LHCD and Coupling Experiments with an ITER-like PAM launcher on the FTU tokamak

V. Pericoli Ridolfini, M.L. Apicella, E. Barbato, Ph. Bibet1, P. Buratti, G. Calabrò, A. Cardinali, G. Granucci2, F. Mirizzi, L. Panaccione, S. Podda, C. Sozzi2, A.A. Tuccillo

Associazione EURATOM-ENEA sulla Fusione, C.R. FRASCATI (Roma), Italy
1Association Euratom CEA sur la Fusion, CEA Cadarache, France
2Associazione EURATOM-ENEA-CNR sulla Fusione, IFP-CNR, Milano, Italy

Experiment conducted jointly with CEA in the frame of the ENEA - CEA collaboration on electron dynamics studies
Why a Passive/Active Multijunction Launcher?

Robust LH launchers to face the harsh plasma environment of ITER:

Thick vertical walls between *active* waveguides \Rightarrow Strong stresses ≈ 100 MPa

(13.25 mm) \Rightarrow neutron flux ≈ 0.5 MW/m2

Passive (short-circuited) waveguides at the mouth (within the thick walls, depth $= \lambda/4$),

to restore the usual multijunction periodicity

Main requests for a PAM

1) To maintain *good coupling* even operating in the full shadow of the vessel port to avoid damage from the large particle flow inside the SOL plasma

2) To tolerate the heating due to the neutron flux and plasma radiation losses

3) To preserve *power handling and CD efficiency* acceptable for ITER

FTU experiment was aimed to validate the PAM concept through testing mainly points 1 & 3 (coupling and CD)
FTU PAM view and layout

12 MJs in a 4x3 matrix
Waveguides: 28x5 mm
Frequency: f=8 GHz
Design power=80 MW/m²

ITER:
waveguides: 58x9.25 mm
f=5 GHz
power = 33 MW/m²
The experimental scaling of power handling, linear with f:
33 MW/m² in ITER ➔
52 MW/m² in FTU

PAM experiment on FTU (EX/5-5) - 20th FEC Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
PAM power handling performances

Obtained with $R_c < 1.6\%$:

- **80 MW/m²** (design value) with 200/80 ms ON/OFF modulation
- **75 MW/m²** for $t > 0.9$ s, quasi steady, limited only by power sources

ITER equivalent:
- **52 MW/m²**
- > **90 MW/m²** attainable with further conditioning
PAM / Conventional grill power coupling

Good coupling always for $n_e \geq n_{e,cut-off}$: $R_c \leq 1.5\%$ and decreasing with n_e

GRILL-3D foresees the rise close to $n_{e,cut-off}$

Current Drive capability

PAM CD performances - #24350 - $\Delta \Phi = 135^\circ$ - $R_{PAM} = +14$ mm

\[
\frac{I_{LH}}{I_p} = 1 - \frac{V_{l,LH}}{V_{l,OH}} \frac{\langle T_{e,LH}^{3/2} \rangle}{\langle T_{e,OH}^{3/2} \rangle} \frac{Z_{eff,LH}}{Z_{eff,OH}}
\]

Same $N_{||,pk} = 2.24$ for PAM and conventional grill

PAM η_{CD} smaller due

- lower directivity: 65% against 80%
- lower $\langle T_e \rangle$

PAM experiment on FTU (EX/5-5) - 20th FEC Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
CD performances on many shots basis

\[\frac{I_{LH}}{I_p} = \frac{1 - \frac{V_{l,LH}}{V_{l,OH}} \frac{\langle T_{e,LH}^{3/2} \rangle}{\langle T_{e,OH}^{3/2} \rangle} \frac{Z_{eff,LH}}{Z_{eff,OH}}}{\frac{P_{LH}}{(n_e I_p R)^*6/(Z_{eff}+5)} [W/(Ax^{10^{20}} m^{-2})]} \]

Non-linearity at low h, due to low power / low collisionality reduced by considering directivities

PAM experiment on FTU (EX/5-5) - 20th FEC.Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
Comparing PAM η_{CD} with FTU data base

PAM and conventional grill behave very similarly either alone or together

The effects are additive

η_{CD} grows with $<T_e>$: points are aligned with FTU data base
Amount of the fast e\(^{-}\) population PAM/Conv.

