Particle Control and Transport Experiments

In the DIII-D Tokamak
With Graphite Walls

by
S.L. Allen

Presented at
The Twenty-third
IAEA Fusion Energy
Conference
Daejeon, Republic
of Korea

October 11-16, 2010
The DIII-D AT Experiment with Graphite Walls

• Advanced Tokamak physics on DIII-D
 – Can recover from off-normal events between shots (GDC)
 – DIII-D has effective n_e control in high-δ shapes

• Graphite walls, wall conditioning, divertor pumping
 – Baking to 350°C, GDC between shots
 – 3 divertor cryopumps can decrease H-mode density

• Pay attention to fuel retention in longer pulse experiments
 – Divertor pumping and 350°C bake removes shallow deposits
 – Thermo-Oxidation can remove fuel that is co-deposited with carbon – use UTIAS experiments
Summary of Results

• Dynamic (Time Dependent) particle balance shows no wall retention in H-mode plasmas
 – Strong divertor cryopumping
 – Well conditioned graphite
 – Dynamic agrees with shot-integrated “static” exhaust

• Significant wall retention in startup (20%)
 – Shot-Integrated retention averages

• Thermo-oxidation on DIII-D
 – Removes D at rates consistent with UTIAS results
 – Advanced Inductive plasma operation recovered quickly
 – No damage to tokamak components
Global Particle Balance Based on Measured Quantities

\[
\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right]
\]

Particle input sources
- gas puff values ⇒ *Gas flowmeter*
- NBI ⇒ *P_{NBI} & V_{NBI}*

IAEA Fusion Energy Conf/2010/S.L. Allen
Global Particle Balance Based on Measured Quantities

\[\Gamma_{\text{wall}} (t) = \underbrace{\Gamma_{\text{gas}} (t) + \Gamma_{\text{NBI}} (t)}_{\text{Particle input sources}} - \left[Q_{\text{pump}} (t) + \frac{dN_0 (t)}{dt} + \frac{dN_{\text{core}} (t)}{dt} \right] \]

- **Particle input sources**
 - gas puff values \(\Rightarrow \) Gas flowmeter
 - NBI \(\Rightarrow P_{\text{NBI}} \) \& \(V_{\text{NBI}} \)

- **Particles exhausted**
 - (cryo-pumps)
 - Fast ion gauge

- **Rate change in un-pumped neutrals**
 - Fast ion gauge

- **Rate change in core particle content**
 - \(CO_2 \) interferometer
Global Particle Balance Based on Measured Quantities

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right] \]

Particle input sources
- Gas puff values \(\Rightarrow \) Gas flowmeter
- NBI \(\Rightarrow \) \(P_{\text{NBI}} \) & \(V_{\text{NBI}} \)

Rate change in un-pumped neutrals
- Fast ion gauge

Rate change in core particle content
- CO\(_2\) interferometer

Particles exhausted
- (cryo-pumps)
- Fast ion gauge

Remainder
In Steady-state H-mode, Global Balance Reduces to a Few Terms

Main terms in NBI discharges

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right] \]

- \(\Gamma_{\text{NBI}} \) is derived & has uncertainty ~20%
- \(Q_{\text{pump}} \) is measured directly; low uncertainty (~5%)
In Steady-state H-mode, Global Balance Reduces to a Few Terms

Main terms in NBI discharges

\[
\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right]
\]

- \(\Gamma_{\text{NBI}} \) is derived & has uncertainty ~20%
- \(Q_{\text{pump}} \) is measured directly; low uncertainty (~5%)
In Steady-state H-mode, Global Balance Reduces to a Few Terms

Main terms in NBI discharges

\[
\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right]
\]

- \(\Gamma_{\text{NBI}} \) is derived & has uncertainty \(~20\%\)
- \(Q_{\text{pump}} \) is measured directly; low uncertainty (~5%)

Main terms in ECH discharges

\[
\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - \left[Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt} \right]
\]

- Considered more accurate due to well calibrated quantities
In Steady-state H-mode, Global Balance Reduces to a Few Terms

Main terms in NBI discharges

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{NBI}}(t) - [Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt}] \]

- \(\Gamma_{\text{NBI}} \) is derived & has uncertainty ~20%
- \(Q_{\text{pump}} \) is measured directly; low uncertainty (~5%)

Main terms in ECH discharges

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) + \Gamma_{\text{inj}}(t) - [Q_{\text{pump}}(t) + \frac{dN_0(t)}{dt} + \frac{dN_{\text{core}}(t)}{dt}] \]

