Measurements and Modeling of Plasma Flow Damping in the HSX Stellarator

Outline

- Description of experiments and diagnostics
- Studies of flow and electric field evolution
 - Asymmetries between the spin-up and relaxation
 - Two time-scale flow evolution
 - Reduced damping with quasisymmetry
- Neoclassical modeling of flow damping
 - Original model for the spin-up
- Measurements/modeling comparison
 - Reduced flow damping in quasisymmetric configurations
 - Flow damping larger than the neoclassical prediction

$B = 0.5T$
$P_{ECH} < 200 \text{ kW} @ 28 \text{ GHz}$
$R \approx 1.3 \text{ m}$

HSX is located at the University of Wisconsin-Madison
HSX Provides Access to Configurations With and Without Symmetry

QHS Configuration

Mirror Configuration

QHS: Helical Bands of Constant $|B|$

Mirror: Helical Bands are Broken

Red $\rightarrow |B| > 0.5$ T

Blue $\rightarrow |B| < 0.5$ T
Probes and Electrodes Used to Study Flow Damping

- Bias Electrode to Drive Flows
- Multi-Tipped Mach Probes Simultaneously Measure Toroidal and Poloidal Flows
- 16 channel H$_{\alpha}$ array to determine the neutral density
Biased Electrode Experiments

Demonstrate New Flow Phenomena:

1) Reduced Flow Damping with Quasisymmetry

2) Two Time-Scale Flow Evolution
Preview: QHS Flows Damp More Slowly, Goes Faster For Less Drive

All other parameters ($n_e=1\times10^{12}\text{ cm}^{-3}$, $n_n \approx 1\times10^{10}\text{ cm}^{-3}$, $T_i \approx 25\text{ eV}$, $B=0.5\text{ T}$, $P_{ECH}=50\text{ kW}$) held constant.
Asymmetries and Multiple Time-Scales Observed in Flow Evolution

- **Potentials:**
 Fast Rise and Slow Decay

- **Electrode Current:**
 Large Spike and Fast Termination

- **Plasma Flows:**
 Fast and Slow Time-Scales at Rise and Decay
Neoclassical Modeling

Goal: Assess the flow damping caused by

1) Symmetry breaking ripples

2) Ion-neutral friction
Solve the Momentum Equations on a Flux Surface

- Two time-scales/directions come from the coupled momentum equations on a surface

\[
\frac{m_i N_i}{\partial t} \langle B_p \cdot U \rangle = -\frac{\sqrt{gB^z B^a}}{c} \langle J_{\text{plasma}} \cdot \nabla \psi \rangle - \langle B_p \cdot \nabla \cdot \Pi \rangle - m_i N_i \langle \nu_{in} B_p \cdot U \rangle
\]

\[
\frac{m_i N_i}{\partial t} \langle B \cdot U \rangle = -\langle B \cdot \nabla \cdot \Pi \rangle - m_i N_i \langle \nu_{in} B \cdot U \rangle
\]

- Use Hamada coordinates, linear neoclassical viscosities, neglect heat fluxes

- Steady state solution yields radial conductivity

\[
\langle J_{\text{plasma}} \cdot \nabla \psi \rangle = \sigma_\perp \left(\langle E_r \cdot \nabla \psi \rangle - \frac{\langle \nabla p_i \cdot \nabla \psi \rangle}{eN_i} \right)
\]
Spin-Up and Spin-Down are Treated Differently in Modeling

- At bias turn-on, switches put voltage on the electrode (~1 μsec.).

- Measurements show electric field is established on the electrode voltage-rise time-scale.

- Spin-Up Model: Flows and radial current respond to the electrode potential rise.

- At bias turn-off, switches break the electrode current (~1 μsec.).

- Relaxation Model: Flows and electric field respond to the electrode current termination.
Flow Rise: Electric Field is Turned on Quickly

- Assume that the electric field, $d\Phi/d\psi$, is turned on quickly

\[
\frac{\partial \Phi}{\partial \psi} = \begin{cases}
E_{r0} & t < 0 \\
E_{r0} + \kappa_E \left(1 - e^{-t/\tau}\right) & t > 0
\end{cases}
\]

- $\textbf{E} \times \textbf{B}$ flows and compensating Pfirsch-Schlueter flow grow on the electric field time-scale

- Parallel flow grows at a “Hybrid rate” ν_F determined by viscosity and ion-neutral friction

- Two time-scales/two direction flow evolution

\[
U(t) \approx U_E^\alpha \left(1 - e^{-t/\tau}\right) \textbf{e}_\alpha + U_\parallel \left(1 - e^{-\nu_F t}\right)
\]
Flow Decay: External Radial Current is Quickly Turned Off

- \(\gamma_f(\psi) \) (fast), and \(\gamma_s(\psi) \) (slow rate) are flux surface quantities related to the geometry and ion-neutral collision frequency.

