Compatibility of advanced divertor solutions with high core performance (Snowflake & Super-X)

(A personal view)

William Morris

(EURATOM/CCFE Fusion Association)

Thanks to Steve Allen, David Hancock, Bruce Lipschultz, Simon McIntosh, Jon Menard, Holger Reimerdes, Vlad Soukhanovskii for input

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority
Scope

Theme:
- do advanced divertors help or hinder high performance cores?
- how can we be sure enough to propose for DEMO?
- how do we handle the uncertainty?

Topics
- Innovative divertors: why and what?
- Status (brief)
- What divertor aspects affect core performance?
- What core aspects affect divertor?
- Key interface issues
- Some comments on next steps
Power & particle flow – issues and integration

Main chamber PFCs

MW/m², erosion, melting, fatigue

Core Plasma

P_{rad}

P_{aux}

P_{\alpha}

Suitable pedestal

SOL width, seeding for radiative losses, turbulent transport, control, transients, start-up, ramp-down

SOL + Divertor plasma

Divertor target PFCs

MW/m², erosion, melting, fatigue

Divertor chamber PFCs

Neutron MW/m²

P_{\text{electric}}, \Delta P_{\text{electric}}

T breeding

L-H access, ELMs, separatrix conditions (e.g. f_{e,i}(v)) etc

Burn control

Stability control

P_{\text{SOL}} control?

Impurities

Fuel

Impurities

Fuel

SOL + Divertor plasma

Burn control

Stability control

P_{\text{SOL}} control?

Impurities

Fuel

Suitable pedestal

SOL width, seeding for radiative losses, turbulent transport, control, transients, start-up, ramp-down

Divertor target PFCs

MW/m², erosion, melting, fatigue

Divertor chamber PFCs

Neutron MW/m²

P_{\text{electric}}, \Delta P_{\text{electric}}

T breeding

L-H access, ELMs, separatrix conditions (e.g. f_{e,i}(v)) etc
Advanced divertors – why?

• Power exhaust for DEMO extremely demanding
 – Numbers (power, erosion etc) and control
 – Radiation degradation of PFCs, operating point (DBTT)
• Not yet sure that conventional approach will have appropriate margin, or how/when we will be sure.
• If need higher performance core (higher exhaust power) and ability to handle excursions, may need more margin

⇒ Seek alternates with more margin & flexibility for exhaust plasma and PFCs, for back-up, and/or better plasma

• Attractive features, new insights into exhaust physics, but many issues of physics benefit & technical feasibility, which will need to be solved
Advanced divertors – what?

- Change magnetic geometry to
 - increase flux expansion
 - add volume for radiation
 - Increase connection length: cooling, let cross-field transport act
 - partly shield targets
- Started with snowflake and super-X, but variants
 - optimum may not be like today’s options
- Most need extra volume

Pioneers include: Ryutov (snowflake); Kotschenreuther, Valanju, Mahajan (super-x).
Snowflake geometry

- Variants (SF+, SF-) depending on location and proximity of the two x-points
- Currently open geometry
 - solution for pumping and neutral/impurity compression to be developed.

Holger Reimerdes, EPS 2013, PPCF 2013

Snowflake on TCV. NSTX, DIII-D PFCs just below null-point
Advanced divertors – engineering

- **Challenges:**
 - Precise PFC alignment for max benefit from flux expansion (esp snowflake)
 - Large coil currents if coils outside TF (snowflake)
 - Technology & maintenance if coils inside TF (e.g. double-decker)

- **Internal coils may be much easier in FNSF/CTF if TF coils demountable**

- **Double decker:** are the forces manageable?
 - Yes, first estimate, using “aircraft wing” type skin & spar, steel structure (~10MA max in-vessel current for $I_p=16MA$)

See also N Asakura poster P13
Status of research

• Experiment – encouraging but limited data:
 – Sustained snowflake H-modes on DIII-D, NSTX, TCV, reduced power flux to target, mitigated ELM impact
 – Same PFCs for SF & conventional – i.e. realistic alignment
 – Limited parameter ranges so far
 – No super-X or other long leg data yet

