Particle simulation of energetic particle driven Alfvén modes

G. Vlad, S. Briguglio, C. Di Troia, G. Fogaccia, F. Zonca
Associazione EURATOM-ENEA, Frascati, (Rome) Italy

K. Shinohara, M. Ishikawa, M. Takechi
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan

W.W. Heidbrink, A. Bierwage
University of California, Irvine, California, USA

M.A. Van Zeeland
General Atomics, San Diego, California, USA

X. Wang
IFTS, Zhejiang University, Hangzhou, People's Republic of China
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. multi-\(n\) simulation
• Conclusions
Introduction

- Transport of fast ions (alphas and/or ions produced by aux. heating) can be enhanced by their resonant interaction with Alfvén modes
- Alfvén modes: TAEs, ..., Energetic Particle driven Modes (EPMs)
- EPMs can produce “avalanches” (ballistic fast-ion transport and radially moving unstable front)
- Burning plasma scenarios should avoid strongly driven Alfvén modes in order to prevent performance degradation and first wall damage
- Hybrid MHD-particle codes address these issues: particle-wave interactions retained in a self-consistent way
- ITER reversed shear scenario predicted to be close or above EPMs threshold
- Comparison between simulation and present day tokamak discharges
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. multi-\(n\) simulation
• Conclusions
• Hybrid MHD-Gyrokinetic Code (HMGC):
 – thermal plasma described by MHD equations
 – energetic particles (EP) described by nonlinear guiding-center Vlasov equation (Particle-in-cell technique)
 – self-consistent simulations (particles treated non perturbatively)
 – mode-mode coupling neglected in single-\(n\) simulations (but particle nonlinearities fully retained)
 – multi-\(n\) simulations retain also MHD nonlinearities
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. multi-\(n\) simulation
• Conclusions
Simulation of JT-60U discharge

Experiment

Weak shear, NNB heated discharge: Abrupt Large amplitude Events (ALEs) and fast Frequency Sweeping (FS) modes

- strong $n=1$ mode;
- $\beta_{H0}=8\pi P_{H0}/B^2 \approx 3\%$;
- $\Delta t_{ALE-exp} \approx 50 \div 200$ µs

Simulation

\(n=1 \) mode

Simulation of JT-60U discharge-cont’d

Energetic particle density profile

- **before ALE**
- **after ALE (experimental)**
- **relaxed (simulation)**

\[\frac{n_i}{n_{i0}} \]

\(r/a \)
Simulation of JT-60U discharge-cont’d

Simulation

\[n=1 \text{ mode} \]

Energetic particle density profile

- before ALE
- after ALE (experimental)
- relaxed (simulation)

linear growth rate \[\gamma \approx 0.106 \tau_{A0}^{-1} \]
burst time scale \[\Delta t_{EPM} \approx 150 \mu s \]
(S. Briguglio et al., PoP 14 (2007) 1-10)

\[\delta B_\theta(t) \text{ and power spectrum of } \delta B_\theta(t, \omega) \text{ close to the plasma edge} \]
Simulation of JT-60U discharge-cont’d

Simulation

\(n=1 \) mode

Energetic particle density profile

- before ALE
- after ALE (experimental)
- relaxed (simulation)

linear growth rate \(\gamma \approx 0.106 \tau_{A0}^{-1} \)
burst time scale \(\Delta t_{EPM} \approx 150 \mu s \)
(S. Briguglio et al., PoP 14 (2007) 1-10)

\(\delta B_\theta (t) \) and power spectrum of \(\delta B_\theta (t, \omega) \) close to the plasma edge

fast Frequency Sweeping (FS) mode:
reproduced only if distortion of EP distribution function in velocity space after ALE is retained
Simulation of JT-60U discharge-cont’d

Simulation

$n=1$ mode

Frequency spectra of fluctuating scalar potential in $[r, \omega]$ plane from simulation:

ALE EPM
Simulation of JT-60U discharge—cont’d

Simulation

\(n=1 \) mode

Frequency spectra of fluctuating scalar potential in \([r, \omega]\) plane from simulation:

\[
\text{ALE} \leftrightarrow \text{EPM}
\]

Energetic particle distribution function from simulation (\([E, \alpha]\) plane, \(r/a \approx 0.5\)):

Detailed diagnostics on wave-particle power exchange and \(\delta F\) show that radial displacement mainly involves resonant ions

\[
\delta F = F_{\text{sat}}(\alpha, E) - F_{\text{SD}}(\alpha, E)
\]

Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-n simulations ...
 – vs. multi-n simulation
• Conclusions
Simulation of DIII-D discharge

