Non-ideal Modifications of 3D Equilibrium and Resistive Wall Mode Stability Models in DIII-D

By
H. Reimerdes*

In collaboration with
J.W. Berkery, M.J. Lanctot, R.J. Buttery¹, M.S. Chu¹, A.M. Garofalo¹, J. Hanson, Y. In², R.J. La Haye¹, Y.Q. Liu³, G. Matsunaga⁴, G.A. Navratil, M. Okabayashi⁵, S.A. Sabbagh, O. Schmitz⁶, and E.J. Strait¹

¹General Atomics, San Diego, CA, USA
²FAR-TECH, Inc., San Diego, CA, USA
³EURATOM/CCFE Fusion Association, Abingdon, UK
⁴Japan Atomic Energy Agency, Naka, Japan
⁵Princeton Plasma Physics Laboratory, Princeton, NJ, USA
⁶Forschungszentrum Jülich, Jülich, Germany

*Present address: CRPP-EPFL, Lausanne, Switzerland

Presented at the
Twenty-third IAEA Fusion Energy Conference
Daejeon, Republic of Korea
October 11-16, 2010
Main results

• Linear ideal MHD describes $n=1$ equilibria as long as
 - Plasma rotation is sufficiently fast
 - Beta is sufficiently low

• Kinetic effects explain resistive wall mode (RWM) stability

→ Opens possibility of passive RWM stabilization even at low plasma rotation, i.e. under reactor conditions
Three Dimensional Tokamak Equilibria and RWM Stability Share the Same Physics Basis

1. **I-coil only**: 3D equilibrium (usually static)
2. **I-coil + stable plasma**: 3D equilibrium (usually static)
3. **Unstable plasma (no I-coil)**: Unstable RWM (growth, rotation ≤ τ_w^{-1})

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Three Dimensional Tokamak Equilibria and RWM Stability Share the Same Physics Basis

Both are a quasi-static global perturbation

- External 3D field
- 3D equilibrium (usually static)
- Unstable RWM (growth, rotation $\leq \tau_w^{-1}$)

ΔB magnetic field

$n=1$ magnetic field

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Extend Ideal MHD 2D Equilibrium Model to 3D

- Ideal MHD force balance:
 \[\hat{\mathbf{J}} \times \hat{\mathbf{B}} = \nabla \mathcal{P} \]

- Axisymmetry (2D)
 - Grad-Shafranov equation solved by various codes

- Non-axisymmetric equilibrium (3D)
 - Linearize force balance
 \[\delta \hat{\mathbf{J}} \times \hat{\mathbf{B}} + \hat{\mathbf{J}} \times \delta \hat{\mathbf{B}} = \nabla \delta \mathcal{P} \]

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Comparison with Magnetic Measurements Shows that Ideal MHD Can Quantitatively Describe 3D Equilibria

- Perturb plasma with an externally applied $n=1$ field ($\delta B/B_T \leq 10^{-3}$)

![Diagram showing perturbations in magnetic fields with I-coils](image)
Comparison with Magnetic Measurements Shows that Ideal MHD Can Quantitatively Describe 3D Equilibria

- Perturb plasma with an externally applied n=1 field ($\delta B / B_T \leq 10^{-3}$)

\[
\begin{align*}
\delta B_{r,up} & (\star) \\
\delta B_{r,mid} & (\star) \\
\delta B_{r,low} & (\star) \\
\delta B_{p,mid} & (\star)
\end{align*}
\]

\[
\begin{array}{c}
\text{Toroidal angle } \phi \text{ (Deg.)} \\
\text{Poloidal angle } \theta \text{ (Deg.)}
\end{array}
\]

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Comparison with Magnetic Measurements Shows that Ideal MHD Can Quantitatively Describe 3D Equilibria

- Perturb plasma with an externally applied \(n=1 \) field (\(\delta B / B_\text{T} \leq 10^{-3} \))

\[\delta B_{\perp} \text{ at wall} \]

\[\text{Poloidal angle } \theta \text{ (Deg.)} \]

\[\text{Toroidal angle } \phi \text{ (Deg.)} \]

- Upper I-coil
- Lower I-coil

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Comparison with Magnetic Measurements Shows that Ideal MHD Can Quantitatively Describe 3D Equilibria

- Perturb plasma with an externally applied $n=1$ field ($\delta B/B_T \leq 10^{-3}$)

- Toroidal arrays of B_p and B_r sensors measure amplitude and toroidal phase of the $n>0$ plasma response
Comparison with Magnetic Measurements Shows that Ideal MHD Can Quantitatively Describe 3D Equilibria