• Theory and modelling – early stages
 – SOLPS-like modelling of snowflake and super-X
 – Theory studies of change in turbulence in snowflake
 – Preparing turbulence calculations in super-X
DIII-D: peak heat flux reduced 2.5X by SF

S. L. Allen et al., IAEA FEC 2012, Paper PD/1-2
NSTX: radiative snowflake

Base plasma:
- Graphite PFCs + lithium coatings
- $I_p=0.9$ MA, $P_{\text{NBI}}=4$ MW, $P_{\text{SOL}} \sim 3$ MW
- $q_{\text{peak}} \leq 8$ MW/m2, $q_{\parallel} \leq 100$ MW/m2

With snowflake divertor
- H-mode confinement unchanged
- $W_{\text{MHD}} \sim 250$ kJ, $H_{98}(y,2) \sim 1$, $\beta_N \sim 5$
- Core impurity reduced up to 50 %
- Divertor heat flux significantly reduced
 - Between ELMs
 - During Type-I ELMs ($\Delta W/W \sim 5$-15 %)
- Radiative and CD$_4$ seeded divertor work well, MARFEs avoided. (Ne on DIII-D)

V Soukhanovskii, EPS 2013
TCV: ELM self-spreading

- ELM energy activates extra strikepoints – power spread more.
- Thought to be due to instabilities/convection driven by local pressure around X-point (also studied on NSTX, theory)

ELM power redistribution

\[\sigma = 0: \text{perfect snowflake,} \]

\[\sigma = \text{distance between X-points/a} \]

W. Vijvers, IAEA 2012, subm Nucl. Fusion 2013
Evidence for good core performance?

• Quite extensive snowflake experiments on DIII-D, NSTX and TCV, others to come (EAST, MAST…)

• Snowflake:
 – Sustained H-mode
 – Controlled configuration
 – High β ($\beta_n \sim 5$ on NSTX)
 – Good confinement ($H_H \sim 1$)

• No super-X or double-decker data yet (MAST 2015/16 ff)

Research at early stage, but promising
Where advanced divertor may affect core

<table>
<thead>
<tr>
<th>Factor</th>
<th>Possible impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-point position</td>
<td>Shape/triangularity (physics unclear, ignore here)</td>
</tr>
<tr>
<td>Upstream density (related to detachment threshold)</td>
<td>Pedestal foot, pedestal height and gradient/stability</td>
</tr>
<tr>
<td></td>
<td>Pedestal collisionality ($J_{bootstrap}$, transport & stability)</td>
</tr>
<tr>
<td></td>
<td>Edge radiation level and control</td>
</tr>
<tr>
<td></td>
<td>Density limit</td>
</tr>
<tr>
<td>Upstream turbulence/blob source (if needed for SOL width)</td>
<td>Turbulent pedestal foot – may affect pedestal height</td>
</tr>
<tr>
<td>Main chamber neutral density (related to closure)</td>
<td>H-mode access, fuelling control</td>
</tr>
<tr>
<td></td>
<td>Pedestal structure (cf Li on NSTX?)</td>
</tr>
<tr>
<td></td>
<td>Density limit</td>
</tr>
<tr>
<td>Impurity density around X-point, esp if very high concentration for high $P_{rad, div}$</td>
<td>Core impurity level</td>
</tr>
<tr>
<td></td>
<td>Edge radiation level and control</td>
</tr>
<tr>
<td>Upstream SOL flow</td>
<td>L-H threshold?</td>
</tr>
<tr>
<td></td>
<td>Particle (fuel, He, impurity balance)</td>
</tr>
<tr>
<td>Others?</td>
<td></td>
</tr>
</tbody>
</table>
Where core might affect divertor

