Interactions between MHD instabilities in the wall-stabilized high-β plasmas

G. Matsunaga, N. Aiba, K. Shinohara, N. Asakura,
A. Isayama, N. Oyama, M. Yoshida, T. Nakano,
K. Kamiya, H. Urano, T. Suzuki, M. Takechi,
Y. Sakamoto, Y. Kamada and the JT-60 Team
Toward fusion reactor, high-β_N plasmas are being exploited based on MHD controls of
- Resistive Wall Mode (RWM),
- Edge localized Mode (ELM), etc...

In JT-60U wall-stabilized high-β_N plasmas, energetic particle-driven mode named as "Energetic particle driven Wall Mode (EWM)" that can induce RWM, has been observed.

Energetic particle becomes important for MHD stability in high-β_N burning plasmas.

Moreover, in JT-60U wall-stabilized high-β_N plasmas, interactions between EWM, RWM and ELM have been observed.
Inducing RWM even with enough rotational stabilization

Unacceptable heat load to first wall

ELM avoidance & mitigation, small ELM operation

Achievable-β limit

Plasma rotation and/or feedback control

Interactions
Previously, energetic particle driven instability has been observed in wall-stabilized high-β_N plasmas.

“Energetic particle driven Wall Mode (EWM)”

Temporal characteristics:
- Initial frequency ~ precession frequency
 - Driving of trapped energetic ions
- Frequency chirping down
 - Interaction with energetic ions

Spatial characteristics:
- Toroidal : n=1
- Poloidal : m~3 larger amplitude at LFS
- Radial : global around q~2

→ Energetic particle-driven “wall-stabilized ideal kink-ballooning mode”
Outline of this talk

- Introduction
- EWM-triggered ELM
 - Observation of EWM-triggered ELM
 - SOL behaviors due to EWM
 - Possible interpretation with edge stability
- Summary
ELM behavior changes during EWM appearance

In wall-stabilized high-\(\beta_N\) plasmas, “EWM-triggered ELM” is observed.

Compared with Type-I ELM,

- Repetition frequency becomes \(\sim 3\) times higher:
 \(f_{\text{ELM}} \sim 40\text{Hz} \rightarrow 150\text{Hz},\)
- Energy release becomes half:
 \(\Delta W_{\text{dia}} \sim 40\text{kJ} \rightarrow 20\text{kJ}\)

\(I_p = 0.9\text{MA} / B_t = 1.5\text{T}\)
\(\beta_N \sim 3.0, \beta_N^{\text{no-wall}} \sim 2.3\)
Comparison of waveforms of type-I ELM, EWM and EWM-triggered ELM

Type-I: No clear precursor; large energy release of $\sim 50\text{kJ}$

EWM alone: EWM grows and decays gradually

EWM triggered ELM: Clear drop of pedestal region; EWM decays rapidly after ELM crash
Radial affected region of EWM-triggered ELM is narrower than that of type-I ELM.

Type-I ELM: \(r/a > 0.6 \)

EWM-triggered ELM: \(r/a > 0.7 \)

\[
I_{sx} \propto Z_{eff}n_c^2 \sqrt{T_e} \exp \left(-\frac{E_c}{T_e} \right)\\
E_c \approx 3.0 \text{ keV} \ [\text{Be : 200 } \mu\text{m}]
\]
EWM can not always trigger ELM; EWM-triggered ELMs occur even before full recovery of pedestal.

- Δw_{dia} does not depend upon EWM amplitude.
SOL measurements indicate that EWM enhances outward transport of ion

\[D_\alpha : \text{deuterium recycling} \]
\[I_{D_\alpha} \sim \left\langle \sigma_{(D \rightarrow D^+)} v_e \right\rangle n_e n_D \]
\[\rightarrow \text{Ion impacts to wall} \]

\[C_{II} : \text{carbon sputtering} \]
\[I_{C_{II}} \sim \left\langle \sigma_{(C \rightarrow C^2+)} v_e \right\rangle n_e n_C \]
\[\rightarrow \text{Ion impacts to wall} \]

Floating potentials:
- global SOL behavior along magnetic field lines round core plasma
- Ion transport arises SOL potential?

EWM enhances outward transport of ion
Ion transport is linearly enhanced as EWM amplitude increases.

- Clear correlation between EWM amplitude and D_α (D-recycling).
- As EWM amplitude increased, D_α linearly increased.

Ion transport is linearly enhanced with EWM amplitude.
EWM can enhance “energetic” ion transport at LFS

Temporal characteristics
- Initial mode frequency is close to precession frequency of trapped energetic ions,
- EWM decays with frequency chirping.

SOL behavior
- EWM enhances outward transport of ion.

EWM enhances “energetic” ion transport
Trapped energetic ions (EWM driving source) are transported outward

Spatial characteristics
- n=1 toroidal
- m~3 poloidal with large amplitude at LFS
 → Enhanced transport are considered to be localized toroidally at LFS

Discussion:
- Banana orbits of energetic ions injected by PERP-NB calculated by EPOC
- 2D eigen function of ideal kink ballooning mode calculated by MARG2D
Discussion:

Edge stability can be locally violated by energetic ion transport due to EWM.

\[
p_{\text{ped}} = \frac{p_{\text{th}}}{\text{global}} + \frac{p_h}{\text{local}} + \delta p_h^{\text{EWM}}
\]

- Enhanced transport can increase pedestal pressure additionally.
- Edge stability can be locally violated even before full recovery of pedestal.

"Energetic" ions are effective to act even with small amount of particles.

\[
\delta p_h^{\text{EWM}} \sim E_B \delta n_h^{\text{EWM}},
\]

\[
E_B \approx 90\text{keV},
\]

\[
\delta n_h^{\text{EWM}} \sim \left(\frac{\Delta W_{\text{dia}}}{W_{\text{ped}}}\right)p_{\text{ped}}/E_B \approx 10^{16}\text{m}^{-3}
\]
Edge stability is evaluated by MARG2D.

- Before type-I ELM; close to finite-n MHD limit
- Before EWM triggered ELM; lower left
- “Energetic” Ion transport by EWM can act as additional α
- Type-I ELM $\rightarrow n=21$
- EWM-triggered ELM $\rightarrow n=46$
- Eigen-function of $n=46$ is narrower than that of $n=21$
 \rightarrow This is consistent with observations.

Whether EWM can trigger ELM is determined by

- EWM amplitude (energetic ion transport)
- Edge stability (distance to MHD limit).
In the JT-60U wall-stabilized high-β_N plasmas, interaction between MHD instabilities “EWM-triggered ELM” is observed.

Experimental results:
- Compared with type-I ELM, EWM-triggered ELM has
 - higher repetition frequency,
 - smaller energy release,
 - narrower affected region.
- EWM can not always trigger ELM.
- EWM-triggered ELM occurs even before full recovery of pedestal.
- SOL behavior indicates that EWM enhances ion transport.

Possible interpretation:
- EWM enhances “energetic” ion transport.
- It can act as additional pressure δp_h^{EWM}.
- δp_h^{EWM} can move closer to MHD limit.
- ELM trigger is determined by EWM amplitude and edge stability.