Progress in the understanding and the performance of ECH and plasma shaping on TCV

J.-M. Moret for the TCV Team

in collaboration with
Istituto di Fisica del Plasma, Milano, Italy
Max Planck IPP, Garching, Germany
Kurchatov Institute, Moscow, Russia

Centre de Recherches en Physique des Plasmas
Association EURATOM-Confédération Suisse
EPFL, 1015 Lausanne, Switzerland
Objectives

TCV specificities

- High power density ECH system (4.5MW)
- Adaptable launching geometry
- Plasma shaping capabilities
 → Local modifications of plasma pressure and current density

Address tokamak concept improvement

- Increased energy confinement regimes
- Steady state scenarios
- Dominant electron heating (simulate α-heating)
Outline

- Effect of plasma shape on electron transport
- Magnetic shear modulation with ECCD
- Electron internal transport barrier formation and control
- Third harmonic top-launch ECH

Pochelon EX/9-1
Cirant EX/6-12
Henderson EX/3-3
Alberti EX/4-17
Effect of plasma shape on electron heat transport

Role of the triangularity ($\delta = -0.2$ to $+0.4$, L-mode) on local electron heat transport over a wide range of $R/L_{Te} = R\nabla T_e/T_e$

- $P_{ECH}(\rho = 0.35)/P_{ECH}(\rho = 0.70)$ controls R/L_{Te} at $\rho = 0.5$
- $P_{ECH}(\rho = 0.35) + P_{ECH}(\rho = 0.70)$ controls T_e at $\rho = 0.5$
At high R/L_{T_e}

- χ_e saturates and does not follow $\chi_e \neq T_{e}^{3/2} \left(R/L_{T_e} - R/L_{T_e}^{crit} \right)$ (ASDEX)

- shape dependence with high diffusivity at positive triangularity

- better with $q_e \sim n_e T_{e}^{5/2} \left(R/L_{T_e} - R/L_{T_e}^{crit} \right)$

\[\rho_{\text{vol}} \sim 0.5 \]

\[R/L_{T_e} \delta = +0.4 \]

\[\delta = +0.2 \]

\[\delta = -0.2 \]
Heuristic transport models (2)

- or \(\chi_e \sim f(T_e) \)
- Electron heat diffusivity increases with triangularity
- eITB criteria on \(\rho_s/L_{T_e} \) obtained at \(\delta = 0.2 \) but not at \(\delta = 0.4 \)
- triangularity coupled with collisionality (larger \(Z_{\text{eff}} \) at small \(\delta \))
- Local gyro-fluid (GLF23) and global collisionless gyro-kynetic (LORB5) simulations show unstable ITG and TEM (TEM dominate except at low \(R/L_{T_e} \))
Magnetic shear modulation with ECCD

Investigate the link between local magnetic shear and electron heat transport

Interleaved co and counter ECCD, off-axis, modulated (5Hz), at constant total ECH power (0.9MW)

→ sign modulation of ECCD
 locally driven current
→ change in resistivity
→ transient current diffusion
 (modelled with coupled lumped circuits)
→ local modulation of magnetic shear
 \((\tilde{s}/s = 60\% \text{ at } \rho_{\text{dep}})\)
confirmed by \(I_i, V_{\text{loop}}\) modulation and sawteeth suppression during co-ECCD
Response of electron temperature

Modulation in T_e in spite of constant ECH power

$$\frac{\nabla \tilde{\chi}_e}{\nabla \chi_e} = \frac{\tilde{q}_e}{q_e} \frac{\nabla \tilde{T}_e}{\nabla T_e} \ (60\% \ at \ \rho_{dep})$$

Electron diffusivity decreases with shear by the same relative amount and at the same radial location.
Barrier formation and control in steady state scenarios (fully sustained by current drive and bootstrap current)

- start with ohmic peaked current density j_Ω
- set $V_{\text{loop}} = 0\, \text{V}$, apply off-axis co-ECCD ($\rho = 0.4, 0.9\, \text{MW}$)
- after $\tau_{\text{CRT}} \approx 0.2\, \text{s}$, peaked j_Ω is replaced by hollow $j_{\text{ECCD}} + j_{\text{BS}}$
- transition to improved confinement

\[\rho = 0.4, 0.9\, \text{MW} \]

\[\tau_{\text{CRT}} \approx 0.2\, \text{s} \]

\[j_{\text{ECCD}} + j_{\text{BS}} \]
Rapid eITB formation

Observed with multiwire X-ray camera, high spatial (1 cm) and temporal (0.05 ms) resolution

- eITB foot at $\rho = 0.44$

Abel inverted emissivity (constant on flux surfaces)

- eITB formation at $\rho = 0.3$
- good confinement region expands rapidly

Barrier is very narrow (0.05 in ρ, 1.2 cm)
Barrier formation on a time scale < 1 ms $<$ energy confinement time
Role of current profile in eITB

Apply on-axis ECH (0.45MW)
- clear eITB on pressure profile
- τ_{Ee} increases (despite power increase)

Apply $V_{\text{loop}} = \pm 30\,\text{mV}$
- $P_{\Omega} = 3\,\text{kW} \ll P_{\text{ECH}}$
- perturbed the hollow current profile with peaked j_{Ω}
 - with $+30\,\text{mV}$, $j(0)$ increasing τ_{Ee} and $p_e(0)$ decreases
 - with $-30\,\text{mV}$, j more hollow τ_{Ee} and $p_e(0)$ increases

Current profile is the primary cause for confinement increase
Third harmonic top-launch ECH

Broaden the operational space with heating well above X2 cut-off density

- 3 x 0.5MW, 118GHz, 2s
- top launch grazing incidence to maximise interaction length

Absorption sensitive to launching angle (density gradient refraction, temperature relativistic shift)

→ Real time optimisation of the absorption

Alberti EX/4-17
Optimised X3-ECH absorption

- measured with the response of β_{DIA} to power modulation

Higher absorption at
- high power (high temperature)
- low density (absorption on suprathermal electrons generated by X3 - difference with TORAY-GA prediction)
- 100% achieved

Comparison between ray-tracing (TORAY-GA) and beam tracing (ECWBG) under way
ELMy H-mode with X3-ECH

previous experiments with $P_{X3} \ll P_{\Omega}$, ELM frequency decreases with power but ELM regime identical to Ohmic H-modes

with $P_{X3} = 3P_{\Omega}$

- different ELM regime
- ELM frequency much smaller
- Energy loss per ELM increased 10 x
- Minimum power to reach this regime
Summary

ECH system of TCV with highly adaptable launching is fully deployed - ideal tool for

Physics understanding

- electron heat transport, role of magnetic shear and shape
- eITB formation

Performances

- steady-state eITB control, high bootstrap fraction
- X3-ECH: real time optimisation of absorption
- ELMy H-mode at high X3-ECH power
<table>
<thead>
<tr>
<th>Name</th>
<th>Contribution</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.A. Henderson</td>
<td>Rapid eITB formation during magnetic shear reversal in fully non-inductive TCV discharges</td>
<td>EX/3-3</td>
</tr>
<tr>
<td>S. Alberti</td>
<td>Third-harmonic, top-launch, ECRH experiments on TCV Tokamak</td>
<td>EX/4-17</td>
</tr>
<tr>
<td>S. Cirant</td>
<td>Shear modulation experiments with ECCD on TCV</td>
<td>EX/6-12</td>
</tr>
<tr>
<td>A. Pochelon</td>
<td>Effect of plasma shape on electron heat transport in the presence of extreme temperature gradients variations in TCV</td>
<td>Oral EX/9-1</td>
</tr>
</tbody>
</table>