Integrated computational study of material lifetime in a fusion reactor environment

M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J.-Ch. Sublet

EURATOM/CCFE Fusion Association, UK

October 12, 2012
• The neutrons generated in fusion plasmas bombard the surrounding materials...
 ▶ $\sim 10^{15}$ neutrons cm$^{-2}$ s$^{-1}$ expected on plasma-facing first wall (FW) in DEMO
• . . . and induce nuclear reactions
 ▶ e.g. $^{56}\text{Fe}(n, \gamma)^{57}\text{Fe}$, $^{12}\text{C}(n, \alpha)^{9}\text{Be}$, $^{64}\text{Cu}(n, p)^{63}\text{Ni}$
• During reactor operation these *transmutations* will produce new elements, including gases (helium and hydrogen)
• Accumulation of these impurities could significantly alter the structural and mechanical properties of materials
 ▶ Hardening, swelling, gas-induced embrittlement, *etc.*
• A full picture of the transmutation response and consequences requires:
 ▶ knowledge of the irradiation conditions
 ▶ calculation of the burn-up of materials
 ▶ modelling the effect of impurities
1. Neutron transport calculations (neutronics) with MCNP
 - predicts the irradiation environment for components within a given reactor design
 - delivers neutron fluxes and energy spectra

2. Inventory calculations with FISPACT
 - neutron spectrum and flux as input
 - calculates the activation and burn-up (transmutation) of materials
 - quantifies the changes to material composition in time

But the absolute transmutation numbers do not inform without models to predict consequences

3. Modelling of material properties (atomistic or otherwise)
 - First attempt:
 - Helium embrittlement of grain boundaries in different materials using production rates from FISPACT
Integrated studies (talk outline)

1. Neutron transport calculations (neutronics) with MCNP
 - predicts the irradiation environment for components within a given reactor design
 - delivers neutron fluxes and energy spectra

2. Inventory calculations with FISPACT
 - neutron spectrum and flux as input
 - calculates the activation and burn-up (transmutation) of materials
 - quantifies the changes to material composition in time

But the absolute transmutation numbers do not inform without models to predict consequences

3. Modelling of material properties (atomistic or otherwise)
 - First attempt:
 - Helium embrittlement of grain boundaries in different materials using production rates from FISPACT
1. Neutronics: DEMO model for MCNP

- 2009 model designed using HERCULES\(^1\)
- 2.7 GW fusion power output
- Cell-based geometry
- Solid Be+Li tritium breeding blanket + W divertor + He cooling
- Neutrons transported through model from a correctly defined fusion-plasma source
- Simulation of sufficient neutrons to provide good statistics

\(^1\)Pampin and Karditsas, 2006 *Fusion Eng. Des.*, 81 1231-7
1. Neutronics: example spectra

- Neutron spectra as a function of depth into outboard equatorial First Wall (FW):

- Energy spectrum softens with depth
- Total flux also falls:
 - Total in 2 cm FW is 8.25×10^{14} n cm$^{-2}$ s$^{-1}$
 - In final 5 cm of blanket drops to 3.90×10^{13} n cm$^{-2}$ s$^{-1}$
 - In vessel walls it is only 1.38×10^{12} n cm$^{-2}$ s$^{-1}$
- Variation is complex, so standard practice is to calculate integrated quantity \rightarrow e.g. dpa
1. Integrated results: dpa

- Displacements per atom (dpa): Integrated measure of total exposure
 - Spectra and fluxes merged with Material dependent nuclear data (EFF 1.1)

\[dpa \text{ per second} = \sum_i N_g \phi_i \sigma_i^{dpa} \]

- shows the variation in “exposure” with position

- dpa/fpy in Fe in FW armour is \(\sim 3 \) times higher than in blanket

- **Note:** dpa estimates do not take into account the time evolution of radiation damage and give no direct information about changes to microstructure or properties
Caution with dpa interpretation

X. Yi1, M.L. Jenkins1, M.A. Kirk2, S.G. Roberts1 – 2012

1Department of Materials, University of Oxford; 2Argonne National Laboratory

- self-ion irradiation of pure W to 0.01 dpa at a range of temperatures

Damage varies with temperature for same dpa

However, dpa is a convenient atom-based measure of irradiation exposure
1. dpa: variation with poloidal angle in FW armour

- Exposure measured as dpa/fpy in Fe for the 2 cm FW armour

- Poloidal variation in dpa/fpy follows variation in total flux...