• Perturb plasma with an externally applied $n=1$ field ($\delta B / B_T \leq 10^{-3}$)

• Toroidal arrays of B_p and B_r sensors measure amplitude and toroidal phase of the $n>0$ plasma response
Ideal MHD 3D Equilibrium Assumes Perfect Shielding of Resonant Fields

- Resonant components δB_{mn} with $m = nq$ of the perturbed field are zero
 - A finite resonant component would lead to an island

\Rightarrow Magnetic topology of nested flux surfaces is preserved

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Ideal MHD 3D Equilibrium Assumes Perfect Shielding of Resonant Fields

- Resonant components
 \[\delta B_{mn} \text{ with } m = nq \]
 of the perturbed field are zero
 - A finite resonant component would lead to an island

Magnetic topology of nested flux surfaces is preserved

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Linear Ideal MHD Can Describe 3D Equilibria as Long as the Plasma Rotation is Sufficiently Large

- Measure response to $n=1$ I-coil field in magnetic braking experiment

- For “large” rotation
 - δB^{plas} is independent of rotation
 - δB^{plas} is consistent with ideal MHD

- After the rotation has collapsed
 - δB^{plas} deviates from ideal MHD
 - A magnetic island forms

- Consistent with shielding as long as $\Omega \tau_{\text{rec}} \gg 1$ [Fitzpatrick, Nucl. Fusion 1993]

- Resonant braking torque indicates a local deviation from ideal MHD

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Linear Ideal MHD Can Describe 3D Equilibria as Long as the Plasma Rotation is Sufficiently Large

- Measure response to $n=1$ I-coil field in magnetic braking experiment

- For “large” rotation
 - δB^{plas} is independent of rotation
 - δB^{plas} is consistent with ideal MHD

- After the rotation has collapsed
 - δB^{plas} deviates from ideal MHD
 - A magnetic island forms

- Consistent with shielding as long as $\Omega \tau_{\text{rec}} \gg 1$ [Fitzpatrick, Nucl. Fusion 1993]

- Resonant braking torque indicates a local deviation from ideal MHD
Linear Ideal MHD Can Describe 3D Equilibria as Long as Beta is Well Below the Ideal MHD No-wall Limit

• Ideal MHD starts to overestimate δB at ~80% of the no-wall limit $\beta_{N,nw}$
 - Diverges for $\beta_N = \beta_{N,nw}$
 - Predicts instability for $\beta_N > \beta_{N,nw}$
Observed RWM Stability Above the No-wall Limit has Long Shown the Importance of Non-ideal Effects

- Ideal MHD RWM unstable when $\beta > \beta_{nw}$

$$\gamma \tau_w = -\frac{\delta W_{nw}}{\delta W_{iw}}$$

RWM growth rate normalized with inverse wall time

Perturbed energy assuming an ideal wall

Perturbed energy assuming no wall

- Tokamaks routinely exceed the ideal MHD no-wall stability limit
 - Originally associated with fast toroidal plasma rotation
DIII-D Discharges Exceed the No-wall Limit with a Wide Range of Rotation Profiles

- Vary neutral beam torque T_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_N \approx 2.3 (> \beta_{N,nw})$

ω_E: Toroidal rotation of the $E_r=0$ reference frame
Vary neutral beam torque T_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_N \approx 2.3 (>\beta_{N,nw})$

ω_E: Toroidal rotation of the $E_r=0$ reference frame
DIII-D Discharges Exceed the No-wall Limit with a Wide Range of Rotation Profiles

- Vary neutral beam torque T_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_N \approx 2.3$ ($>\beta_{N,nw}$)

- In NSTX the RWM becomes unstable at “intermediate” rotation values ➜ S.A. Sabbagh, et al, next talk

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

- **Important particle frequencies are**
 - **Transit frequency** of passing particles:
 \[\omega_t \sim \frac{V_{th}}{qR} \]
 [Bondeson, Chu, Phys. Plasmas 1996]
 - **Bounce frequency** of trapped particles:
 \[\omega_b \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_t \]
 [Bondeson, Chu, Phys. Plasmas 1996]
 - **Precession drift frequency** of trapped particles:
 \[\omega_D \sim \frac{qr_L}{r} \frac{V_{th}}{R} \ll \omega_b \]
Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

- **Important particle frequencies are**
 - Transit frequency of passing particles:
 [Bondeson, Chu, Phys. Plasmas 1996]
 - Bounce frequency of trapped particles:
 [Bondeson, Chu, Phys. Plasmas 1996]
 - Precession drift frequency of trapped particles:

\[
\omega_t \sim \frac{V_{th}}{qR} \\
\omega_b \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_t \\
\omega_D \sim \frac{qr_L}{r} \frac{V_{th}}{R} << \omega_b
\]
Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