<table>
<thead>
<tr>
<th>Factor</th>
<th>Possible issues/areas of impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangularity</td>
<td>X-point position (origin of benefit unclear, ignore here)</td>
</tr>
<tr>
<td>Nature of pedestal needed (e.g. ELM-free, ELM type) L-H threshold</td>
<td>Upstream density
Main chamber neutral density
Upstream SOL flows?</td>
</tr>
<tr>
<td>Fuelling and fuel exhaust</td>
<td>Baffling and pumping arrangement and rate, impact on detachment conditions</td>
</tr>
<tr>
<td>Impurity concentration limits</td>
<td>Impurity concentration around X-point
Level of throttling of divertor</td>
</tr>
<tr>
<td>Edge radiation levels</td>
<td>Upstream density and temperature
Upstream impurity species and level
Impurity exhaust (for P_{rad} control)</td>
</tr>
<tr>
<td>Ramp-up and ramp-down and slow transients, time-lags in control loop</td>
<td>Resilience of detached region to variations in power influx
Capability of primary targets (if slow & fast transients hit same targets as DC power)</td>
</tr>
<tr>
<td>Others?</td>
<td>3-D effects</td>
</tr>
</tbody>
</table>
Main interaction areas to explore

- L-H access
- Edge pedestal structure (and density limit) – link to P_{fus} directly
- Fuelling and pumping and high n/n_G
- Impurity control
- Edge/SOL turbulence (link to MW/m2 in divertor)
- Transient control (slow and fast)

- Several of these are coupled
 - common to all exhaust solutions (advanced divertors help wider research)
 - depend on desired core scenario, divertor configuration
- Long term aim:
 - predictive capability to develop new exhaust approaches to required confidence level.
 - theory-based models validated on experiment
L-H transition

- Observations
 - P_{LH}: only modest changes from snowflake
 - Mixed data on effect of the leg length
- Questions/Issues
 - Vertical targets different?
 - Upstream SOL parameters affected by configuration
 - Edge magnetic shear increased by SF
- All may affect P_{LH}, but how, why?
- No validated theory model for effects of leg length, neutral density, SOL flows and gradients on H-mode access conditions

Appears generally compatible, but need more data, esp. long-leg. And some theory!

Longer leg \rightarrow L-mode on MAST (close to L-H threshold)
Pedestal structure

- Pedestal not changed much by SF per se?
- NSTX: Li changes pedestal a lot, no ELMs (low neutrals?). SF restores ELMs
- But upstream density may change pedestal:
 - high → lower pedestal gradient
 - low \(n_u \) needs high \(T_u \), strong cooling (\(T_t/T_u \)) and not too large \(n_t \)
- Neutral density affects pedestal shape?
 - Closed divertor (super-X, double-decker): expect lower main chamber neutral density
- (Assume ELMs tackled anyway)

Appears generally compatible, but some questions
Fuelling, density limit and He exhaust

- High target density needed for detachment and He pumping
- May want low main chamber neutral density?
- Fuelling limited by gas handling of T plant
- Need main plasma close to Greenwald density (little data so far)
- Are these consistent?
- Does divertor change nature/value of density limit?
- Snowflake and long-leg: different requirements
 - How to pump snowflake? Is baffle required? Pumping of open snowflake being explored
 - Long-leg (super-X or double-decker): closed divertor and “easy” pumping; need tight control to avoid baffle contact

- **Research at early stage**
Impurity influx to core

- Snowflake: radiating region by X-point.
 - data is mixed whether a problem. Radiation localised (low-Z so far)
 - need to explore higher absolute $P_{\text{rad,div}}$ (higher impurity concentrations)

- Long-leg:
 - poloidal flux concentration at divertor throat may help entrainment of impurities & stabilisation of the detachment front

- Parameters such as mean free path not DEMO-like

- Research at early stage
Edge/SOL turbulence

• Much of the turbulence drive is upstream, but the divertor geometry affects the level.
• Whether additional cross-field transport is generated in the X-point or long leg region is not yet known.
• ELM pulse drives spreading in snowflake – relevant to inter-ELM?

• Research at early stage – enthusiastic activity
Transients, slow

• High performance scenarios often have complex time sequences (tailored current & power ramps etc)
 – Exhaust must work in start-up and ramp-down
 – Plasma control on DEMO likely to be worse than now
 – Response time > time to damage PFCs
• Advanced divertor must cope (e.g. remain detached)
 – If detached layer has to be close to target, is detachment marginal?
 – Experiment: snowflakes detach more easily. Expect same for long-leg configurations. Build on this.
 – Multiple impurity species may help
• (Assume ELMs tackled anyway)

• Research at early stage, scope for optimism
Summary of position

• **Snowflake**: promising early results
 – Experiments in H-mode, $H_H > 1, \beta_n \sim 5$ (NSTX).
 – Several uncertainties:
 • H-mode access (theory basis needed)
 • pedestal structure
 • fuelling and pumping, density limit
 • impurity control at high P_{rad}
 • slow and fast transients (same for conventional)
 • performance with acceptable PFC angle (detached helps?)
 – Advanced core regimes: little if any data

• **Super-X, long leg, “double decker”**:
 – could lead to more margin/decoupling of divertor and main plasma than for conventional divertor?
Next steps?