Bar Graph

- dpa/fpy
- Flux

Diagram

- Poloidal positions labeled A to M
- Equivalent flux (n cm\(^{-2}\) s\(^{-1}\))
- Plasma region

\(\text{dpa/fpy in Fe} \times 10^{14}\) equivalent flux (n cm\(^{-2}\) s\(^{-1}\))
1. dpa: variation with depth

- ...but dpa variation does not always follow change in total flux

- dpa/fpy in Fe and total flux as a function of depth into outboard equatorial FW

- total flux initially increases due to neutron multiplication

- but equivalent dpa/fpy is always decreasing
1. dpa: variation with material

- Comparison between W and Fe in FW armour regions

- \[\text{dpa/fpy in W is } \sim 1/3 \text{ of that in Fe (Nuclear data dependent...)} \]
• ... results from dpa calculations are very sensitive to input reaction-cross-section data

- The newly developed inventory code FISPACT-II can calculate dpa values directly from neutron spectra

- Calculations using the latest nuclear data libraries (TENDL-2011) reveal significantly different dpa values to previous results obtained from NJOY using the EFF 1.1 library

- For example, the exposure measured as dpa/fpy in pure W has risen by a factor of 3 in the 2 cm FW armour
1. Neutron transport calculations (neutronics) with MCNP
 - predicts the irradiation environment for components within a given reactor design
 - delivers neutron fluxes and energy spectra

2. Inventory calculations with FISPACT
 - neutron spectrum and flux as input
 - calculates the activation and burn-up (transmutation) of materials
 - quantifies the changes to material composition in time

But the absolute transmutation numbers do not inform without models to predict consequences

3. Modelling of material properties (atomistic or otherwise)
 - First attempt:
 - Helium embrittlement of grain boundaries in different materials using production rates from FISPACT
2. Inventory calculations

FISPACT:

- calculates the time-evolution of composition by solving a set of coupled differential equations \forall possible nuclides N_i:

\[
\frac{dN_i}{dt} = -N_i(\lambda_i + \sigma_i \phi) + \sum_{j \neq i} N_j(\lambda_{ji} + \sigma_{ji} \phi)
\]

The Bateman equations

- a database of reaction cross sections ('European Activation File' – EAF) is collapsed with the neutron energy spectra $\rightarrow \sigma_i, \sigma_{ij}$
- EAF also provides decay constants λ_i, λ_{ij}
- fluxes ϕ from neutronics (MCNP)
2. Transmutation example

- Pure W and Fe under outboard equatorial FW armour flux for 5 fpy

- Metal impurities build-up over time
 - primarily Re, Os, Ta in W
 - Mn and Cr from Fe

- Helium and hydrogen are also produced
 - gas production is very low in W ($\sim \times 10$ less than in Fe)

2. W transmutation: 5 fpy FW armour

Time: 0.000 seconds

Pure W irradiated in a DEMO FW armour spectrum
Total flux: 8.25×10^{14} n cm$^{-2}$ s$^{-1}$

appm = atomic parts per million
2. W transmutation: 5 fpy FW armour

Time: 1.000 day

Pure W irradiated in a DEMO FW armour spectrum

Total flux: 8.25×10^{14} n cm$^{-2}$ s$^{-1}$

appm = atomic parts per million
2. W transmutation: 5 fpy FW armour

Time: 1.016 years

Pure W irradiated in a DEMO FW armour spectrum

Total flux: $8.25 \times 10^{14} \text{ n cm}^{-2} \text{ s}^{-1}$
2. W transmutation: 5 fpy FW armour

Time: 5.000 years

Pure W irradiated in a DEMO FW armour spectrum
Total flux: 8.25×10^{14} n cm$^{-2}$ s$^{-1}$

appm = atomic parts per million
Aside: Motivation for quantifying He production

- Transmutant helium can accumulate in pre-existing cracks and voids – swelling
- Helium can also migrate to grain boundaries (GBs) leading to embrittlement
- Particular problem for fusion because of the generally higher neutron energies – many of the helium-producing reactions have thresholds
Transmutant helium can accumulate in pre-existing cracks and voids – swelling

Helium can also migrate to grain boundaries (GBs) leading to embrittlement

Particular problem for fusion because of the generally higher neutron energies – many of the helium-producing reactions have thresholds

