ITER The way to a benign and limitless new energy source

A global collaboration has been formed to test the feasibility of fusion
Preparations of the ITER Vacuum Vessel Construction

11 October, 2010
23rd IAEA FEC, Daejeon, Korea

Presented by J. S. Bak
Prepared by IO, F4E, INDA, KODA, RFDA and VV IPT
Contents

I. Current Design Status
 I.1 Overall Description
 I.2 Design Development since 1998
 I.3 Technical & Regulatory Requirements

II. Procurement Status
 II.1 Procurement Sharing and Delivery
 II.2 Status of the PA and Contract Award
 II.3 Procurement Schedule

III. Manufacturing Preparation
 III.1 R&D Activities
 III.2 Fabrication of Mock-ups

IV. Summary
Overall Description of the ITER Vacuum Vessel

A torus shaped double wall structure
To provide high vacuum for plasma and primary radioactivity confinement boundary
To support in-vessel components (blanket, divertor, etc)

Main vessel
9 x 40 deg. Sector

In-wall shielding

Equatorial

Upper

Lower

Ports

VV supports
(Dual hinge type)

<table>
<thead>
<tr>
<th>Major dimensions</th>
<th>Weight (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter (m)</td>
<td>19.4</td>
</tr>
<tr>
<td>Height (m)</td>
<td>11.4</td>
</tr>
<tr>
<td>Double wall thickness (m)</td>
<td>0.34–0.75</td>
</tr>
<tr>
<td>Interior surface (m²)</td>
<td>850</td>
</tr>
<tr>
<td>Interior volume (m³)</td>
<td>1600</td>
</tr>
<tr>
<td>Main vessel</td>
<td>1611</td>
</tr>
<tr>
<td>Shielding</td>
<td>1733</td>
</tr>
<tr>
<td>Ports</td>
<td>1781</td>
</tr>
<tr>
<td>Supports</td>
<td>111</td>
</tr>
<tr>
<td>Total</td>
<td>5236</td>
</tr>
</tbody>
</table>
Design Development since 1998

- Size reduction
 - Height: 14.4 m → 11.3 m
 - Width: 8.9 m → 6.4 m
- New flexible support housing
- Reduced No. of lower ports
- Relocation of VV supports
- 3D shaped inner shell in outboard area
- Design modifications for interfaces
 - In-vessel coil (IVC), field joint, ports, VV supports, IWS, etc
Technical & Regulatory Requirements

Technical requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>316L(N)-ITER Grade with special requirements</td>
</tr>
<tr>
<td>Design load</td>
<td>Dead weight, coolant pressure, various electromagnetic loads</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Accurate field joint fit-up and precise assembly of in-vessel components</td>
</tr>
</tbody>
</table>
| Welding Inspection | Full penetration welding
100% volumetric NDE even at single side accessing region |
| Testing | Baking condition: 200 °C
Testing pressure: 3.72 MPa, Vacuum leak rate: < 10^{-8} Pa-m3/s |

Regulatory requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Description</th>
</tr>
</thead>
</table>
| Quality and safety | SIC (Safety Important Class) components
Implementation of French safety and quality order 1984 |
| Nuclear pressure vessel | French order of nuclear pressure equipment (ESPN)
Agreed Notified Body (ANB) involvement for conformity assessment |
Technical Requirement: Materials

Main features of VV materials

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Material types** | • Main vessel: SS 316L(N)-IG
• Port: SS 316L(N)-IG, 304, 304L
• VV support: steel 660, Inconel 718
• In-wall shielding: 304B4, 304B7, 430 |
| **Special requirements for 316L(N)-IG** | • Nitrogen control (0.06 ~ 0.08 wt.%) to keep consistent strength
• Limitation of impurities:
 - Co (0.05 wt.%): reduction of contact dose and gamma heating
 - Nb (0.01 wt.%): reduction of activated waist
 - Boron (0.0001 wt.%): limit He production |

Status of material supplier contracts

<table>
<thead>
<tr>
<th>Items</th>
<th>KO</th>
<th>RF</th>
<th>IN</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate</td>
<td>ArcelorMittal</td>
<td>ArcelorMittal</td>
<td>ArcelorMittal</td>
<td>TBD</td>
</tr>
<tr>
<td>Forging</td>
<td>KIND</td>
<td>Avienna</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Borated steel</td>
<td>TBD</td>
<td>N/A</td>
<td>TBD</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Regulatory Requirements

Status of ITER VV conformity assessment by the ANB

- According to regulatory requirement such as ESPN, the conformity of the ITER VV shall be assessed by the ANB (Agreed Notified Body).

