SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

Dr. Mohammad F. Gharabeh
SESAME/Allan/Jordan

IAEA F1-TM-34708
IAEA, Vienna, Austria
September 15, 2008
Evolution of Synchrotron Radiation

Yesterday’s Synchrotrons
- Circular electron motion
- Continuous circular trajectory
- Photons

Third-Generation Synchrotrons
- Many straight sections containing periodic magnetic structures
- Tightly controlled electron beam

Bend Magnet Radiation
- X-ray light bulb
- Photons flux vs. Photon energy

Undulator Radiation
- Laser-like
- Tunable
- Photons/s vs. Photon energy

M. F. Gharaibeh, IAEA F1-TM-34708, IAEA, Vienna, Austria
September 15, 2008
The ALS mostly produces ultraviolet light and soft X rays which have just the right energies to explore many of the atomic properties of matter.
What Properties Make Synchrotron Radiation (SR) so Useful?

• **High brightness and stability:** SR is extremely intense (hundreds of thousands of times higher than conventional X-ray tubes)

• **Wide energy spectrum:** SR is emitted with a wide range of energies

• **Highly polarized and short pulses:** SR is emitted in very short pulses, typically less than a nano-second (a billionth of a second)

• **SMALL SOURCE SIZE (≤ mm).**

• **PARTIAL COHERENCE.**

• **HIGH VACUUM ENVIRONMENT.**
Photons - a Unique Tool in Studying Structure and Properties of Matter - X-rays as an Example

Seeing the Invisible

X-rays can “see” smaller things - down to the size of molecules and individual atoms
These Techniques Provide Very Valuable Information

Imaging - Seeing the Invisible

Atomic and Molecular Structure
- where are the atoms -

Electronic Structure and Bonding
- where are the electrons -

Magnetic Structure and Properties
- where are the spins -
• Birth of a new radiology

Synchrotron light is revolutionizing radiology. The superior characteristics of synchrotron light open the way to very effective radiological diagnosis using a much reduced dose of x-rays. Furthermore, microscopic details can be detected with incredible precision, enhancing the diagnostic capabilities.

• A powerful “microscope” for basic research and industry

Synchrotron light explores the microscopic world in many different ways and with unprecedented effectiveness. One domain stands out for its present explosive growth: macromolecular crystallography. New synchrotron-based crystallography techniques such as "MAD" find the positions of thousands of atoms in huge biological molecules, most notably proteins.
• Microchemical analysis

Novel synchrotron-based techniques analyze the chemical and physical properties of materials and biological systems with very high sensitivity and accuracy “chemical composition and the bonding state of elements on a scale of a few millionths of a millimeter”. Microchemical analysis is a powerful and non-destructive tool to analyze specimens of archaeological and historical interest. Synchrotron spectromicroscopy investigates medical problems such as the chemical aspects of new therapies for the fight against cancer.

• Microfabrication towards a new industrial revolution

Synchrotron-emitted x-rays are used not only for scientific studies, but also for industrial fabrication of ultraminiaturized products. Photolithographic techniques based on short-wavelength ultraviolet light are the key to extreme miniaturization in today's microelectronics industry -- which led to the greatest industrial revolution in history. Synchrotron x-rays have even shorter wavelengths than ultraviolet light, and can push the miniaturization even further (nanotechnology).
SESAME COUNCIL

MEMBERS
1. BAHRAIN 2. CYPRUS 3. EGYPT
4. Iraq 5. ISLAMIC REPUBLIC OF IRAN
6. ISRAEL 7. JORDAN 7. PAKISTAN
8. PALESTINIAN AUTHORITY 9. TURKEY

PENDING MEMBERSHIP
1. MOROCCO 2. OMAN 3. UNITED ARAB EMIRATES

OBSERVERS
· FRANCE · GERMANY · GREECE
· ITALY · KUWAIT · PORTUGAL
· RUSSIAN FEDERATION · SWEDEN
· UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
· UNITED STATES OF AMERICA

PENDING OBSERVER STATUS
· JAPAN
SESAME Storage Ring Main Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV)</td>
<td>2.5</td>
</tr>
<tr>
<td>Maximum Beam Curr. (mA)</td>
<td>400</td>
</tr>
<tr>
<td>Bending Flux Density (T)</td>
<td>1.4554</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>133.2</td>
</tr>
<tr>
<td>Emittance (nm.rad)</td>
<td>26</td>
</tr>
<tr>
<td>Maximum ID Length (m)</td>
<td>3.9</td>
</tr>
<tr>
<td>Long Straights Beam Cross Section ($\sigma_x\sigma_z$) ((\mu m))</td>
<td>828 x 21</td>
</tr>
<tr>
<td>Available Straight Sections for Insertion Devices</td>
<td>12</td>
</tr>
</tbody>
</table>
3D View of the New Shielding