- Break the flow into parts damped on each time-scale:

\[
U = e^{-\gamma_f(t-t_0)}f + e^{-\gamma_s(t-t_0)}s
\]

- Large neutral density \((n_n=1\times10^{12} \text{ cm}^{-3}) \) in this calculation.

- Slow rate corresponds to flows in the direction of symmetry.

- Numerically calculated Hamada basis vectors used in this figure.
The Hybrid Rate is Intermediate to the Fast and Slow Rate

Fast Rate is faster than Hybrid Rate, ν_F

is faster than Slow Rate

![Graph showing damping rates for QHS, Fast Rate, QHS, ν_F, and QHS, Slow Rate as functions of r_{eff} (cm).]
Mirror Shows Increased Neoclassical Damping Compared to QHS

QHS/Mirror Comparison

Fast rates are comparable

Mirror ν_F is larger by a factor of 2-3

Mirror slow rate is larger by 1-2 orders of magnitude

FEC 2004
Comparison of Neoclassical Theory with Measurements

1) Reduced Flow Damping with Quasisymmetry

2) Evidence of Anomalous Flow Damping
QHS Radial Conductivity is Larger than the Neoclassical Prediction

\[
\langle \vec{J}_{\text{plasma}} \cdot \vec{\nabla} \psi \rangle = \sigma_\perp \left(\langle \vec{E}_r \cdot \vec{\nabla} \psi \rangle - \frac{\langle \vec{\nabla} p_i \cdot \vec{\nabla} \psi \rangle}{eN_i} \right)
\]
Modeling Predicts the Difference in the QHS and Mirror Slow Rise Rates

- Mirror flows rise more quickly than QHS.

- Neoclassical hybrid time ν_F shows good agreement with the measurements.
Flow Decay Rates Show Reduced Damping with Quasisymmetry

- Neoclassical model predicts a much slower decay than the measurements (Factor of 10 in QHS, factor of 3-5 in Mirror).

- Difference between measurements is comparable to the difference between the models.

Conclusion

Quasisymmetry reduces flow damping, even in the presence of some anomalous damping.
Summary

- We have observed 2 time-scale flow evolution in HSX.

- An original model for the spin-up reproduces many of the features in the measurement.

- The damping in the symmetry direction appears to be larger than the neoclassical prediction with neutrals.

- The QHS configuration exhibits reduced damping compared to a configuration with the symmetry broken.
The End
Similar Flow Rise Rates Simultaneously Measured at High and Low Field Locations

All relevant time-scales are similar on high and low field sides

- Slow Flow Rise Time
- Floating Potential Decay Time
- Fast Flow Decay Time
- Slow Flow Decay Time

Floating Potential and J_{sat} profiles are similar at both locations as well.
Two Time-Scale Model Fits Flow Evolution

Similar time-scales measured by LFS and HFS probes.
Both Flow Speed and Direction Evolve over the Electrode Pulse

Need to extract the time-scales and directions.
Voltage Application Initiates the Rise, Current Termination Initiates the Decay
Developed a Comprehensive Set of H$_\alpha$ Detectors for Neutral Density Measurements

- Toroidal array: 7 detectors on magnetically equivalent ports
- Poloidal array: 9 detectors

- All detectors absolutely calibrated
- Analysis done by J. Canik using DEGAS code
Mach Probes Used to Measure Time-Dependent Plasma Flows

- 6 tip mach probes measure plasma flow speed and direction on a magnetic surface.
- 2 similar probes are used to simultaneously measure the flow at high and low field locations, both on the outboard side of the torus.
- Data is analyzed using the unmagnetized model by Hutchinson.
- Time response of ~10-20\(\mu \)s

\[
I_{\text{sat}}(\theta) = A \exp\left(\frac{M}{2}\right) [0.64(1 - \cos(\theta - \theta_F)) + 0.7(1 + \cos(\theta - \theta_F))]
\]

- Probe measures \(V_f \) with a proud pin.

