Trident 30 TW data
- Pd$^{22+}$ ions (assuming 10° beam):
 1.75 X 109 \geq 1 MeV/u \rightarrow 0.23% of laser energy;
 2.4 X 1010 total \rightarrow 1.1% of laser energy
- Pd$^{4+}$ ions (not shown):
 1.1% of laser energy
- High-energy cutoff consistent with theory
CW laser heating of Ni foils has resulted in ~ 1% laser conversion efficiency into a Ni\(^{18+}\) ion beam.

- Target: Ni, 15 µm thick.
- Ni\(^{18+}\) → 0.8 % of laser energy on old 30 TW Trident.
- High-energy cutoff (reduced model by Albright et al.*
 \[E_{I,\text{max}} \sim 2T_h Z^j \]) is higher than expected.
 - Self focusing probably increased intensity.

Path towards control of ion energy spectrum & higher energy/nucleon
We inadvertently exploited a surface catalytic reaction to create a nearly mono-energetic beam.*

Target: Pd 20 µm, J-heated; Trident shot #16159

Monochromatic highly ionized C beam!

Tailored surface conditions (e.g., thin films) are the key to new ion acceleration regimes.

* B. M. Hegelich et al., Nature 439, 441 (2006)
Heating certain metals (e.g. Pd) to 800 - 1000° C catalyzes a reaction leaving a few C monolayers on the surface.

- The chamber atmosphere (~ 10^{-6} torr) provides a source of hydrocarbons.
- Heating the target to 400 - 600° C liberates all the H.
- Heating the target to 600 - 800° C leaves a carbon layer.
- Heating the target to 800 - 1000° C results in a C monolayer
- Heating the target above 1000° C liberates all surface contaminants.
Our understanding of TNSA has allowed the development of reduced models for ion-acceleration dynamics.*

1D hybrid code BILBO (Backside Ion Lagrangian Blow Off):
- Analytic solution to Vlasov-Maxwell system
- Threshold ionization model
- Hot electron cooling model (3D effect)

* B. J. Albright et al., Phys. Rev. Lett. 97, 115002 (2006);
 B. M. Hegelich et al., Nature 439, 441 (2006)
If a thin layer on a substrate works well, how about no substrate? Breakout After-burner (BOA)
Stages to reach the Breakout Afterburner (BOA) phase of ion acceleration

1. TNSA
 - SP laser
 - Cold electrons
 - Hot electrons

2. Enhanced TNSA
 - All electrons hot

3. BOA
 - SP laser
 - Volumetric e⁻ heating
 - Energy broadening + ion acceleration stage
 - Mono-energetic ion acceleration stage
 - Buneman instability
 - e⁻ drift