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Abstract

The micro w a v e plasma heating has a strong in�uence on collisional transp ort,

exp erimen tally observ ed b oth in stellarators and tok amaks. The estimate of the in-

terpla y b et w een heating and collisional transp ort implies solving a 5D kinetic equa-

tion. W e deal with this problem using a recen tly dev elop ed co de (ISDEP: In tegrator

of Sto c hastic Di�eren tial Equations for Plasmas) in a tok amak with ripple as a test

device, in tro ducing the heating e�ects and a non-linear computation of the time-

dep enden t plasma temp erature pro�le. The in�uence of heating on the relev an t

transp ort parameters, on plasma rotation and on the v elo cit y distribution function

is studied.

1 In tro duction

T ransp ort and heating are usually describ ed as separated pro cesses. The former is cus-

tomarily solv ed b y �uid equations and the latter, whic h is considered as a source term of

the transp ort set of equations, is calculated in the framew ork of kinetic theory . Ho w ev er,

there exist sev eral phenomena that sho w that transp ort is mo di�ed b y the heating e�ects

(see e.g. [1, 2 ]), due to the in terpla y b et w een micro w a v e plasma heating and transp ort,

and m ust b e estimated solving the 5D kinetic equation (3D in space and 2D in momen tum

space).

In this w ork w e solv e sim ultaneously the ion transp ort and heating in the non-linear

regime, taking adv an tage of the equiv alence b et w een the (linear) F okk er Planc k (FP) and

Langevin equations [3 ]. As it is w ell-kno wn, the FP equation is a collectiv e description

of the system, i.e. an equation for the distribution function in phase space f (t; x ) . An
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equiv alen t form is describing the system with a Langevin equation, whic h is a Sto c hastic

Di�eren tial Equation (SDE) for a single particle, where the v ariation of x i , the phase

space co ordinate, dep ends on a deterministic term, prop ortional to dt , and on a random

term dW i
that describ es a Wiener pro cess [3].

W e use ISDEP , a Mon te Carlo co de that calculates the ion kinetic transp ort b y follo wing

the guiding cen tre orbits in the presence of electric �eld, including ion-ion [4] and ion-

electron collisions [5]. W e in tro duce in the equations a new term that estimates the

microscopic quasi-linear w a v e-particle in teraction and w as �rstly written in Langevin form

in [6]. As w e deal with ion transp ort, the heating metho d that w e will consider is direct Ion

Cyclotron Resonance Heating (ICRH), in the range of second harmonic of ion cyclotron

resonance frequency , whic h is based in launc hing resonan t electromagnetic w a v es from

the edge of the con�ned plasma. In our case, the randomness represen ted b y the Wiener

pro cesses of the in teraction is related to the collisions with the bac kground plasma and

with the random relativ e phase b et w een particles gyromotion and w a v es. In this w ork,

w e do not in tro duce an y kind of turbulen t transp ort y et. The w a v e-particle in teraction is

formally the same as in the ECRH case, i.e., it can b e considered as a resonan t di�usion in

momen tum space. W e will include the nonlinear ev olution of the bac kground temp erature

using a self consisten t metho d, up dating the temp erature at eac h step.

W e c ho ose a tok amak device with ripple instead of a complex 3D device, since w e are in ter-

ested in studying the in�uence of the heating on transp ort rather than on the con�nemen t

prop erties of a giv en magnetic con�guration.

2 Mo deling of collisional transp ort and heating in a 3D

tok amak.

2.1 The tok amak mo del

In our test device, the plasma is a circular torus with ma jor radius R0 = 1 m and

minor radius a = 0:2 m. The main magnetic �eld ( B0 = 1 T) as w ell as a small ripple,

( » 0:01B0 ) is created b y 32 toroidal coils. The expression for the rippled magnetic �eld is

obtained from [7 ]. The ripple do es not mo dify the toroidal magnetic �ux in an appreciable

w a y ( » 0:01%, estimated b y n umerical in tegration), so w e can tak e the usual expression

½= r=a. ICH micro w a v es are launc hed b y t w o an tennae lo cated in opp osite angles of the

torus. W e plot the shap e of the main pro�les in Fig. 1.

2.2 The Langevin Equations for the system

The dynamics of the test particles is giv en b y a set of Langevin equations. This includes

sev eral ph ysical features and appro ximations. W e study the ev olution of the guiding

cen ter p osition, the v elo cit y square and the pitc h: x i = ( ~rgc; v2; ¸ ) , ¸ = vjj =v. W e

also consider Coulom bian collisions with the bac kground using the Bo ozer-Kuo P etra vic

collision op erator.

The quasilinear w a v e-particle in teraction used in this w ork is a resonan t pro cess in phase
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Figure 1: 1D pro�les: electrostatic p oten tial ( ©) and its deriv ativ e, prop ortional to the

electric �eld ( d©=d½), temp erature ( T ), densit y ( n ) and p oloidal ( Bp ) and toroidal ( BT )

magnetic �elds. In this picture, the v alues with ½ <0 corresp ond the high magnetic �eld

side of the device while ½ > 0 refers to the lo w �eld side. All the pro�les except BT are

symmetric in the p oloidal angle.

space. The resonan t condition is satis�ed with v ery small probabilit y , but the in�uence

on (v2; ¸ ) is v ery strong. W e tak e a Gaussian dep osition pro�le cen tered at the magnetic

axis. As w e will see, the �nal result is a global increase of the energy .

