Suppression of large edge localized modes with a stochastic magnetic boundary in high confinement DIII-D plasmas

Presented by
T. E. Evans
General Atomics, San Diego, CA, USA

With contributions from:
R. A. Moyer, J. A. Boedo, D. L. Rudakov - UCSD, La Jolla, CA, USA
J. G. Watkins - Sandia National Laboratories, USA
M. Becoulet, P. R. Thomas - CEA Cadarache, France
M. E. Fenstermacher, M. Groth, C. J. Lasnier - LLNL, CA, USA
K. H. Finken - FZ-Julich, Germany
J. H. Harris, D. G. Pretty - Australian National University, Australia
E. J. Doyle, T. L. Rhodes, G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA
S. Masuzaki, N. Ohyabu - National Institute for Fusion Science, Gifu-ken, Japan
H. Reimerdes - Columbia University, New York, NY, USA
M. R. Wade - ORNL, Oak Ridge, TN, USA

20th IAEA Fusion Energy Conference
1-6 November 2004, Vilamoura, Portugal
Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

M. E. Fenstermacher
LLNL, CA, USA

With contributions from:
R. J. Groebner, A. W. Leonard, T. H. Osborne, P. B. Snyder, D. M. Thomas, M. A. VanZeeland - General Atomics, San Diego, CA, USA
J. A. Boedo - UCSD, La Jolla, CA, USA
T. A. Casper, M. Groth, W. M. Meyer, X. Q. Xu - LLNL, CA, USA
R. J. Colchin - ORNL, Oak Ridge, TN, USA
M. A. H. Kempenaars - FOM-Rijnhuizen, Assoc. Euratom-FOM, TEC, Nieuwegein, Netherlands
A. Loarte, G. Saibene - EFDA-CSU, Max-Planck-Institut for Plasmaphysik, D-85748 Garching, Germany
G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA

and the
DIII-D Team

20th IAEA Fusion Energy Conference
1-6 November 2004, Vilamoura, Portugal

Fenstermacher EX2-5Rb
DIII-D has made substantial progress on developing pedestal solutions for ITER

ELM Suppression (EX/2-5Ra)

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - divertor surface temperature spikes reduced by at least a factor of 5

Pedestal Structure, Stability and Dynamics (EX/2-5Rb)

- Structures resembling Peeling-Ballooning modes observed in CIII
- Neutral penetration physics dominates in setting n_e pedestal width
- Measured edge currents agree with NCLASS code

See posters Wednesday morning
ELM control is a high priority ITER issue

- $T_{e}^{\text{ped}} \geq \sim 4 \text{ keV for } Q \geq 10 \text{ in ITER}$

- Normalized ELM energy ($\Delta W_{ELM}/W_{\text{ped}}$) increases with T_{e}^{ped}

- In ITER $\Delta W_{ELM}/W_{\text{ped}} > 20\%$
 - exceeds carbon ablation limit by a factor of 2-4
The DIII-D I-coil provides a flexible system for n=3 ELM control experiments.
ELMs are suppressed without degrading confinement

- Several isolated ELM-like events remain
- ELMs return after I-coil pulse turns off
Dynamical state of pedestal changes globally

- Suppression seen on:
 - all D_α arrays (outer midplane, upper and lower divertor, inner wall)
 - particle flux and heat flux to the primary (lower) divertor

- ELM transport is replaced by an increase in the edge magnetic field and density fluctuations
 - modulated by a 130 Hz coherent oscillation
Stored energy drops are smaller and slower with the I-coil reducing the impulses by > 3X

\[\langle \Delta W_{\text{ELM}} \rangle = 14.1 \text{ kJ} \]

\[\langle \Delta W_{\text{osc}} \rangle = 5.5 \text{ kJ} \]
High frequency transport replaces ELM transport
- bursty, intermittent and less impulsive
Peaks in the divertor surface temperature due to ELMs are reduced by at least a factor of 5 with the I-coil.
Good ELM suppression is obtained in LSN, high triangularity and ITER scenario 2 shapes.

Evans EX2-5Ra

- High Triangularity: $\delta=0.76$
- ITER scenario 2: $\delta=0.60$
- Lower Single Null: $\delta=0.37$
Physics that controls pedestal structure, stability and ELM dynamics is critical to understanding ELM suppression

M. E. Fenstermacher
LLNL, CA, USA

With contributions from:
R. J. Groebner, A. W. Leonard, T. H. Osborne, P. B. Snyder, D. M. Thomas, M. A. VanZeeland - General Atomics, San Diego, CA, USA
J. A. Boedo - UCSD, La Jolla, CA, USA
T. A. Casper, M. Groth, W. M. Meyer, X. Q. Xu - LLNL, CA, USA
R. J. Colchin - ORNL, Oak Ridge, TN, USA
M. A. H. Kempenaars - FOM-Rijnhuizen, Assoc. Euratom-FOM, TEC, Nieuwegein, Netherlands
A. Loarte, G. Saibene - EFDA-CSU, Max-Planck-Institut for Plasmaphysik, D-85748 Garching, Germany
G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA
and the DIII-D Team

20th IAEA Fusion Energy Conference
1-6 November 2004, Vilamoura, Portugal
Measured edge current in H-mode large compared with L-mode; agrees with NCLASS calculation

- Large $J_{H\text{-mode}} = 1.5$ MA/m2 measured in H-mode compared with negligible $J_{L\text{-mode}}$ in L-mode
- Magnitude of $J_{H\text{-mode}}$ agrees with calculation of $J_{\text{NCLASS}} = J_{BS} + J_{PS}$ from NCLASS code
- Effect of edge current on stability important to understand ELM onset and ELM suppression
DIII-D/JET pedestal similarity experiments show importance of neutral penetration

- Matched shapes and \((\beta, \nu^*, \rho^*, q)\) at top of pedestal
- Neutral penetration physics dominates in setting the density width
 - Mahdavi-Wagner model reproduces differences in DIII-D vs JET profiles
- Plasma physics dominates in setting the transport barrier
 - \(T_e\) width \(\propto a\)
Structure of linear P-B ELM instability seen in CIII image data during ELM

- Most unstable modes from ELITE linear P-B instability calculation are $16 \leq n \leq 24$

- CIII emission structure during ELM suggests $n \sim 17$
Summary and conclusions

ELM Suppression (EX/2-5Ra)

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - divertor surface temperature spikes reduced by at least a factor of 5

Pedestal Structure, Stability and Dynamics (EX/2-5Rb)

- Structures resembling Peeling-Ballooning modes observed in CIII
- Neutral penetration physics dominates in setting n_e pedestal width
- Measured edge currents agree with NCLASS code

See posters Wednesday morning