Looking \(\perp \) To The Magnetic Surface
We Have Developed a Method to Calculate the Hamada Basis Vectors

- Method involves calculating the lab frame components of the contravariant basis vectors along a field line, similar to that by V.V. Nemov.

 \[B^\psi = \vec{B} \cdot \vec{\nabla} \psi = 0 \quad \text{Radial Basis Vector} \]

 \[B^\zeta = \vec{B} \cdot \vec{\nabla} \zeta = \frac{1}{2\pi \sqrt{g}} \quad \text{Toroidal Basis Vector} \]

 \[B^\alpha = \vec{B} \cdot \vec{\nabla} \alpha = \frac{t}{2\pi \sqrt{g}} \quad \text{Poloidal Basis Vector} \]

- Need initial condition on the basis vectors to complete this integration.
- Knowing \((\sqrt{g}, t, B_\alpha)\) at outboard symmetry plane is sufficient for calculating the initial conditions.
- Use two methods of computing the Pfirsch-Schlueter current to derive initial condition...

\[J_\parallel = h \frac{\partial p}{\partial \psi} B \quad \text{Method by Nemov}^1, \; h \text{ is numerically calculated} \]

\[J_\parallel = -\frac{B_\alpha}{B^2 B^\zeta \sqrt{g}} \frac{\partial p}{\partial \psi} B \quad \text{Method by Coronado and Wobig}^2, \; B_\alpha \text{ is the desired quantity} \]

1) V.V. Nemov, Nuclear Fusion 30, 927 (1990), 2) M. Coronado and H. Wobig Phys Fluids B 4, 1294 (1992)

FEC 2004
Floating Potential is a Flux Surface Quantity

Toward Magnetic Axis

Low Field Side

High Field Side

Before Bias

During Bias

LCFS

FEC 2004
Electrode Characteristics at Turn Off
Fit the Decay Model

Electrode Current
Turns off in ~1 µs

Electrode Voltage
Decays in ~30-50 µs

Floating potential and fast component of flow decay on same time-scale as electrode voltage, in agreement with neoclassical fast rate.
Artificially Increasing the Damping Improves Theory/Experiment Comparison

Increase the neutral density to *simulate* extra damping.

Radial Conductivity Agrees Better

Flow Decay: Slow Time Scale

Steady State Bias Induced Flows Agree Better

- This agreement comes at the cost of the rise model agreement.
- Need a better model for the enhanced damping.

\[
\nu_{in} \rightarrow \nu_{eff} \approx 3.6 \text{kHz}
\]

\[
\frac{a^2}{4\tau} \approx \frac{3600(0.11^2)}{4} \approx 10 \text{ m}^2/\text{s}
\]
Steady State Flow Direction Differs Somewhat from Neoclassical Prediction

\[(n,m) = (4,1)\) symmetry direction

This sort of comparison is only possible if the basis vectors are known:

\[U = U^\alpha e_\alpha + U^\zeta e_\zeta \]
Neoclassical Theory, Including Neutrals, is a Candidate to Explain Flow Damping in HSX

Near the edge, there are a number of growing symmetry breaking terms in the Hamada spectrum.

Low density plasma allows significant neutral penetration.

\[
\lambda_{mfp,H} = \frac{\sqrt{2E_H}}{m} \sqrt{\frac{n_e}{\langle \sigma v \rangle_{H+e \rightarrow p+2e}}} = \sqrt{\frac{2 \cdot 3 \cdot 1.6 \times 10^{-19} \left(\frac{m}{s} \right)}{1.67 \times 10^{-27} \left(\frac{m}{s} \right)}} \approx 1 m
\]
Synthesis of These Comparisons

- Measured fast time-scales match the neoclassical predictions.
- Slow time-scale is significantly faster than the neoclassical prediction.
- Appears that the damping in the direction of symmetry is faster than neoclassical.
- Large tokamaks have usually seen anomalous toroidal flow damping (DITE, ISX-B, PLT, PDX, ASDEX, TFTR, DIII-D, JET, C-MOD…)
- Smaller tokamak biased electrode experiments show anomalously large radial conductivity (barring neutrals, any radial current is anomalous!)
- HSX is quite similar to the tokamak results in this sense.
The End