Overview of results from the National Spherical Torus Experiment (NSTX)

D. A. Gates, PPPL

For the NSTX Research Team

22nd IAEA Fusion Energy Conference
Geneva, Switzerland
October 13-18, 2008
NSTX has made leading contributions in many areas of toroidal fusion science

• NSTX Mission is to:
 – Establish attractive ST operating scenarios & configurations
 – Complement tokamak physics and support ITER
 – Understand unique physics properties of the ST (in red) ⇒ basis of all the elements of the NSTX mission

Outline

• In support of this mission, NSTX has made significant progress in the areas of:
 – Transport and Turbulence
 – Plasma/wall interactions
 – MHD
 – Waves
 – Non-inductive startup
 – Advanced scenarios and control
 – Direct ITER support
NSTX Designed to Study High-\(\beta \) Toroidal Plasmas at Low Aspect-Ratio

- **Aspect ratio** \(A \) \(1.27 - 1.6 \)
- **Elongation** \(\kappa \) \(1.8 - 3.0 \)
- **Triangularity** \(\delta \) \(0.2 - 0.8 \)
- **Major radius** \(R \) \(0.85 \text{m} \)
- **Plasma Current** \(I \) \(1.5 \text{MA} \)
- **Toroidal Field** \(B_T \) \(0.4 - 0.55 \text{T} \)

Auxiliary heating:
- NBI (100kV) \(5 - 7 \text{ MW} \) (Pulse Length \(5 - 2 \text{ s} \))
- RF (30MHz) \(6 \text{ MW} \) (5 s)

Central temperature \(1 - 5 \text{ keV} \)

Central density \(1.2 \times 10^{20} \text{ m}^{-3} \)

- **PF coils for shaping, control**
- **Slim center column with TF, OH coils**
- **Conducting plates for MHD stability**
- **Insulated VV breaks for CHI**
- **Large diagnostic access ports**
- **Graphite/CFC PFCs + Lithium coating**
Observed onset of high-\(k\) electron turbulence consistent with ETG

- **NSTX ideal experiment for electron turbulence measurements** -
 - relatively large \(\rho^*\), large magnetic shear gives strong spatial localization
- Using High Harmonic Fast Wave heating to modify \(T_e\) profiles, observed turbulence
 - scales with \(R/L_{Te}\), rotates in electron direction, has large \(k_{\perp}\rho_i >> 1\) → Inconsistent with ITG turbulence
- GS2 calculations of ETG critical gradient show agreement with the onset of turbulence
- Have begun quantitative assessment of observed fluctuations on transport

See talk by E. Mazzucato EX/10-2

• **Radial location of turbulence measurement**
• **Spectral density for \(k_{\perp}\rho_e \sim 0.2-0.4\)**

Also see poster by H. Yuh EX/P3-1
Non-resonant $n=3$ magnetic braking capability is used to probe effect of ExB shear on confinement

- During beam injection, NSTX typically operates with $\gamma_{ExB} \sim 1\text{MHz} \sim 4-5\gamma_{ITG}$
 - Expect routine flow shear suppression of ion scale turbulence on NSTX

During beam injection, NSTX typically operates with $\gamma_{ExB} \sim 1\text{MHz} \sim 4-5\gamma_{ITG}$

- Expect routine flow shear suppression of ion scale turbulence on NSTX

- **Energy**
 - $n=3$ braking reduces the magnitude of edge velocity shear
 - Leads to an increase of edge ion thermal diffusivity

- **Momentum**
 - TRANSP analysis of rotation data from charge exchange $\chi_\phi \gg \chi_{\phi_{\text{neo}}}$
 - Indicates residual low-k turbulence

See talk by S. Kaye EX/3-2

Lithium coating increases confinement and suppresses ELMs

- Lithium evaporation capability greatly improved
 - Redesigned evaporator with higher temperature, better alignment
 - Second evaporator added in 2008

- Stored energy increases 20% with Lithium

- ~2/3 of the improvement in confinement is in the electron channel

See poster by R. Kaita EX/P4-9
Edge studies investigate scalings and mitigation of large SOL power flows