Conformity assessment procedure by the ANB

<table>
<thead>
<tr>
<th>Phases</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Preliminary design assessment</td>
</tr>
<tr>
<td>Phase II</td>
<td>Fabrication assessment at supplier’s factory</td>
</tr>
<tr>
<td>Phase III</td>
<td>Final assembly and installation assessment at the ITER site</td>
</tr>
</tbody>
</table>

Current status

<table>
<thead>
<tr>
<th>Status</th>
<th>Detail description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I (ongoing)</td>
<td>ANB’s approval of the preliminary design: Oct 2009</td>
</tr>
<tr>
<td></td>
<td>Additional approval for modified reference design: Jul 2010</td>
</tr>
<tr>
<td></td>
<td>Additional approval for modified port & VV supports: Mar 2011</td>
</tr>
</tbody>
</table>
Procurement Sharing

<table>
<thead>
<tr>
<th>EU</th>
<th>Description</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Items 7 Sectors of Main Vessel</td>
<td>92.06 kIUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(39%)</td>
</tr>
<tr>
<td>RF</td>
<td>Description</td>
<td>Total Cost</td>
</tr>
<tr>
<td></td>
<td>Items 18 Upper Ports</td>
<td>20.86 kIUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9%)</td>
</tr>
<tr>
<td>KO</td>
<td>Description</td>
<td>Total Cost</td>
</tr>
<tr>
<td></td>
<td>Items 2 Sectors of Main Vessel</td>
<td>84.06 kIUA</td>
</tr>
<tr>
<td></td>
<td>17 Eq. & 9 Lower Ports</td>
<td>(36%)</td>
</tr>
<tr>
<td></td>
<td>In-Wall Shields/ribs</td>
<td>37.30 kIUA</td>
</tr>
<tr>
<td>IN</td>
<td>Description</td>
<td>Total Cost</td>
</tr>
<tr>
<td></td>
<td>Items In-Wall Shields/ribs</td>
<td>37.30 kIUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16%)</td>
</tr>
</tbody>
</table>

Total 234.28 kIUA
8% of total In-kind
Procurement Delivery

Upper Port

Lower Port PSE (7 EA)

Upper Port Central

Upper Port PSE (2 EA)

7 Sectors

IWS

IWS

ITER site

2 Sectors, EQ & NB, Lower Port

DA to DA

DA to ITER site

NB Port PSE (2 EA)
Status of Procurement Arrangements and Contract Awards

<table>
<thead>
<tr>
<th>Item</th>
<th>DA</th>
<th>EU</th>
<th>KO</th>
<th>RF</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>MV: 7 Sectors</td>
<td>MV: 2 Sectors Eq. & lower ports</td>
<td>Upper ports</td>
<td>In wall shielding Shield ribs</td>
<td></td>
</tr>
<tr>
<td>Contract award</td>
<td>08 Oct 2010</td>
<td>15 Jan 2010</td>
<td>09 Jun 2009</td>
<td>01 Sep 2010</td>
<td></td>
</tr>
</tbody>
</table>

DA
- **EU**: AMW Consortium (Ansaldo, Mangiarotti, Walter Tosto)
- **KO**: Hyundai Heavy Industries (HHI)
- **RF**: Efremov Institute
- **IN**: M/s Avasarala Tech.
• Integrated Project Schedule (IPS) approval: IC Extraordinary Meeting (Jul 2010)
• Free issued items (in-wall shielding, port stub extension) to sector fabrication shop can become a critical path. Schedule for interfaces is under discussion.
R&D Activity for Manufacturing: EU (1/2)

1. Welding distortion analysis
 • Verification: heat input experiment
 • Very close results between analysis and test

2. Bolted shield rib concept
 • Alternative method to reduce weld quantity
 • Assessment of both technology and costs

3. Two parts housing concept design
 • Background: difficult outer shell assembly
 • Preliminary results show feasibility

SYSWELD (AREVA)

Inner shell
Outer shell
Flexible support housing
Two parts housing

Bolts pre-stress

60 mm
1. Local machining tool
 - Inner shell: thread and bore
 - Outer shell: welding preparation (J-groove)