- A rich spectrum of oscillations in the Alfvénic range has been observed in DIII-D tokamak reversed-shear discharges heated by neutral beams
- Excellent radial resolution of the experimental spectrograms permits qualitative and quantitative comparison with numerical simulations
- DIII-D discharge #122117:
 - neutral beam heated ($\beta_{H0} \approx 0.8\%$), reversed shear discharge
 - discrepancy between experimentally measured (EFIT, FIDA) and TRANSP (classical deposition) computed energetic particles density profile
- Comparison between HMGC nonlinear simulations and experimental results
Simulation of DIII-D discharge-cont’d

- Experimental evidences (discharge #122117):

The Upgraded ECE Diagnostic Measures the Radial Eigenfunction

- RSAEs: Reversed Shear Alfvén Modes
- TAEs: Toroidal Alfvén Modes (gap modes)

Simulation of DIII-D discharge-cont’d

- Experimental evidences (discharge #122117):
 - RSAEs: Reversed Shear Alfvén Modes
 - TAEs: Toroidal Alfvén Modes (gap modes)

- Fast-ion profile:
 - Classical: from TRANSP;
 - FIDA: Fast Ion D_α (FIDA) diagnostic measures the spectrum of fast ions with 5 cm radial resolution;
 - Equilibrium: kinetic EFIT (from MSE and magnetics), with subtraction of thermal pressure
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. multi-\(n\) simulation
• Conclusions
Single-\(n\) HMGC simulation for discharge \#122117, energetic particle density profile from \textsc{TRANSP}:

- \textsc{TRANSP} profile is strongly unstable, modes localized at \(q_{\text{min}}\)
- collective mode dynamics (Energetic Particle Modes, EPMs, here \(n=2\)) cause a relevant flattening of the EP density radial profile
- in good agreement with the experimental one
- similar results for \(n=3\) and \(n=4\) simulations
Single-\(n\) simulation of DIII-D discharge-cont’d

Single-\(n\) simulations, power spectra of scalar potential in the plane \([r, \omega]\): dominant modes localized at \(q_{\text{min}}\) radius

linear growth phase, \(\gamma \tau A_0 \approx 0.1\)
Single-\(n\) simulation of DIII-D discharge-cont’d

Single-\(n\) simulations, power spectra of scalar potential in the plane \([r,\omega]\): dominant modes localized at \(q_{\text{min}}\) radius

Linear growth phase, \(\gamma \tau_{A0} \approx 0.1\)

Saturated phase

100 kHz

60 kHz

Simulations with nominal \(q_{\text{min}} = 3.99\) give too low absolute values of the frequencies (\(\approx 0.5 f_{\text{exp}}\)
Single-\(n\) simulation of DIII-D discharge-cont’d

- Possible explanations for frequency mismatching:
 - coupling with acoustic waves neglected (no BAE gap in our MHD model);
 - frequencies of the modes very sensitive to \(q_{\text{min}}\) values (main feature of RSAE/AC modes), within exp. uncertainty
Single-\(n\) simulation of DIII-D discharge-cont’d

- Possible explanations for frequency mismatching:
 - coupling with acoustic waves neglected (no BAE gap in our MHD model);
 - frequencies of the modes very sensitive to \(q_{\text{min}}\) values (main feature of RSAE/AC modes), within exp. uncertainty

Power spectra of scalar potential ([\(r, \omega\] plane) for \(n=2\) cases:
- linear growth phase: frequency weakly affected by \(q_{\text{min}}\) variation (strongly driven mode)
Single-\(n \) simulation of DIII-D discharge-cont’d

- Possible explanations for frequency mismatching:
 - coupling with acoustic waves neglected (no BAE gap in our MHD model);
 - frequencies of the modes very sensitive to \(q_{\text{min}} \) values (main feature of RSAE/AC modes), within exp. uncertainty

Power spectra of scalar potential ([\(r, \omega \) plane]) for \(n=2 \) cases:

- linear growth phase: frequency weakly affected by \(q_{\text{min}} \) variation (strongly driven mode)

Tip of the lower Alfvén continuum at \(q_{\text{min}} \) very sensitive to \(q_{\text{min}} \) value
Single-\(n \) simulation of DIII-D discharge-cont’d

- Possible explanations for frequency mismatching:
 - coupling with acoustic waves neglected (no BAE gap in our MHD model);
 - frequencies of the modes very sensitive to \(q_{\text{min}} \) values (main feature of RSAE/AC modes), within exp. uncertainty

Power spectra of scalar potential ([\(r, \omega \) plane]) for \(n=2 \) cases:

linear growth phase:
 - frequency weakly affected by \(q_{\text{min}} \) variation (strongly driven mode)

saturated phase:
 - sensitivity to \(q_{\text{min}} \) recovered

Tip of the lower Alfvén continuum at \(q_{\text{min}} \) very sensitive to \(q_{\text{min}} \) value
Fair agreement between single-n simulations and experiment (considering both radial extension and frequency) is obtained for $q_{\text{min}} = 3.89$, slightly smaller than the nominal value.
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. \textit{multi-}\(n\) simulation
• Conclusions
Multi-n simulation of DIII-D discharge

