Cross-machine NTM physics studies and implications for ITER

Presented by R. J. Buttery

EURATOM/UKAEA Fusion Association
Association EURATOM/IST
General Atomics, San Diego
CRPP, Association EURATOM-Confédération Suisse
Association EURATOM-CEA, CEA-Cadarache
MPI für Plasmaphysik, EURATOM Association
Dept. of Engineering Physics, University of Wisconsin
Association EURATOM-FZ Jülich IPP.
FOM-Rijnhuizen, Ass. EURATOM-FOM.
see annex 1, Pamela et al., Nuc Fus 43 (2003) 1540.
Are NTMs a problem for ITER?

- NTM physics is expected to scale with ρ^*
 - often observed in local β onset scalings
 \rightarrow low threshold in ITER?

\[[M. Maraschek et al., EPS03] \]
Are NTMs a problem for ITER?

- NTM physics is expected to scale with ρ^*
 - often observed in local β onset scalings
 - low threshold in ITER?

- But analyses in global β_N suggests another possibility
 - which is it?

- Key aspect in resolving the onset is the seeding process...

20th IAEA Fusion Energy - Vilamoura
Cross-machine NTM physics - Buttery
Which modes are a concern?

- **2/1 NTMs** terminate performance & unacceptable in ITER

- **3/2 NTMs** significant effect
 - typically 15-20% on confinement
 - trace Tritium experiments show consistent with ~50% fall in inward pinch in vicinity of island

- **Higher m/n NTMs** also impact fusion performance at low q_{95}
 - JET: 3.7MA, 2.9T, $q_{95}=2.7$
 - up to 13% effect on confinement
 - up to 30% effect on neutrons
Which modes are a concern?

• 2/1 NTMs terminate performance & unacceptable in ITER

• 3/2 NTMs significant effect
 - typically 15-20% on confinement
 - trace Tritium experiments show consistent with ~50% fall in inward pinch in vicinity of island

• Higher m/n NTMs also impact fusion performance at low q_{95}
 - JET: 3.7MA, 2.9T, q_{95}=2.7:
 - up to 13% effect on confinement
 - up to 30% effect on neutrons
 - AUG: 4/3 NTMs at q_{95}=3.7:
 - up to 20% effect on stored energy

20th IAEA Fusion Energy - Vilamoura
Content

• NTM ρ^* scalings:
 - Onset criteria for NTMs
 - How do the scalings do?

• Role of the seed: the Sawtooth
 - Influence on thresholds
 - Sawtooth control
 - Advances in sawtooth prediction

• The seeding process
 - Sawtooth coupling mechanisms
 - Other trigger mechanisms and effects

• Implications for ITER
NTM onset criteria

• NTMs driven by hole in bootstrap
 – but onset criteria depend on small island stabilisation effects
 – require a seed island to reach positive growth
 – these introduce a ρ^* dependence in the metastable threshold

• Onset β highly sensitive to seed size
 – scaling of seeding process may be the critical thing
 – uncertainties both in seed needed and seed obtained

20th IAEA Fusion Energy - Vilamoura

Cross-machine NTM physics - Buttery
How do the ρ^* scalings do?

Pretty good in terms of underlying NTM physics and metastable threshold...

- power ramp-down experiments measure β at which 3/2 NTM self-stabilises

- ITER baseline operation point deeply into metastable region
 - small triggers can excite mode
 - mode removal requires driving island down to small sizes
How do the ρ^* scalings do?

• But they are not predictive of NTM onset β and time on JET...

- β stays close to NTM onset scaling prediction once H-mode reached

♦ for both local and global parameter fits
How do the ρ^* scalings do?

- But they are not predictive of NTM onset β and time

- β stays close to NTM onset scaling prediction once H-mode reached in JET

- for both local and global parameter fits

- similarly on AUG:

 - proximity to scaling is a necessary-but-not-sufficient condition for NTMs

- there must be an extra control parameter...

Cross-machine NTM physics - Buttery
What is the hidden control parameter?

• Employ neural network to look for pattern in data...
 - automatic optimisation from choice of 27 input parameters
 - train to predict onset time

• Network successful
 - predicts decreasing time to NTM as onset approached
 ♦ unlike ρ^* scaling!
 - best network uses just β_N, ρ^* and sawtooth period
 ♦ period even more significant than ρ^*
Role of the sawtooth

- Sawtooth period plays key role in NTM onset β
- Long sawteeth can lead to many low β modes (blue)
- Sawtooth control can offer substantial mitigation (red)
 - here achieved by:
 - ICRH phasing to avoid core pinch
 - establishing sawtooothing heated L-mode to avoid peaked profiles
 - avoids all modes, even with much more heating power

20th IAEA Fusion Energy - Vilamoura
Sawtooth control in ITER

ITER has two possible strategies:

- early α production to stabilise sawteeth
 - extend further with modified start up and current drive
 - but still limited and not steady state
- current drive destabilisation
 - is this possible for fast particle stabilised (ideal) sawteeth?...