- Considered more accurate due to well calibrated quantities
Dynamic Particle Balance Shows No Retention in H-mode

- High retention in ramp-up phase
Dynamic Particle Balance Shows No Retention in H-mode

- High retention in ramp-up phase
- H-mode removes fuel

\[Q_{PUMP} > \Gamma_{NBI} \]
\[\Gamma_{WALL} < 0 \]
\[\int \Gamma_{WALL} \text{ Decreasing} \]
High retention in ramp-up phase

H-mode removes fuel

\[Q_{PUMP} > \Gamma_{NBI} \]

\[\Gamma_{WALL} < 0 \]

\[\int \Gamma_{WALL} \text{ Decreasing} \]
Validation of Dynamic Exhaust with Integrated Gas Balance

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) - Q_{\text{pump}}(t) \]

- Calibration of Exhaust
- After several shots:
 - Cryopumps regenerated
 - Pressure rise measured
 - Compared with Integral of exhaust

- Agreement ~5%

Set #1

Exhausted Particles [Torr-L]

- 4th shot
- 3rd shot
- 2nd shot
- 1st shot
- Pump Regeneration

IAEA Fusion Energy Conf/2010/S.L. Allen
Validation of Dynamic Exhaust with Integrated Gas Balance

- ECH balance equation:

\[\Gamma_{\text{wall}}(t) = \Gamma_{\text{gas}}(t) - Q_{\text{pump}}(t) \]

- Calculated vs measure exhaust within error of measurements
Details of Wall Inventory Sensitive to Small Changes in Rates

• Otherwise similar discharges have variation in wall inventory
 – Outside error bars

• Slight variation in exhaust rate
 – Small shape changes
 – Differences in ELMs
Conclusions: Fuel Retention Rate is Phase Dependent and Large Fraction is Recovered by Baking

<table>
<thead>
<tr>
<th></th>
<th>Particle Retention/Release</th>
<th>Main Highlight(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-mode</td>
<td>Shallow/Short Term Retention</td>
<td>Retention High ~ 85% un-pumped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~ 15-20% pumped</td>
</tr>
<tr>
<td>Ramp-up Phase</td>
<td>Shallow/Short Term Retention</td>
<td>High Retention ~ 20% Injected</td>
</tr>
<tr>
<td>Steady-State H-mode</td>
<td>Shallow/Short Term Retention</td>
<td>No retention</td>
</tr>
<tr>
<td>Vacuum Bake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ Bake</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vacuum Bake Before and After Single Run-day Returned Large Fraction of Retained Particles

- **Particle balance summary**
 - Total injected: 2400 [torr-L]
 - Exhausted: 1010-1140 [torr-L]
 - Bake released: 1090 [torr-L]

- **Post-bake retention/total injected**
 - 170-300 [torr-L]/2400 ~7-12%

 Bake was “short” due to Operational Constraints
Vacuum Bake Before and After Single Run-day Returned Large Fraction of Retained Particles

Particle balance summary
- Total injected : 2400 [torr-L]
- Exhausted: 1010-1140 [torr-L]
- Bake released: 1090 [torr-L]

Post-bake retention/total injected
- 170-300 [torr-L]/2400 ~**7-12%**

Remaining 7-12% is upper Bound on co-deposits
Conclusions: Fuel Retention Rate is Phase Dependent and Large Fraction is Recovered by Baking

<table>
<thead>
<tr>
<th>Phase</th>
<th>Particle Retention/Release</th>
<th>Main Highlight(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-mode</td>
<td>Shallow/Short Term Retention</td>
<td>Retention High ~ 85% un-pumped ~ 15-20% pumped</td>
</tr>
<tr>
<td>Ramp-up Phase</td>
<td>Shallow/Short Term Retention</td>
<td>High Retention ~ 20% Injected</td>
</tr>
<tr>
<td>Steady-State H-mode</td>
<td>Shallow/Short Term Retention</td>
<td>No Retention</td>
</tr>
<tr>
<td>Vacuum Bake</td>
<td>Shallow/Short Term Retention</td>
<td>~7-11% retention upper bound for co-deposition</td>
</tr>
<tr>
<td>O₂ Bake</td>
<td>Remove Co-Deposits</td>
<td></td>
</tr>
</tbody>
</table>
Two Thermo-Oxidations were Completed