M. F. Gharabeh, IAEA F1-TM-34708, IAEA, Vienna, Austria
September 15, 2008
• The Modulator has reached its maximum value of 9 kV

• The Maximum magnetic field has been reached:
Collaboration
Have visited SESAME for a technical work:

- Michael Hartrott (20 - 25/1/08, BESSY), funded by SESAME: Microtron
- Pierre Lebasque (2 – 7/3/08, SOLEIL), funded by IAEA: Pulsed magnet system and Microtron
- Alain Lestrade (8 – 12/3/08, SOLEIL), funded by IAEA: Surveying and alignment

Signature of collaboration with ALBA (Spain) and APS (USA).

Collaboration signatures with ELETTRA and SLS are also foreseen.
Vacuum Chamber, Magnets and Girder Assembly, Design Progress
<table>
<thead>
<tr>
<th>No</th>
<th>Beamline</th>
<th>Coordinator</th>
<th>Expert</th>
<th>Donation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mad Protein Crystallography</td>
<td>S. Hasnain, M. Yousef</td>
<td>Samar Hasnain</td>
<td>DL – 14.1 & 14.2</td>
</tr>
<tr>
<td>2</td>
<td>Soft X-ray - VUV</td>
<td>B. Suleman, Aslam Baig</td>
<td>Zahid Hussain</td>
<td>DL – 4.1 & 4.2</td>
</tr>
<tr>
<td>3</td>
<td>SAXS/WAXS</td>
<td>M. Al-Hussein, Zehra Seyers</td>
<td>Wim Bras</td>
<td>DL – 16.1</td>
</tr>
<tr>
<td>4</td>
<td>XAFS/XRF</td>
<td>Awni Hallak, Abu Samak</td>
<td>A. Simionovici</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Powder Diffraction</td>
<td>E. Ozdas</td>
<td>Fabia Gozzo</td>
<td>SLS</td>
</tr>
<tr>
<td>6</td>
<td>IR Spectro-microscopy</td>
<td>Z. El Bayyari, I. Sagi</td>
<td>Paul Dumas</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Zero beamline</td>
<td>M. Gharaibeh, Rami Ali</td>
<td>---</td>
<td>LURE</td>
</tr>
</tbody>
</table>
DONATION FROM Daresbury

5 BEAMLINES

- 16.1 SAX/WAXS beamline (also expect to receive an appropriate front end)
- 14.1 Fixed wavelength high resolution PX
- 14.2 Tunable Se MAD with a robot for high throughput screening
- It is expected that the above two will be provided with a front end and also possibly a high field MPW. Thus, both beamlines can be instantly commissioned on SESAME.
- 4.1 VUV Spectroscopy (14-60, 50-140 and 100-170 eV)
- 4.2 NEXAFS/XAS (1.8-10keV)
- The above two will be provided with a front end so the beamlines can be instantly integrated onto a BM of SESAME.
Synchrotron Light For Experimental Science And Applications In The Middle East

M. F. Gharaibeh, IAEA F1-TM-34708, IAEA, Vienna, Austria
September 15, 2008
What Do We Have

• Wiggler from ALS & Undulator and Double Crystal Monochromator from SSRL (*USA*).
• Optical Parts, Hutches and Undulator from LURE (*France*).
• 5 SRS – DL beamlines (*UK*).
• 1 SLS – PDB beamline (*Sweden*).
SESAME TEAM

Directorate: K. Toukan (Director/Jordan), H. Hoorani (Scientific Director/Pakistan), A. Nadji (Technical Director/France-Algeria), M.Y. Khalil (Administrative Director/Egypt), A. Hallak (Assistant to Director/Jordan) H.Tarawneh (Deputy Technical Director/Jordan), S. Al-Faques (Administrative Assistant/Jordan).

Scientific Staff: M. F. Gharaibeh, W. Salah.

Advisory Committee Chairs:
- **Technical**: A. Wruhlich (PSI, Switzerland)
- **Scientific**: Z. Sayers (Sabanci Univ., Turkey)
- **Beam Lines**: Z. Hussain (ALS-US/Pakistan)
- **Training**: J. Rahighi (Iran).
http://www.sesame.org.jo