Destabilisation of fast particle stabilised sawteeth now achieved:

- core ICRH stabilises sawteeth
- ICCD destabilises as inversion radius is approached

Further progress with ECCD on AUG → see Maraschek talk today

[*Porcelli et al, NF44, 362]
Sawtooth prediction is key

- Good progress in the theory...

 eg: Rotation dependence on JET...

Experiment:

- kinetic effects stabilise sawteeth at high rotation
- important in reconciling data from present devices
Sawteeth with NNBI

- JT60U also finds fast particles from energetic negative ion beams stabilising...
 - 350keV NNBI gives sawteeth of 300ms
 - cf PNBI: 130ms

[Kramer et al, NF40, 1383]
Sawteeth with NNBI

- JT60U also finds fast particles from energetic negative ion beams stabilising...
 - 350keV NNBI gives sawteeth of 300ms
 - cf PNBI: 130ms

- Explained by Graves:
 - finite ion orbit effects change free energy
 - depends on deposition location...

- Possible mechanisms for sawtooth control in ITER?

[Graves et al, PRL92, 185003]
How is initial seed made?

- Sawteeth often trigger 3/2 NTMs before the crash...
 - Magnetic coupling?
 - NTM often too slow for toroidal coupling to n=2
 - 3 wave seeding possible:
 - bicoherence analysis shows phase lock between driving (11+43) and 32 fields
 - but frequencies are not always consistent...
 - Ion polarisation effects?
 - MHD can change island rotation*
 - potential to lower/reverse ion polarisation effects enabling seeding
 - avoids need for frequency locking

Forced reconnection at crash

- At low β, long sawteeth trigger NTMs directly at the crash
 - excite multiple NTMs & 2/1 much more likely → concern for ITER
 - codes such as NFTC and NIMROD now able to 3D model such processes in detail...

- Example: forced reconnection inducing a 3/2 in DIII-D
 - NIMROD simulation now includes rotation shear:
 - island is still destabilised by forced reconnection
 - but as island grows its structure becomes distorted by rotation

- Shows viability of mechanism for NTM seeding

20th IAEA Fusion Energy - Vilamoura
Cross-machine NTM physics - Buttery
Fishbone triggers - at higher β_N?

- Fishbones also trigger NTMs
 - 3/2 NTM thresholds on AUG generally higher than for sawtooth
Fishbone triggers - at higher β_N?

- Fishbones also trigger NTMs
 - $3/2$ NTM thresholds on AUG generally higher than for sawtooth
 - although on JET these do not extend to low β
 - unlike cases with fast particle stabilised sawteeth

- Fishbones recently observed to also trigger $2/1$ NTMs:
 - at $\beta_N=2.5$ on JET
Ideal triggers at high β_N...

- At high β_N often see weak/no seeding...
 - modes often near ideal limit
 - a particular issue for hybrid scenario and 2/1 NTMs

- Modelling of DIII-D case shows poles in classical tearing stability:

- Separate studies show 2/1 NTM threshold lowered by error fields
 - possibly an ion polarisation effect...
Conclusions for ITER on NTMs

• ITER deeply metastable to NTMs, but tractable?
 – benign scalings for some NTM onset mechanisms
 – control of seeds possible for others

• Baseline scenario - *key issues are fast particles & sawtooth*
 – further triggers at higher β_N may remain at high β_N

• Hybrid scenario - *main concern is 2/1 NTM* (3/2 fairly benign)
 – does 2/1 onset threshold fall with ρ^*? - mitigate with high q_{min}?

• However, caution required for ITER...
 – adverse NTM physics scalings and high fast particle populations
 – need to confirm scalings of high β_N modes, especially 2/1 NTMs
 – need to integrate control techniques into scenarios to develop ready to use tools (not lengthy research programmes) for ITER

Nevertheless, we now see the principal physics ingredients assembled, a new generation of codes identifying the effects, and good progress in control and predictive capability.

→ Ongoing work is important to provide solutions for ITER
Transient transport events can seed NTMs

- Ion polarisation effects depend on island rotation - \(\alpha_{\text{pol}} \sim \omega(\omega - \omega_{*i}) \)

Rotation from balance of ion and electron dissipation:

- naturally leads to small islands via ion polarisation effects
- higher e-dissipation raises \(w_0 \sim (D_e)^{0.5} \)

Does not require frequency matching between MHD modes and the island

May explain error field effects

What is the hidden control parameter?