$n=1,...,5$ - TRANSP energetic particle density profile, nominal q profile

- all MHD nonlinearities included but:
 - $(m=0,n=0)$ not evolved (MHD model not adequate)
 - $(m=1,n=0)$ energetic particle drive neglected
Multi-n simulation of DIII-D discharge

$n=1,\ldots,5$ - TRANSP energetic particle density profile, nominal q profile

- Pick-up only the dominant poloidal component for each toroidal mode number n
- Dominant mode: $n=2$
Multi-n simulation of DIII-D discharge

$n=1,...,5$ - TRANSP energetic particle density profile, nominal q profile

- Pick-up only the dominant poloidal component for each toroidal mode number n
- Dominant mode: $n=2$
- Nonlinear coupling on $n=1$
Multi-n simulation of DIII-D discharge

$n=1,\ldots,5$ - TRANSP energetic particle density profile, nominal q profile

- Pick-up only the dominant poloidal component for each toroidal mode number n
- Dominant mode: $n=2$
- Nonlinear coupling on $n=1$ and $n=5$ clearly observed during linear phase of dominant mode
Multi-\(n\) simulation of DIII-D discharge

\(n=1,\ldots,5\) - TRANSP energetic particle density profile, nominal \(q\) profile

- Pick-up only the dominant poloidal component for each toroidal mode number \(n\)
- Dominant mode: \(n=2\)
- Nonlinear coupling on \(n=1\) and \(n=5\) clearly observed during linear phase of dominant mode
- At saturation, \(n=1\) dominates
Multi-n simulation of DIII-D discharge-cont’d

$n=1,...,5$ - TRANSP energetic particle density profile, nominal q profile

power spectra of scalar potential in the plane $[r,\omega]$ for:

- **linear phase**
 - ($n=2$ mode dominates)
Multi-n simulation of DIII-D discharge-cont’d

$n=1,\ldots,5$ - TRANSP energetic particle density profile, nominal q profile

Power spectra of scalar potential in the plane $[r,\omega]$ for:

- **linear phase**
 ($n=2$ mode dominates)

- **nonlinear phase**
 ($n=1$ mode dominates)
Multi-\(n \) simulation of DIII-D discharge-cont’d

\(n=1,...,5 \) - TRANSP energetic particle density profile, nominal \(q \) profile

The overall effect of the \textit{multi-\(n \) simulation} on the \textit{fast ion density profile} is of the same order of that obtained in the \textit{single-\(n \) simulations} (e.g., \(n=1,\ n=2 \))
Multi-n simulation of DIII-D discharge-cont’d

$n=1,...,5$ - TRANSP energetic particle density profile, nominal q profile

The overall effect of the multi-n simulation on the fast ion density profile is of the same order of that obtained in the single-n simulations (e.g., $n=1$, $n=2$)

Furthermore ...
Multi-n simulation of DIII-D discharge-cont’d

$n=1,...,5$ - TRANSP energetic particle density profile, nominal q profile

The overall effect of the multi-n simulation on the fast ion density profile is of the same order of that obtained in the single-n simulations (e.g., $n=1$, $n=2$)

Furthermore ...

Comparison between max $E_{\theta,m,n}$ of single-n simulations and of multi-n one (energetic particle radial velocity $v_r \sim E_\theta$) shows that both
1) competition of different-n modes in extracting energy from resonant particles (as expected for EPMs), thereby flattening the fast ion profile, and
2) the energy transfer from fast to slower growing modes by mode-mode coupling cause each toroidal mode to saturate at a lower level than that reached in the corresponding single-n simulation
Outline

• Introduction
• Hybrid MHD-Gyrokinetic code (HMGC)
• Simulation of NNB heated JT-60U discharge
• Simulation of NB heated DIII-D discharge:
 – single-\(n\) simulations ...
 – vs. multi-\(n\) simulation
• Conclusions
Conclusions

• Hybrid MHD-Gyrokinetic code (HMGC) has been used to compare simulation results with strongly beam heated discharges in present-day tokamaks

• Evidence of strongly unstable EPMs has been observed in simulations, resulting in macroscopic broadening of energetic particle density profile on very fast time scale (~100 µs)

• Fair agreement with the experimentally observed profiles have been obtained (JT-60U, DIII-D)

• First multi-\(n\) simulation shows that saturation amplitudes are reduced w.r.t. single-\(n\) ones (effect on fast ions is not altered)