• **Snowflake**: Expand plasma regimes & parameter range; investigate pumping; divertor characterisation
• **Super-X/long leg**: get on with them!
• Test/improve stability of radiation/detachment front
• Improve theory-based models of key mechanisms for extrapolation, especially of cross-field transport including detached region. Test and validate. Try to use models to integrate where no experiments
• Use differences in configurations as an exhaust research tool (e.g. to understand power spreading detachment threshold/control/stability) – for conventional exhaust as well
• May need some structured plans
• Work on the engineering and technology aspects
Prospects

• It may be possible/essential to develop DEMO core plasmas approximately (e.g. JT-60SA) and then “bolt on” a different divertor developed separately
 – think about divertor interface when developing core

• Assume cannot do a full-scale test before DEMO
 – there will always be a “gap” even in non-nuclear aspects
 – assess how much can be done with theory/models
 – what scale of integration test is worthwhile? (even none?)

• Significant optimisation likely to be needed on DEMO itself (true for any exhaust solution?)

• Steps smaller and simpler for first stage of a self-developing FNSF/CTF?
Advanced divertor path?

- Theory-based models of SOL and divertor, and link to core (often same as for conventional exhaust)
- Advanced divertors in medium-sized tokamaks
- Engineering & technology of advanced divertors
- JET, JT-60SA, ITER: core plasma optimisation
- Combining process (tbd!)
- Are major new facilities/upgrades needed? Scope and timing?
- FNSF (or CTF)
- DEMO
Conclusions

- Some very interesting possibilities for exhaust and potentially more freedom for the core optimisation
- Physics: not yet any showstoppers for combining advanced divertor with good core performance (from experiment, mainly)
- Technology: still open challenges – some advances
- R&D is at an early stage, several key issues to address in experiment, theory, engineering/technology
- Substantial uncertainty due to limited data, parameter ranges and understanding – main R&D areas known
- Need to identify process and level of demonstration and/or integration to allow decision for DEMO, or whether uncertainty means final integration best left to DEMO
- Field generates enthusiasm and new ideas, useful for exhaust as a whole.
Backup material
L-H transition

- Observations
 - P_{LH} modest on NSTX - not an issue?
 - P_{LH} not changed by SF on TCV
 - P_{LH} raised by longer leg (JET, MAST, TCV), or lowered (C-Mod slot divertor)

- Questions/issues
 - Vertical targets different?
 - Upstream SOL parameters affected by configuration. E.g. flows? Now measurable, B2-SOLPS super-X model (Rozhansky)
 - Edge magnetic shear increased by SF

Longer leg \rightarrow L-mode on MAST

Coherence imaging of SOL flows in MAST
Pedestal structure

- Pedestal ~unchanged for DIII-D, TCV SF vs conventional so far
- NSTX – Li changes pedestal a lot, ELM-less. ELMs return with SF
- But upstream density may change pedestal:
 - High → lower pedestal gradient for same n_{ped}
 - Pressure balance: $n_u T_u \sim 2 n_t T_t$ for $T_e = T_i$, $M_t = 1$, $M_u = 0$
 - low n_u needs high T_u, strong cooling (T_t/T_u) and not too large n_t
- Neutral density affects pedestal shape?
 - Li on NSTX: much lower dn/dr in pedestal (due to lower neutral density?)
 - Closed divertor (super-X, double-decker): expect lower main chamber neutral density
Tools for engineering feasibility study

- Equilibrium model used to generate concept
- Python used to model divertor region only, assuming simple core plasma
- This allows quick exploration of small modifications
- These can easily be fed to mechanical FEA in ANSYS