Scaling of the H-Mode Pedestal and ELM Characteristics on the JET and DIII-D Tokamaks

by
T.H. Osborne and M.N.A Beurskens

with
L. Horton, L. Frassinetti, R. Groebner, A. Leonard, P. Lomas,
I. Nunes, S. Saarelma, R. Scannell, P. Snyder, D. Zarzoso

I. Balboa, B. Bray, J. Flanagan, C. Giroud, E. Giovannozzi, M. Kempenaars,
A. Loarte, E. de la Luna, G. Maddison, C. Maggi, D. McDonald, G. McKee,
R. Pasqualotto, G. Saibene, R. Sartori, E. Solano, Z. Yan, L. Zabeo,
and the DIII-D and JET-EFDA teams

Presented at IAEA 2010
An understanding of H-mode pedestal structure is important for predicting tokamak performance

- $P_{\text{FUSION}} \propto \beta_{\text{ped}}^2$
- $Q = P_{\text{FUSION}} / P_{\text{AUX}} \propto \beta_{\text{ped}}^2$

- Edge pressure gradient limit is well understood
- ETB width physics remains uncertain
Pedestal structure based on Thomson scattering measurements of electron profiles

- Data accumulated from a certain fraction of the Type I inter-ELM period for many ELMs
- Average profile over ELM irregularities
- Separatrix sweeps increase profile coverage
- JET data requires large correction for instrumental averaging.

Profiles must be deconvolved on JET due to spatial averaging.

Inst. Kernel
• Determine whether scaling with pedestal plasma physics dimensionless parameters is applicable to pedestal structure
 – If true, ETB width $\propto a$ with all dimensionless parameters matched
 – Other possibilities: neutral physics (some theories suggest a role for neutrals in the ETB width) 3D fields, ...

• Determine scaling of pedestal structure with normalized gyro radius $\rho_* = \rho/a$.
 – Vary ρ_* keeping β, u_*, q, T_e/T_i, M, plasma shape fixed
 – $\rho_{*\text{ITER}} < \rho_{*\text{JET}} < \rho_{*\text{DIII-D}}$ and some theories predict an unfavorable scaling of ETB width

• Determine scaling of ELM size (energy loss) with ρ_*
ρ$_{\text{PED}}$ scans carried out in H-mode discharges with high and low triangularity shapes

$R_{\text{JET}} = 2.95\text{m}, a_{\text{JET}} = 0.95\text{m};$
$R_{\text{DIII-D}} = 1.67\text{m}, a_{\text{DIII-D}} = 0.54\text{m}$

Global stored energy tied to pedestal stored energy

Shapes normalized to major radius, R

$W_{\text{ped}}/W_{\text{TOT}} \sim 30\%-40\%$
Good match of DIII-D / JET at dimensionless match point but some variation of other parameters with ρ^PED_*

β Match at identity point \implies ETB Width $\propto a$
assuming stability is governed by plasma physics

Values at pedestal top
Previously published results on ρ_* scaling of edge transport barrier width MAY BE INCORRECT

- The effect of instrumental averaging for the JET TS data was significantly underestimated.

- Inconsistencies in the ETB width data have not been resolved.
 - Near limits of the capabilities of the present TS systems on both DIII-D and JET.

- Only pedestal height results reported here
Comparison of ρ^{*}_{PED} pressure results with empirical scalings may reveal ρ^{*} dependency of pedestal structure

$$p_{\text{CORDEY-MHD}} = 0.83 \rho^{0.27}_{\text{ped}} \nu^{0.08}_{\text{ped}} m^{0.2} F^{2.29}_{q} \epsilon^{-2.56} \kappa^{2.48} (Rl^{2})/(1.5V)$$

- Ballooning mode scaling for p' and ρ scaling for width.
- Derived from fitting to the ITPA H-mode database.
- Residual $\rho^{*-0.8}$ suggests $P \propto \rho^{*-0.5}$
Comparison of Pedestal Pressure with EPED1 Model also suggests an inverse ρ_* dependence

- Fits overall data better than semi-empirical models
- Suggest residual $\rho_*^{-0.7}$, mostly a separation between JET and DIII-D

$\chi^2/\nu=14.1$
Lincor=0.90

Correlation Lengths of Long Wavelength Density Fluctuations Do Not Vary Significantly with ρ_*

- Beam Emission Spectroscopy (BES) measures $k_\perp\rho_i<1$ fluctuations across the edge pedestal
- Radial and poloidal correlation lengths are unchanged with ρ_*, i.e., turbulent transport scale size is unchanged
- Fluctuation amplitude increases with ρ_*
ELM energy losses increase strongly with ρ_* on DIII-D

- ELM losses increase strongly with ρ_* on DIII-D
 - Increase is most pronounced in conductive channel, $n \Delta T$, but convective channel $T \Delta n$, also increases.

- Losses match at identity point but trend with ρ_* reverses in JET with losses increase weakly at smaller values of ρ_*
Large ELM energy loss at high \(\rho_* \) is outside of usual scaling and correlated with ELM depth and duration.

- Losses match at identity point \(\rho_* = 0.4\% \)
- ELM loss at high \(\rho_* \) on DIII-D exceed value expected from Loarte empirical \(\nu_* \) scaling
- Large ELM losses at high \(\rho_* \) on DIII-D are correlated with increased ELM depth (ne profile change) and duration
Large ELM Losses In DIII-D at High ρ_* Might Result from Proximity to Low-Density H-mode Threshold Power

- P/P_{LH} unknown in low density P_{LH} regime.
- ELMs usually large near H-mode threshold.

DIII-D/JET Joint Experiments Were Performed to Address Pedestal Structure and ELM Scaling with Machine Size

- Normalized pedestal pressure, β, is independent of machine size with all dimensionless parameters matched
 - Consistent with dimensionless scaling of pedestal structure
- Comparison with models suggests inverse ρ^* pressure dependence for pedestal pressure
- Lack of turbulence correlation length change with ρ^* suggests no dependence of pedestal structure on ρ^*
- (Fractional) ELM energy loss increases at large ρ^* and exceeds usual ν^* scaling
 - ρ^* may not be controlling parameter: more work needed on ELM scaling
- Improvements planned for JET and DIII-D TS systems should allow more certainty in directly scaling the ETB width.