All data points consistent (i.e. PAM, Conv., PAM+Conv.) for both ECE and HXR if \(\langle T_e \rangle\) is taken as the main guiding parameter as for \(\eta_{CD}\).
Varying PAM $N_{\parallel,pk}$ - Hard X-rays

Hard X ray spectra - central chord

\[V_{\text{loop}} = 0.64 \text{ V} \]
\[n_e = 0.53 \cdot 10^{20} \text{ m}^{-3} \]
\[N_{\parallel, pk} = 1.7 \]
\[N_{\parallel, pk} = 2.4 \]

Same V_{loop} for both discharges

Fast tail more developed for the faster spectrum
\[E = 80 \text{ keV} \Leftrightarrow c/v_e = 1.85 \]
(effect larger when PAM is alone)

PAM can change its N_{\parallel}

PAM experiment on FTU (EX/5-5) - 20th FEC.Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
Comparing different $N_{\|,pk}$ - ECE

ECE spectra

ECE signal ratio

Ratio of more to less energetic e^- emission higher for faster $N_{\|}$ spectra

PAM does have some flexibility in $N_{\|}$

PAM experiment on FTU (EX/5-5) - 20th FEC. Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
Hard X ray radial profiles (20-100 keV)

Lower densities → profiles broader: fast e⁻ radial diffusion
Some differences due to N_\parallel spectra seen on HXR profiles

Consistency with calculated LH deposition (ASTRA) in: E. Barbato, EPS London 2004 P2.104

PAM experiment on FTU (EX/5-5) - 20th FEC.Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
PAM coupling - modification of the edge

Effect of outgassing on PAM - #24548

Building-up of density in front of the mouth
Large R_c (outgassing) => low n_e and low ECE power absorbed inside w.g.?

Note:

$n_e \leq n_{e,\text{cut-off}}$ before the LH pulse
$R_{PAM} = -2$ mm

Need of good conditioning
Conclusions – I

The test of the PAM at FTU has been successful:

Good coupling achieved with density close to or at the cut-off and antenna retracted up to 3 mm inside the port

Power more than 1.4 times that required for ITER safely managed in quasi steady state:

Actual values in FTU: 75 MW/m2 (=> 250 kW total)
Request scaled from ITER: 53 MW/m2 (=> 170 kW total)

Good current drive efficiency is maintained
Conclusions – II

Actual power limit can be even exceeded with further conditioning (>90 MW/m² possible)

PAM and Conventional grill produce very similar CD and heating effects (considering the different directivities) and fast e⁻ tails (from HXR and ECE signals)

Flexibility in $N_∥$ with $\Delta \Phi$ (phase difference between adjacent modules) found from both HXR and ECE

The first step towards developing an ITER LHCD launcher has been successful
Comparing different $N_{||,pk}$ PAM - CD

$N_{||,pk} = 2.4$ (\(\Delta\Phi_{\text{PAM}} = 180^\circ\)), directivity 65% $P_{\text{LH}} = 240\,\text{kW}$

$N_{||,pk} = 1.7$ (\(\Delta\Phi_{\text{PAM}} = 0^\circ\)), directivity 53% $P_{\text{LH}} = 195\,\text{kW}$

Same $V_{\text{loop}} \Rightarrow \eta_{\text{CD}}$

higher for $N_{||,pk} = 1.7$

PAM experiment on FTU (EX/5-5) - 20th FEC. Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
HXR emission simulation

HXR spectra calculation consistent with experiment

Assumptions:

e- distribution function with a fast tail in \(3.5v_{th,e} < w < c/N_{||,pk} \)

Fraction of fast e- (\(\approx 1\% \)) to account for the driven current

LH power deposition from a Bonoli-type code
Comparison HXR profiles /calculated LH deposition