Sc hematically , the equations w e are solving are:

d~rgc = ~v gc(x) dt; (1)

dv2 =
¡
F gc

v2 (x) + F coll
v2 (x) + F ICH

v2 (x)
¢

dt

+ Gv2 (x) ±dW v2
+ GvA (x) ±dW A + GvB (x) ±dW B ; (2)

d¸ =
¡
F gc

¸ (x) + F coll
¸ (x) + F ICH

¸ (x)
¢

dt

+ G¸ (x) ±dW ¸ + G¸A (x) ±dW A + G¸B (x) ±dW B : (3)

The Wiener pro cess is an indep enden t incremen t sto c hastic pro cess (Gaussian distributed)

suc h that:

dW j (0) = 0 ; hdW j (t)i = 0; hdW j (t)dW k(t)i = ±jk dt: (4)

This pro cess in tro duces di�usion phenomena in the system ev olution. Using Eqs. (1),

(2) and (3) w e can follo w particle tra jectories in the con�ned plasma, a�ected b y electro-

magnetic �elds using the guiding cen tre appro ximation: ~v gc
, F gc

v2 and F gc
¸ (refs. [8, 9 , 10 ])

and collisions with other particles via the Bo ozer op erator: F coll
v , F coll

¸ Gv2
and G¸ , (refs.

[11 , 12]). The functions F ICH
v2 , F ICH

¸ , GvA , GvB , G¸A and G¸B can b e found in [6], al-

though some misprin ts ha v e b een corrected. The sym b ol � ±� indicates that w e are using

Stratono vic h algebra for the SDE system [3].

The Mon te Carlo metho d is used to in tegrate a large n um b er of indep enden t tra jectories

and calculate the main con�nemen t prop erties as the a v erage energy , particle and heat

�uxes, con�nemen t time, etc. One of the main adv an tages of follo wing indep enden t

tra jectories is that the sim ulations scale p erfectly in massiv e parallel clusters. In fact, all

the calculations presen ted in this w ork ha v e b een done using grid computing tec hniques,

see e.g. [13].
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2.3 In tro duction of non linear e�ects

Linearizing the Boltzmann equation is equiv alen t to study the test particles k eeping �xed

the bac kground plasma. This mak es imp ossible the study of heating e�ects during plasma

ev olution b ecause fast ions will transfer their energy to the bac kground, and no temp er-

ature rising will b e observ ed. T o o v ercome this limitation while k eeping the b ene�ts of

the equiv alence b et w een the FP and the Langevin approac h, w e allo w time dep enden t

temp erature pro�les: T(½; t) , whic h w e shall �x self-consisten tly b y iden tifying the time

ev olution of the temp erature of the test particles with that of the �eld particles [5 ]. Note

that time dep enden t pro�les are allo w ed in a linear FP equation, the iterativ e metho d is

the k ey p oin t to in tro duce non linearities, as will b e explained b elo w. In this w ork w e

k eep constan t the bac kground densit y , assuming that the sources are able to supplemen t

the particle losses.

W e use as temp erature pro�le the a v erage kinetic energy in an in terv al of ¢ ½ = 0:1
cen tered in ½at a time t : v2(½; t) . Let qi b e the quotien t of the a v erage kinetic energy in

the i -th iteration with ICH and the energy without ICH:

qi (½; t) =
v2

i (½; t)
v2(½; t)

: (5)

Then, in the iteration i + 1 w e tak e as temp erature the initial pro�le m ultiplied b y qi :

Ti +1 (½; t) = T0(½) qi (½; t) : (6)

W e stop iterating when Ti +1 (½; t) = Ti (½; t) within errors, whic h is our self-consisten t

pro�le.

3 Numerical results

W e use a Klo e den-Piersen algorithm [3 ] for solving our SDE system. It is similar to a

second order Runge Kutta metho d for a giv en SDE for X (t) :

dX i = F i (X; t )dt + Gi
j (X; t ) ±dW j ; Stratonovich SDE (7)

X i
n+1 = X i

n +
±
2

¡
F i (X n ) + F i (X p)

¢
+

1
2

¡
Gi

j (X n ) + Gi
j (X p)

¢
¢ W j ; (8)

X i
p = X i

n + F i (X n )±+ Gi
k(X n ) ¢ W k : (9)

This metho d con v erges w eakly (for the a v erages, see [3]) with order ±2
( ± = tn+1 ¡ tn :) for

a 1D m ultiplicativ e noise. Unfortunately , w e are dealing with 4D m ultiplicativ e noises and

w e �nd con v ergence up to order ± (sp ecially in the ICH case). P erforming con v ergence

tests, w e ha v e to c ho ose ± = 2 £ 10¡ 9 s in the ICH case, so the systematic errors are alw a ys

smaller than the statistical errors in the measuremen ts in the �nal time ( t = 0:05 s). When

heating is not included, ± = 5 £ 10¡ 8 s is enough.