- **Important particle frequencies are**
 - **Transit frequency** of passing particles:
 [Bondeson, Chu, Phys. Plasmas 1996]
 - **Bounce frequency** of trapped particles:
 [Bondeson, Chu, Phys. Plasmas 1996]
 - **Precession drift frequency** of trapped particles:

\[\omega_t \sim \frac{V_{th}}{qR} \]

\[\omega_b \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_t \]

\[\omega_D \sim \frac{ qr_L}{r} \frac{V_{th}}{R} << \omega_b \]
Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

- **Important particle frequencies are**
 - **Transit frequency** of passing particles:
 [Bondeson, Chu, Phys. Plasmas 1996]

 \[
 \omega_t \sim \frac{V_{th}}{qR}
 \]

 - **Bounce frequency** of trapped particles:
 [Bondeson, Chu, Phys. Plasmas 1996]

 \[
 \omega_b \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_t
 \]

 - **Precession drift frequency** of trapped particles:

 \[
 \omega_D \sim \frac{qr_L}{r} \frac{V_{th}}{R} << \omega_b
 \]

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

• **Important particle frequencies are**

 – **Transit frequency** of passing particles:
 [Bondeson, Chu, Phys. Plasmas 1996]

 – **Bounce frequency** of trapped particles:
 [Bondeson, Chu, Phys. Plasmas 1996]

 – **Precession drift frequency** of trapped particles:

\[
\omega_t \sim \frac{V_{th}}{qR} \\
\omega_b \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_t \\
\omega_D \sim \frac{qr_L}{r} \frac{V_{th}}{R} << \omega_b
\]
Perturbed Kinetic Energy Can Be Calculated with the MISK Code

- Energy principle has been extended to include kinetic effects [Hu, Betti, Phys. Rev. Lett. 2004]

\[\gamma \tau_w = - \frac{\delta W_{nw} + \delta W_K}{\delta W_{iw} + \delta W_K} \]

- The perturbed kinetic energy \(\delta W_K \) has the form (for trapped particles)

\[\delta W_K^T \propto \sum_{l=-\infty}^{+\infty} \left[\omega_* N + \left(\frac{1}{2} - 3/2 \right) \omega_* T + \omega_E - \omega_{RWM} \right] \]

- Precession drift
- Bounce frequency \(\propto \) Plasma rotation
- Mode rotation
Perturbed Kinetic Energy Can Be Calculated with the MISK Code*

- **Energy principle has been extended to include kinetic effects** [Hu, Betti, Phys. Rev. Lett. 2004]

\[
\gamma \tau_w = -\frac{\delta W_{nw} + \delta W_K}{\delta W_{iw} + \delta W_K}
\]

- The perturbed kinetic energy \(\delta W_K \) has the form (for trapped particles)

\[
\delta W_K^T \propto \sum_{l=-\infty}^{+\infty} \frac{\omega_{*N} + \left(1 - \frac{3}{2}\right)\omega_{*T} + \omega_E - \omega_{RWM}}{\omega_D + l\omega_b + \omega_E - \omega_{RWM}}
\]

Small when \(\omega_E = -\langle \omega_D \rangle \) or \(\omega_E = -l\omega_b \)

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Perturbed Kinetic Energy Can Be Calculated with the MISK Code*

- Energy principle has been extended to include kinetic effects [Hu, Betti, Phys. Rev. Lett. 2004]

\[\gamma \tau = -\frac{\delta W_{nw} + \delta W_K}{\delta W_{iw} + \delta W_K} \]

- The perturbed kinetic energy \(\delta W_K \) has the form (for trapped particles)

\[\delta W_K^T \propto \sum_{l=-\infty}^{+\infty} \omega_N + \left(\frac{l}{2} - 3/2 \right) \omega_T + \omega_E - \omega_{RWM} \]

Small when \(\omega_E = -\langle \omega_D \rangle \) or \(\omega_E = -1 \omega_b \)

- MISK assumes structure of a marginally stable RWM (perturbative approach)
Kinetic Stability Model Can Explain the Stability Over the Entire Range of Rotation Profiles

- Thermal particles alone are not sufficient to explain RWM stability
Kinetic Stability Model Can Explain the Stability Over the Entire Range of Rotation Profiles

- Thermal particles alone are not sufficient to explain RWM stability
- Kinetic model has to include fast ions from the NBI heating to be consistent with the experiment
 - Fast ions constitute ~20% of the kinetic energy
Kinetic Stability Model Can Explain the Stability Over the Entire Range of Rotation Profiles