Aside: Motivation for quantifying He production

V.P. Chakin, Z. Ye Ostrovsky
Aside: Motivation for quantifying He production

- Transmutant helium can accumulate in pre-existing cracks and voids – swelling
- Helium can also migrate to grain boundaries (GBs) leading to embrittlement
- Particular problem for fusion because of the generally higher neutron energies – many of the helium-producing reactions have thresholds

Cross section (barns) vs. Incident Neutron energy (MeV)

1 barn = 10^{-24} cm2
2. He production

- Material comparison under identical conditions
- 3 fpy under outboard equatorial FW armour irradiation:
 - He production highest in Be (~ 4300 appm/fpy)
 - More than an order of magnitude lower in Fe (~ 140 appm/fpy)
 - Only ~ 4 appm/fpy in W

![He concentration (appm) vs Material](image)
2. He production

- Material comparison under identical conditions
- 3 fpy under outboard equatorial FW armour irradiation:
 - He production highest in Be (\(\sim 4300\) appm/fpy)
 - More than an order of magnitude lower in Fe (\(\sim 140\) appm/fpy)
 - Only \(\sim 4\) appm/fpy in W
 - Concentrations significantly higher than predicted for full-lifetime of ITER FW (with approximate campaign timing)

![He concentration graph](image)
1. Neutron transport calculations (neutronics) with MCNP
 - predicts the irradiation environment for components within a given reactor design
 - delivers neutron fluxes and energy spectra

2. Inventory calculations with FISPACT
 - neutron spectrum and flux as input
 - calculates the activation and burn-up (transmutation) of materials
 - quantifies the changes to material composition in time

But the absolute transmutation numbers do not inform without models to predict consequences

3. Modelling of material properties (atomistic or otherwise)
 - First attempt:
 - Helium embrittlement of grain boundaries in different materials using production rates from FISPACT

\[\text{ppm} = \text{atomic parts per million}\]
3. Modelling: He embrittlement of GBs

Simple modelling of grain boundary (GB) failure

1. Number of He atoms in spherical grain:

\[N_{\text{He}} \approx \frac{4}{3} \pi R^3 n G_{\text{He}} \]

Assumptions:
- All helium atoms produced migrate to grain boundary
 - traps and obstacles neglected
 - most valid for small grains

\[G_{\text{He}} = \text{bulk concentration} \]
\[n = \text{atom density} \]
3. Modelling: He embrittlement of GBs

Simple modelling of grain boundary (GB) failure

2. All He atoms move to GB: \[\therefore \text{surface total} \equiv \text{bulk total} \]

\[
4\pi R^2 \nu_{\text{He}} = \frac{4}{3} \pi R^3 n_{G_{\text{He}}} \quad \Rightarrow \quad \nu_{\text{He}} = \frac{R}{3} n_{G_{\text{He}}}
\]

Assumptions:
- All helium atoms produced migrate to grain boundary
 - traps and obstacles neglected
 - most valid for small grains

\(G_{\text{He}} = \text{bulk concentration} \)
\(\nu_{\text{He}} = \text{surface density} \)
3. Modelling: He embrittlement of GBs

Simple modelling of grain boundary (GB) failure

3. Assume GBs destabilized when E of solute He equals E of surface:

$$E_{\text{He}}^{\text{sol}} \nu_{\text{He}}^c \approx 2 \varepsilon_{\text{surf}}$$

<table>
<thead>
<tr>
<th>Material</th>
<th>He solution energy (eV) $- E_{\text{He}}^{\text{sol}}$</th>
<th>Surface energy (Jm$^{-2}$) $- \varepsilon_{\text{surf}}$</th>
<th>Critical He conc. at GBs (cm$^{-2}$) $- \nu_{\text{He}}^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>4.34</td>
<td>2.4</td>
<td>6.90×10^{14}</td>
</tr>
<tr>
<td>Mo</td>
<td>4.65</td>
<td>3.0</td>
<td>8.05×10^{14}</td>
</tr>
<tr>
<td>Ta</td>
<td>4.82</td>
<td>3.0</td>
<td>7.77×10^{14}</td>
</tr>
<tr>
<td>W</td>
<td>4.77</td>
<td>3.5</td>
<td>9.16×10^{14}</td>
</tr>
<tr>
<td>Be</td>
<td>3.46</td>
<td>2.2</td>
<td>7.94×10^{14}</td>
</tr>
<tr>
<td>SiC</td>
<td>1.50†</td>
<td>2.5</td>
<td>2.08×10^{15}</td>
</tr>
</tbody>
</table>