- Because of low-A effects, NSTX routinely operates with peak divertor heat fluxes ~ 10MW/m
 - Similar in magnitude to ITER heat divertor heat flux
- Important to mitigate heat flux and understand scaling to future low aspect ratio devices
 - **Divertor gas puffing reduces peak heat**
 - **SOL width scaling**
 - **Near SOL:** \(\lambda_T/e/\lambda_q \approx 2.3 \), closer to electron conduction dominant case \((\lambda_T/e/\lambda_q = 3.5)\) than sheath limited case \((\lambda_T/e/\lambda_q = 5)\)
 - **Far SOL:** \(\lambda_T/e/\lambda_q \approx 1.2 \), suggesting other dominant process

See poster by V. Soukhanovskii EX/P4-22
n=1 RFA/RWM control combined with n=3 error correction increases β and extends pulse

- **MHD spectrogram w/o n=1 feedback and n=3 correction**

- **MHD spectrogram with n=1 feedback and n=3 correction**

- Non-axisymmetric feedback algorithm has been developed using unique feedback training scheme
 - Prevents onset of MHD modes
 - Plasma rotation is maintained throughout discharge

- Control statistically raises β and increase pulse length

Pulse averaged βN vs. current flat-top

See talk by S. Sabbagh EX/5-1 See also talk by H. Reimerdes/J. K. Park EX/5-3R
n=3 braking enables investigation of effects of rotation and rotational shear on MHD stability

- Neoclassical island drive is measured at onset of 2/1 NTM
 - Shows clear increase with rotation shear, no clear trend with rotation
 - Also clear increasing trend in required island drive with type of trigger with EPM → ELM → no visible trigger

- Indicates role of flow shear in stabilizing NTMs
- Will impact NTM stability in ITER

\[\text{Neoclassical island drive vs. rotation frequency at the } q=2 \text{ surface} \]

\[\text{Neoclassical island drive vs. normalized rotational shear at the } q=2 \text{ surface} \]

See ITER poster by R. Buttery IT/P6-8
Edge density control using lithium coating has improved coupling efficiency of both HHFW heating and EBW emission

- NSTX explores the wave physics of overdense plasmas
 - HHFW heating efficiency improved by operating below the critical density for coupling to surface waves
 \[n \sim \frac{Bk}{\omega} \]
 - HHFW heats electrons in beam heated deuterium H-mode for first time
 - EBW emission efficiency improved by reducing the collisionality at the mode conversion layer
 - Transmission efficiency increased to \(~70\%\) with lithium from \(~10\%\) without lithium coating

See poster by C. Phillips EX/P6-25

See poster by S. Diem EX/P6-17
Multi-mode TAE avalanches are observed to induce fast particle loss on NSTX

- Because of its low toroidal field and high neutral beam voltage, NSTX routinely operates with $\nu / \nu_{\text{Alfvén}} > 1$

- Avalanches show modes with multiple n-numbers
 - TAE mode internal structure and amplitude are measured
 - Avalanche threshold also measured with beam voltage scan

- Particle losses are modeled using data, NOVA, and ORBIT
 - Good agreement found between measured and predicted losses

Important physics for ITER and burning plasmas

Magnetic spectrogram of multi-mode TAE avalanche on NSTX showing ~20% neutron loss

See talk by E. Fredrickson EX/6-3

See talk by N. Gorelenkov TH/5-2

Calculated $n=3$ radial eigenfunctions from the NOVA code

black $n=1$, red $n=2$, green $n=3$, blue $n=4$, magenta $n=6$
Ohmic ramp-up coupled to CHI startup plasma

- Because of low aspect ratio, NSTX has very limited inductive flux ~0.7Vs
- CHI ramps current from 0 to ~100-150kA of closed flux current
 - Current multiplication = \(\frac{I_{\text{inject}}}{I_p} \approx 70 \)
- Fixed loop voltage applied - current ramped to ~0.7MA
- NBI heating applied, plasma often enters H-mode

See poster by R. Raman EX/P6-10
NSTX accesses long pulse at high β with extreme plasma shaping scenario

- Because of improved vertical stability at low aspect ratio, NSTX can access very high elongation $\kappa \sim 3$
 - $f_{bs} \sim (1+\kappa^2)/2$

\forall β maintained well above the no-wall limit, $\beta_N \sim 5$

- Pulse extended - maintained non-inductive current fraction $f_{NI} \sim 65\%$ for $1-2\tau_{CR}$ - limited by TF coil heating limit
 - Uses $n=3/n=1$ control described earlier
 - Also uses lithium coating to improve confinement