W e stop iterating when w e reac h steady state and, therefore, w e �nd a self-consisten t

pro�le in v2
(Fig. 3). The main results of this w ork are the comparison of �uxes, v elo cities,

distribution functions and other relev an t quan tities b et w een sim ulations with and without

heating. In Fig. 2 w e sho w the time ev olution of sev eral plasma features in b oth cases:
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Figure 2: Ev olution (with and without ICH) of the p ersistence P (upp er left), a v erage

e�ectiv e radius, ½ (upp er righ t), total energy ET (lo w er left) and kinetic energy (lo w er

righ t) in units of mc2=2. Con�nemen t times are ¿ = 0:0387(8)s and ¿ICH = 0:0212(9)s.

W e can observ e the heating e�ect for t > 10¡ 3
s.

p ersistence P (de�ned as the fraction of surviving particles), e�ectiv e radius and kinetic

and total energy . It can b e seen that the p ersistence of particles falls faster in the case of

ICH. This is not surprising since the a v erage energy is increased and so do es the out w ard

�ux. W e calculate the con�nemen t times �tting P(t) to e¡ t=¿
. The a v erage radius also

increases in the case of ICH for times larger than the t ypical collision one, sho wing again

the increase of the out w ard particle �ux. The a v erage energy rises for times larger than

10¡ 3
s, sho wing the ob vious e�ect of plasma heating and the t ypical time scale in whic h

the p o w er absorption is relev an t. The c hange of the a v erage squared v elo cit y is, not

surprisingly , v ery similar to the energy one.

Also w e calculate the toroidal and p oloidal v elo cit y pro�les (Fig. 3). W e see that the

p oloidal v elo cit y do es not c hange b ecause it dep ends mostly on the

~E £ ~B drift, and it is

not mo di�ed in the system. On the other hand, vÁ is strongly in�uenced b y ICH, b ecause

if v2
gro ws while vµ is constan t, then vÁ increases. This incremen t, fo cused on ½' 0,

is propagated radially via transp ort pro cesses.The ev olution of the particle �ux pro�le

is plotted in Fig. 4, whic h sho ws that this is alw a ys larger in the presence of heating,

esp ecially for t > 10¡ 3
s, whic h is the t ypical time scale for plasma heating to b e relev an t.

The steady state �ux is monotonic, as corresp onds to the absence of sources or sinks. The

heat �ux pro�le ev olution (Fig. 5) is again monotonic in steady state ( t = 5 ¢10¡ 2
s), but

the gradien t in the cen tre of the device is m uc h larger in the case of ICH than in the one

without heating, since the heat source is lo cated close to ½= 0 .

W e compute the probabilit y distribution function ( v2 ¢f (v; Á) ), in terms of v and Á (Fig.

6). W e �nd that with a small ripple ( 1%) f (v; Á) do es not dep end on Á in an y case,

whic h implies that the parallel transp ort is able to o v ercome the lo cal heating pro duced

b y the an tennae as w ell as the ripple e�ects. It is clear that the e�ect of heating tends to

mak e the distribution function wider , rising its tail and creating an imp ortan t n um b er of
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Figure 3: Iterations of the v2
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Figure 5: Heat �uxes.

suprathermal ions. The Binder cum ulan t, de�ned as · := hv4i =hv2i 2
, measures deviations

from the Maxw ellian distribution (Fig 3). In the plasma without ICH, the cum ulan t is

equal to 5/3 at ev ery time, except in the outer plasma radius where an increase of fast

particles due to the transp ort is observ ed. The ICH plasmas sho w clear e�ects of heating

with a cum ulan t larger than the Maxw ellian v alue, with a lo cal maxim um in the cen tre of

the device and an increase close to the plasma edge due to the e�ect of fast ion transp ort.

4 Conclusions

W e ha v e estimated for the �rst time the com bined e�ects of ion collisional transp ort and

heating outside the frame of the linear appro ximation. T o do that, w e ha v e dev elop ed

a nonlinear kinetic metho d based on Langevin equations for transp ort and quasi linear

heating. W e mo dify the bac kground temp erature with an iterativ e metho d, allo wing a

real incremen t of the particle energy . This metho d mak es p ossible the n umerical solu-

tion, for an y geometry and w a v e, of the collisional transp ort in phase space. The only

appro ximations are considering collisional transp ort in a frozen electrostatic p oten tial and

assuming that w a v e-particle in teraction is w ell describ ed b y quasi-linear theory . W e ha v e

particularized our mo del to the geometry of a tok amak with ripple, a v oiding for the mo-

men t the e�ects of more complex geometries to concen trate ourselv es in the heat and

transp ort in terpla y . This computer co de can b e easily adapted to another geometries and

plasma pro�les, lik e stellarator geometries or the ITER one.
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Figure 6: V elo cit y probabilit y distribution functions, as a function of the v elo cit y and the

toroidal angle without (left) and with ICH (righ t).
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