† Energy for He interstitial surrounded by Si atoms – R. M. Van Ginhoven et al., 2006, J. Nucl. Mater., 51 348
Simple modelling of grain boundary (GB) failure

3. Assume GBs destabilized when E of solute He equals E of surface:

$$E_{\text{He}}^\text{sol} \nu_{\text{He}}^c \approx 2\varepsilon_{\text{surf}}$$

- Experimental confirmation:
 - Helium irradiated W bicrystals
 - Expansion of grain boundaries at He fluence of $10^{14} - 10^{15}$ ions cm$^{-2}$
 - Our ν_{He}^c value: 7.51×10^{14}

Gerasimenko, Mikhaĭlovskiĭ, Neklyudov, Parkhomenko, and Velikodnaya
3. Modelling: He embrittlement of GBs

Simple modelling of grain boundary (GB) failure

4. Critical bulk He concentration:

\[G_{\text{He}}^c = \frac{3}{R} \nu_{\text{He}}^c \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(\nu_{\text{He}}^c) (cm(^{-2}))</th>
<th>(n) (cm(^{-3}))</th>
<th>(G_{\text{He}}^c) (appm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>(6.90 \times 10^{14})</td>
<td>(8.5 \times 10^{22})</td>
<td>488.0</td>
</tr>
<tr>
<td>Mo</td>
<td>(8.05 \times 10^{14})</td>
<td>(6.4 \times 10^{22})</td>
<td>753.2</td>
</tr>
<tr>
<td>Ta</td>
<td>(7.77 \times 10^{14})</td>
<td>(5.5 \times 10^{22})</td>
<td>841.3</td>
</tr>
<tr>
<td>W</td>
<td>(9.16 \times 10^{14})</td>
<td>(6.3 \times 10^{22})</td>
<td>871.5</td>
</tr>
<tr>
<td>Be</td>
<td>(7.94 \times 10^{14})</td>
<td>(1.2 \times 10^{23})</td>
<td>385.2</td>
</tr>
<tr>
<td>SiC</td>
<td>(2.08 \times 10^{15})</td>
<td>(4.7 \times 10^{22})</td>
<td>2645.6</td>
</tr>
</tbody>
</table>

- Assumed Grain size of \(R = 0.5 \mu m \)
- \(G_{\text{He}}^c \) varies linearly with \(1/R \)
3. Critical lifetimes for GB embrittling by He

- Critical embrittlement lifetimes estimated using FISPACT

<table>
<thead>
<tr>
<th>Material</th>
<th>G_{He}^c (appm)</th>
<th>Critical GB embrittlement lifetimes t_{He}^c for DEMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outboard FW</td>
</tr>
<tr>
<td>Fe</td>
<td>488.0</td>
<td>4 years</td>
</tr>
<tr>
<td>Mo</td>
<td>753.2</td>
<td>18 years</td>
</tr>
<tr>
<td>Ta</td>
<td>841.3</td>
<td>216 years</td>
</tr>
<tr>
<td>W</td>
<td>871.5</td>
<td>300+ years</td>
</tr>
<tr>
<td>Be</td>
<td>385.2</td>
<td>1 month</td>
</tr>
<tr>
<td>SiC*</td>
<td>2645.6</td>
<td>1.8 years</td>
</tr>
</tbody>
</table>

- Wide variation in lifetimes between different materials and for the same material as a function of position
- Be has very short expected lifetimes
- This type of failure probably won’t occur in W (or Ta)
• An integrated model of neutron-irradiation-induced changes in material properties for DEMO:

• 1. Neutron-transport simulations of a fusion reactor model:
 ▶ wide variation in exposure with depth and position - even within the same components

• 2. Inventory calculations:
 ▶ the variation in irradiation environment creates large differences in the transmutation or burn-up rates of materials
 ▶ He production rates are strongly dependent on material

• 3. Simple modelling of He-induced grain-boundary embrittlement suggests that some materials could fail on relatively short timescales (Be in particular)

Gilbert M R et al., 2012, *Nucl. Fus.*, 52 083019
Summary

Future

- Fully heterogenous reactor models could predict very different irradiation conditions
- The GB failure model needs to fully account for the traps and migration barriers for He
 - lifetimes could be increased in a more complete model
- Integration of other predictive techniques:
 - e.g. swelling-induced stresses leading to fracture, changes in strength due to transmutation impurities, etc.