ASTRA + Fast ray tracing
E. Barbato, EPS London 2004 P2.104

PAM experiment on FTU (EX/5-5) - 20th FEC. Villamoura 1-6 Nov, 2004 - V. Pericoli Ridolfini et al
The proposed LHCD System for ITER

Main Characteristics of the System

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5 GHz</td>
</tr>
<tr>
<td>Total Coupled RF Power</td>
<td>20 MW</td>
</tr>
<tr>
<td>Microwave Source</td>
<td>Klystron</td>
</tr>
<tr>
<td>Transmitter Specific Power</td>
<td>1 MW (CW)</td>
</tr>
<tr>
<td>Total Number of Transmitters</td>
<td>24</td>
</tr>
<tr>
<td>Transmission efficiency (min)</td>
<td>83%</td>
</tr>
<tr>
<td>Launcher</td>
<td>PAM</td>
</tr>
</tbody>
</table>
The ITER LHCD launcher

RF and Coupling Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Density (Active Wgs)</td>
<td>33 MW/m²</td>
</tr>
<tr>
<td>Electric field</td>
<td>≤ 6.2 kV/cm</td>
</tr>
<tr>
<td>Phase pitch (active wgs)</td>
<td>270°</td>
</tr>
<tr>
<td>$N_{</td>
<td></td>
</tr>
<tr>
<td>$N_{</td>
<td></td>
</tr>
<tr>
<td>Directivity</td>
<td>≈ 70%</td>
</tr>
</tbody>
</table>

Mechanical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Blocks</td>
<td>4</td>
</tr>
<tr>
<td>Rows per Block</td>
<td>12</td>
</tr>
<tr>
<td>Row Height</td>
<td>58 mm</td>
</tr>
<tr>
<td>Active/Passive Wgs per Row</td>
<td>24 / 25</td>
</tr>
<tr>
<td>Width of Active Wg</td>
<td>9.25 mm</td>
</tr>
<tr>
<td>Width of Passive Wg</td>
<td>7.25 mm</td>
</tr>
<tr>
<td>Depth of Passive wg. (optimised)</td>
<td>15 mm</td>
</tr>
<tr>
<td>Wall Thickness (mouth)</td>
<td>3 mm</td>
</tr>
<tr>
<td>Wall Thickness (between active wgs)</td>
<td>13.25 mm</td>
</tr>
</tbody>
</table>
Layout of a PAM module (top view)

The launcher is longitudinally split in two parts:

- the first part contains the E–plane bi–junctions and 90° phase shifters in every other waveguide,

- the second part is the mouth with the passive waveguides and additional 180° phase shifters to have the required 270° between the two active waveguides of each module.
FTU PAM test

Mechanical dimensions determined by the cross-section of the FTU port (400 × 80 mm²):

• Cross section of the waveguides: 28×5 mm²
• Wall thickness (mouth): 0.8 mm

Depth of passive waveguides: 12.58 mm

Phase pitch (active waveguides): 270°

\[N_{\parallel \text{peak}} \text{ (phase betw. modules } \varphi = 180^\circ) : 2.4 \]

\[N_{\parallel} (\varphi = \pm 180^\circ) : 1.6 \div 2.9 \]

The PAM launcher has replaced the upper conventional grill (CG) of the launching structure installed in the port no. 10 of FTU.

To operate with the same value of \(N_{\parallel} (N_{\parallel} = 2.2) \), the feeding phase between adjacent toroidally PAM modules has been set to 135° and to 110° between toroidally adjacent waveguides in the CG.

The expected power directivity at twice the cut-off electron density \(n_{ec} = 7.936 \, 10^{17} \, m^{-3} \) is respectively 65% for the PAM and 80% for the CG.
Experimental scaling of power in waveguides

Power safely managed with a phased waveguide antenna as it results from comparison between many tokamaks

M. Aquilini et al., Fusion Sci. & Techn. V. 45, p. 459 (May 2004)