- Thermal particles alone are not sufficient to explain RWM stability
- Kinetic model has to include fast ions from the NBI heating to be consistent with the experiment
 - Fast ions constitute ~20% of the kinetic energy

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Use Plasma Response to an External $n=1$ field, i.e. 3D Equilibrium, to Probe the Damping Rate

- **Amplitude** of plasma response largest at intermediate plasma rotation
 \[\omega_E \tau_A (q = 2) \approx 0.9\% \]

- **Phase shift** of plasma response with respect to external field largest at
 \[\omega_E \tau_A (q = 2) \approx 0.6\% \]

- **Single mode model** links γ_{RWM} and ω_{RWM} (e.g. from MISK) to amplitude and phase of δB_{plas}
Measured Plasma Response Reveals the Characteristics of Kinetic Stabilization

- MISK modeling reproduces the characteristics of the measured dependence of δB_{plas} on plasma rotation
 - Uncertainty in the single mode coupling can lead to systematic shift of amplitude and phase shift

\Rightarrow Increased stability at low rotation is a direct effect of resonance with the precession drift of trapped ions
Recent Results are an Important Step Towards a Quantitative Understanding of 3D Equilibria and RWM Stabilization

- A linear ideal model is adequate to describe 3D equilibria resulting from externally applied 3D fields \((\delta B/B_T \leq 10^{-3})\) as long as
 - Plasma rotation maintains the shielding currents at resonant surfaces
 - Beta is well below the ideal MHD no-wall stability limit

- Kinetic models explain the observed RWM stability above the ideal MHD no-wall limit provided that fast ions are taken into account

- Measured rotation dependence of the \(n=1\) plasma response reveals the interaction of a quasi-static perturbation with the precession and bounce frequencies of trapped thermal ions
 → Direct evidence for the relevance of kinetic effects for RWM stability
Recent Results are an Important Step Towards a Quantitative Understanding of 3D Equilibria and RWM Stabilization

- A linear ideal model is adequate to describe 3D equilibria resulting from externally applied 3D fields ($\delta B/B_T \leq 10^{-3}$) as long as
 - Plasma rotation maintains the shielding currents at resonant surfaces
 - Beta is well below the ideal MHD no-wall stability limit

- Kinetic models explain the observed RWM stability above the ideal MHD no-wall limit provided that fast ions are taken into account

- Measured rotation dependence of the $n=1$ plasma response reveals the interaction of a quasi-static perturbation with the precession and bounce frequencies of trapped thermal ions
 - Direct evidence for the relevance of kinetic effects for RWM stability

- Quantitative validation of stability models is needed before relying on predictions of passive RWM stabilization in ITER
• Apply external $n=3$ field in fast rotating H-modes to suppress ELMs
 - Magnetic response agrees with ideal MHD* [M. Lanctot, APS invited '10]

*Before ELM suppressed phase

• Splitting of strike point on the divertor target reveals open field lines
 → Breaking of the magnetic topology (conserved in ideal MHD)
Experiments are Carried Out in H-mode Plasmas with $T_e \sim T_i$ and a ~20% Fast Ion Content

- Increased density for a lower than typical fast ion content
 - Fast ion population calculated with NUBEAM including an anomalous fast ion diffusion of $D=2m^2/s$ to match neutron measurement
Plasma Response Measurements Reveal Rotation Dependence – Same for δB_r and δB_p Measurements

- **Plasma:** $2.3 < \beta_N < 2.4$, $4.0 < n_{e,19} < 4.6$, $4.0 < q_{95} < 4.4$

Radial field

Poloidal field

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010
Plasma Response to External $n=1$ Field is Determined by the RWM Damping Rate γ_{RWM} and Mode Rotation Frequency ω_{RWM}

• Dependence of the plasma response δB_{plas} on the frequency ω_{ext} of an externally applied $n=1$ field described by single mode model

– Perturbed field at wall:

\[
\delta B_j = \frac{M_{sc}^*}{i \omega_{\text{ext}} \tau_W - \gamma_0 \tau_W} I_c
\]

Coupling coefficient

Rotation frequency of external field

Complex RWM growth rate $\gamma_0 = \gamma_{RWM} + i \omega_{RWM}$

– Plasma response at wall:

\[
\delta B_{j \text{plas}} = \frac{M_{sc}^* \left(\gamma_0 \tau_W + 1 \right)}{\left(i \omega_{\text{ext}} \tau_W - \gamma_0 \tau_W \right) \left(i \omega_{\text{ext}} \tau_W + 1 \right)} I_c
\]

from MISK

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010