- Employ neural network to look for pattern in data...
 - automatic optimisation from choice of 27 input parameters
 - train to predict onset time

- Network successful
 - predicts decreasing time to NTM as onset approached
 - unlike ρ^* scaling!
 - best network uses just β_N, ρ^* and sawtooth period
 - period even more significant than ρ^*

- Sawtooth period plays key role in NTM onset β
Preemptive current drive on DIII-D

- Use real time MSE tracking to put ECCD on NTM resonant surface, raising NTM thresholds
- Island evolutions show scale length of small island term, w_d, does not change much with ρ^*

- Mode removal in ITER will require driving islands down to similar size to those required in present devices
Use of correct local parameters

• Studies on AUG show that NTMs track correctly calculated bootstrap parameter, better than β_p

$\beta_p, \beta_p/L_p$ and β_p/L_p^{corr} at $q=1.5$ surf.

$\frac{L_p^{corr}}{L_p^{corr}} = \frac{1}{3} \frac{1}{L_T} + \frac{2}{3} \frac{1}{L_n}$

W of (3/2)-NTM from FFT

2/1 NTM

W from FFT
How do the ρ^* scalings do?

- But they are not predictive of NTM onset β and time on JET...

- β stays close to NTM onset scaling prediction once H-mode reached
 - for both local and global parameter fits

- JET NTM onsets align well with natural discharge evolution
 - (clue: ICRH phasings)
\(\rho^* \) scalings sometimes work for NTM onset

- AUG discharges sometimes approach scalings from below and get NTM when the scaling is reached
Formalism - origin of ρ^* scaling

- Evolution of island size w governed by modified Rutherford:

$$\tau_r \frac{dw}{dt} = r(\Delta' - \alpha w) + r \beta_p \left\{ a_{bs} \left[\frac{0.65 w}{w^2 + w_d^2} + \frac{0.35 w}{w^2 + 28 w_b^2} \right] - \frac{a_{GGJ}}{\sqrt{w^2 + 0.2 w_d^2}} - \frac{a_{pol}}{w^4 + w_b^4} \right\}$$

- Example: ion polarisation term, $a_{pol} \propto f(\Omega) g(v, \varepsilon) \rho_i \theta^2$

$$\Rightarrow \beta_{p-onset} \propto -r_s \Delta' \cdot \rho_i^* \cdot \frac{w_{seed} / \sqrt{a_{pol}}}{1 - (\sqrt{a_{pol} / w_{seed}})^2} \cdot g$$

- seed get $>$ seed need
- uncertainties in both

20th IAEA Fusion Energy - Vilamoura
ITER possible figure?

- Possibly how it looks...

\[q_0 \]

\[\beta_N \]

Poles in delta-prime \(\rightarrow \) 32/21

ELMs? \(\rightarrow \) 21?

Fishbone \(\rightarrow \) 32/21

3wave/Hegna \(\rightarrow \) 32

Sawtooth: forced reconnection \(\rightarrow \) 21/32/43
What is the hidden control parameter?

• Employ neural network to look for pattern in data...
 - automatic optimisation from choice of 27 input parameters
 - train to predict onset time

• Network successful
 - predicts decreasing time to NTM as onset approached
 ♦ unlike ρ^* scaling!
 - best network parameters:

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Residual \dagger</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_N τ_{sawtooth} $\rho_{i\phi}$</td>
<td>34.3</td>
<td>17%</td>
</tr>
<tr>
<td>β_N τ_{sawtooth}</td>
<td>34.4</td>
<td>20%</td>
</tr>
<tr>
<td>β_N $\rho_{i\phi}$</td>
<td>35.7</td>
<td>26%</td>
</tr>
<tr>
<td>β_N^*</td>
<td>35.9</td>
<td>31%</td>
</tr>
<tr>
<td>$\rho_{i\phi}^*$</td>
<td>37.5</td>
<td>29%</td>
</tr>
</tbody>
</table>

$\dagger \Sigma (\text{predicted} - \text{actual time to NTM})^2$

- Sawtooth period more useful than $\rho_{i\phi}^*$!
Future work

• Continue good progress on sawtooth models
• Demonstrate sawtooth control with strong FP populations at high beta
• Explore NTM triggering mechanisms and ways to control them
• Find beta limit in hybrid scenario and how it scales
• Resolve NTM small island physics and its scaling - particularly for 2/1 modes