- **Bake 1: Demonstrate Thermo-Oxidation on DIII-D**
 - 10 Torr Heliox (20% O$_2$/80% He), 350°C, 2 hours – UTIAS results
 - Demonstrate 13C removal on a few tiles with known 13C
 - High performance hybrid operations were recovered quickly
Oxidation Causes Hydrocarbon Release as Expected; Points to Successful Experiment

- CO, CO₂, D₂O form during O₂ bake from UTIAS lab results
- Novel new IR absorption measurement complements RGA

K. Umstadter UCSD
Fuel Removal on DIII-D Similar to UTIAS Lab Data

![Graph showing fuel removal on DIII-D](image-url)
Fuel Removal on DIII-D Similar to UTIAS Lab Data

DIII-D Divertor Tile Bake
UTIAS LAB 1.6 Torr O₂ 350°C
DIII-D 2 Torr O₂ Decreasing 350°C
Fuel Removal on DIII-D Similar to UTIAS Lab Data
High Performance Plasmas Recovered Quickly After DIII-D Oxygen Bake
High Performance Plasmas Recovered Quickly After DIII-D Oxygen Bake
High Performance PlasmasRecovered Quickly After DIII-D Oxygen Bake

[Graphs showing time evolution of β_N, H_{98y2}, $O^{VIII}(CX)$, C^{III}, and $Prad/Pin$ with time in seconds.]
Two Thermo-Oxidations were Completed

- **Bake 1:** Demonstrate O_2 on DIII-D tokamak and recover high performance operation
 - Demonstrate ^{13}C removal on a few tiles with known ^{13}C
 - High performance hybrid operations recovered quickly
 - All tokamak systems tested after bake

- **Bake 2:** Demonstrate removal of freshly deposited ^{13}C from several tiles
 - Repeat past ^{13}C deposition experiment with in-situ reference point (DiMES sample)
 - Tiles removed for NRA analysis at Sandia National Labs
13C Deposition at Lower Inner Divertor When Injected at Top

\[^{13}\text{C} (^{3}\text{He}, p) ^{15}\text{N} \] nuclear reaction analysis

W.R. Wampler, Sandia National Laboratories

- LSN Plasma, Inject \(^{13}\text{C}\) at top
- Remove tiles during vent
- Concentrated at inner divertor
13C Deposition is Localized in Secondary Divertor
Conclusions: Fuel Retention Rate is Phase Dependent and Large Fraction is Recovered by Baking

<table>
<thead>
<tr>
<th>Phase</th>
<th>Shallow/Short Term Retention</th>
<th>Main Highlight(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-mode</td>
<td></td>
<td>Retention High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~85% un-pumped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~15-20% pumped</td>
</tr>
<tr>
<td>Ramp-up Phase</td>
<td></td>
<td>High Retention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~20% Injected</td>
</tr>
<tr>
<td>Steady-State H-mode</td>
<td></td>
<td>Low retention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~0%</td>
</tr>
<tr>
<td>Vacuum Bake</td>
<td></td>
<td>~11% retention after</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~Accounted for in co-dep. Layer</td>
</tr>
<tr>
<td>O₂ Bake</td>
<td>Deeper/Longer Term Retention</td>
<td>- UT results validated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Quick Plasma Recovery</td>
</tr>
</tbody>
</table>

IAEA Fusion Energy Conf/2010/S.L. Allen

32
Summary of Results

• D retention occurs during startup

• Strongly pumped diverted H-mode, D species continuously removed
 – No evidence for retention
 – Continuously removed in DIII-D 5 s shots
 – Startup smaller fraction of discharge length in longer pulse machines

• DIII-D upper bound on co-dep retention 7%
 – Longer bake future experiment

• Fuel removal by thermo-oxidation
 – C, D removal rates similar to Toronto Lab results
 – No damage to DIII-D, Advanced Inductive plasma operation recovered quickly
Summary of Results

• **Dynamic (Time Dependent) particle balance shows ~0 wall retention in H-mode**
 – Well conditioned graphite with cryopumping
 – Dynamic agrees with shot-integrated “static” balance

• **Large wall retention in either startup or L-mode**
 – About 20%, dominates the discharge
 – Underscores need for dynamic measurements: shot-integrated can over estimate retention

• **Oxygen bake: 350°C, 1.3 kPa, 2 hours**
 – C, D Removal rates similar to Toronto Lab results
 – No damage to DIII-D, Advanced Inductive plasma operation recovered quickly