2. Auto-TIG welding machine
 - Automatic narrow gap welding
 - Verified by mock-up R&D

3. UT device (phased array)
 - Machine I for automatic outer shell tests
 - Machine II for circular tests

LECAD & TRITECH (Slovenia)

SIMIC S.p.A.
1. Assessment of shell thickness reduction

- Nominal design thickness of shell: 60 mm
- Expected maximum thickness reduction from industrial experience < 7%

Thickness reduction map

- Min. 55.8 mm 7% (4.2 mm)
- Min. 57.6 mm 4% (2.4 mm)
- Min. 58.8 mm 2% (1.2 mm)

Load condition: VDE(SD)$_{TM}$ + ICE II, *Allowable stress = 220 MPa*

- Thickness = 60 mm (Nominal thickness)
- Thickness = 54 mm (10% reduced thickness)

- $P_L + P_b = 177$ MPa
- $P_L + P_b = 198$ MPa

- The VV with 10% reduced thickness has structural margin according to the RCC-MR.
- Confirmation from the ANB is expected before the start of fabrication.
2. Welding distortion analysis (upper segment)

- Assessments before and after distortion control by conventional jigs: out of tolerance
- Additional control: Tensioning method (heating restraint jigs)

3. Design analysis of the VV support

- From elastic & limit analyses, the structural design of the hinge support complies with the RCC-MR code.
- Thermal design of the support is feasible according to heat transfer analysis.
Status of Mock-up Fabrication

VVP: VV Poloidal Sector Mock-up
VAT: VV Advanced Technology Seg.
VIS: VV Inboard Segment Mock-up
VLTM: VV Lower-seg. Triangular-support Mock-up
VUS: VV Upper Segment Mock-up
VLPM: VV Lower Port Mock-up

Upper port stub extension (partial)
In-wall shielding (water jet cutting)
Mock-up Fabrication: EU

1. E-beam welding evaluation
 • Full scale inboard segment mock-up
 • Horizontal EBW
 • Long seam EBW to minimize distortion
 ➔ 1/10 of conventional TIG welding

2. VVPSM: VV Poloidal Sector Mock-up
 • Full scale poloidal sector (40°) fabrication
 • Heavy restraint structure to minimize distortion
 • Successful assembly welding of inboard and upper segments
 ➔ 85%: ±5 mm, 15%: ±10 mm

Ref: ITR/P1-38
Mock-up Fabrication: KO (1/2)

1. VISM: VV Inboard Segment Mock-up
 • Electron beam welding: Housings, manifold supports, intermodular keys
 • Assembly welding of divertor rail to inboard segment
 • Distortion minimization

2. VUSM: VV Upper Segment Mock-up
 • Narrow gap TIG welding + PT/RT/UT evaluation
 • Process of outer shell fit-up (flexible support housing interface)
 • Fixture design + analysis + distortion minimization

3. VLPM: VV Lower Port Mock-up
 • Development of fabrication procedure
 • R150 bending without severe thickness reduction
 • Welding and NDE method with narrow welding space

4. VLTM: VV Lower segment Triangular support Mock-up
 • Copper cladding feasibility (3 mm)
 • Design simplification
 • Fabrication feasibility study
Mock-up Fabrication: KO (2/2)

- Forming die (inside)
- Forming die (outside)
- Forming die (pre-test)
- Inboard shell bending
- Hole machining
- Manifold support
- Intermodular key
- Centering key
- Inboard EBW (LN Laser in Daejeon)

Ref: ITR/P1-42
Summary

1. After more than 10 years of evolution, the *ITER Vacuum Vessel design was frozen in May 2010* and was subsequently approved by the ANB as the preliminary design.

2. The Procurement Arrangements with each DA involved in the Vacuum Vessel and the resulting *industry contracts have been signed by October 2010*.

3. The procurement schedule for the Vacuum Vessel is being adjusted to satisfy the requirements for First Plasma in 2019 with *delivery of the first sector to IO in March 2015*.

4. *Preparations for manufacturing the main Vacuum Vessel are proceeding well* with the DAs responsible for the main Vacuum Vessel performing R&D and building mock-ups to minimize mistakes and errors during manufacturing.

5. Nuclear codes apply in the manufacturing of the ITER Vacuum Vessel which consequently will have to go through stringent controls *necessitating close cooperation between the IO, ANB, responsible DAs and industry*.
Cooperation makes work easier.