Time history of global parameters and non-inductive current fraction as determined by TRANSP, constrained by MSE

Cross-section of $\kappa \sim 2.7$ equilibrium
NSTX is improving understanding of RMP ELM control and vertical stability for ITER

- Experiments using external n=3 fields with single row of midplane coils did not suppress ELMs
- Pulsed n=3 error fields triggered ELMs in discharges with lithium ELM suppression
 - ELM pacing with RMP coils?
- Typical induced VDE Evolution on NSTX

- Experiments using induced VDEs have measured Δz_{max}
- Results consistent with $\Delta z_{\text{max}}/a > 0.1$ for robust control
- Crucial that ITER has robust vertical control - internal control coil added

See rapporteured talk by A. Portone/D. Humphreys IT/2-4

See post-deadline paper by J. Canik

ELMS remove impurities reduce radiation

See post-deadline paper by J. Canik

[Graphs showing typical VDE evolution on NSTX]
NSTX has advanced the science of toroidal confinement and the ST concept across a broad spectrum of topics

- NSTX has progressed towards understanding the unique physics properties of the ST
 - Measured electron-scale turbulence consistent with ETG
 - Improved confinement with lithium
 - Measured and controlled edge and divertor power flows
 - Increased β and pulse length with RWM/RFA control
 - Improved wave coupling in over-dense plasmas with lithium
 - Observed and modeled TAE avalanches - important for burning plasmas and ITER
 - Coupled inductive ramp-up to CHI plasma
 - Achieved high β simultaneous with extreme plasma shaping
 - Investigated ELM RMP control and vertical stability for ITER

- These results are very promising for proposed future STs, such as NHTX and ST-CTF

See NHTX poster by R. Goldston FT/P3-12
See ST-CTF poster by Y. -K. M. Peng FT/P3-14
NSTX related posters at this conference

<table>
<thead>
<tr>
<th>Talks</th>
<th>Posters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td></td>
</tr>
<tr>
<td>“Momentum Transport in Electron-Dominated Spherical Torus Plasmas” S. Kaye</td>
<td>Electron transport H. Yuh EX/P3-1</td>
</tr>
<tr>
<td>“Advances in Global MHD Mode Stabilization Research on NSTX” S. Sabbagh</td>
<td>NHTX R. Goldston FT/P3-12</td>
</tr>
<tr>
<td>“Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas” H. Reimerdes/J. K. Park</td>
<td>ST-CTF Y. -K. M. Peng FT/P3-14</td>
</tr>
<tr>
<td>“Toroidal Alfvén Eigen-mode Avalanches” E. Fredrickson</td>
<td></td>
</tr>
<tr>
<td>“Theory and Observations of Low Frequency Eigen-modes due to Alfvén Acoustic Coupling in Toroidal Fusion Plasma” N. Gorelenkov</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Wednesday</td>
</tr>
<tr>
<td>“ITER Plasma Vertical Stabilization” A. Portone/ D. Humphreys</td>
<td>Lithium performance R. Kaita EX/P4-9</td>
</tr>
<tr>
<td>“Advances in Global MHD Mode Stabilization Research on NSTX” S. Sabbagh</td>
<td>Edge turbulence D. A. D’Ippolito TH/P4-17</td>
</tr>
<tr>
<td>“Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas” H. Reimerdes/J. K. Park</td>
<td>Divertor flux V. Soukhanovskii EX/P4-22</td>
</tr>
<tr>
<td>“Toroidal Alfvén Eigen-mode Avalanches” E. Fredrickson</td>
<td></td>
</tr>
<tr>
<td>“Theory and Observations of Low Frequency Eigen-modes due to Alfvén Acoustic Coupling in Toroidal Fusion Plasma” N. Gorelenkov</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Post deadline</td>
</tr>
<tr>
<td>“Turbulent Fluctuations with the Electro Gyro-scale in the National Spherical Torus Experiment” E. Mazzucato</td>
<td>Gyrokinetics W. X. Wang TH/P8-44</td>
</tr>
<tr>
<td>Post deadline</td>
<td>ELM triggering J. Canik</td>
</tr>
</tbody>
</table>