Technology Challenges in the Development of Inertial Fusion Energy

Seventh IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Chamber and Targets

March 19, 2015

Thomas Anklam

Lawrence Livermore National Laboratory
Experimental results are encouraging – if eventually successful, what are the challenges to developing a practical power source?

\[E_{\text{ignition}} \sim \rho R^3 T \sim \frac{(\rho R)^3 T^3}{P_{stag}^2} \]

- Increase driver energy and/or coupling efficiency

- Improve implosion “quality” – \(P_{stag}^2 \)
 - Convergence ratio \(\sim CR^6 \)
 - Implosion vel \(\sim \nu^6 \)
 - Symmetry \(\sim S^8 \)

- Challenges
 - Mix and symmetry get harder to control as velocity and convergence increase
 - Hot electron heating – adiabat / symmetry?
Principle of laser IFE power generation

Engine operation of 900 cycles / minute delivers ~ 1 GWe
Most fundamental challenge is to generate more power than consumed by the fusion driver.

Plant electrical gain is a function of four parameters:

\[\eta_L \times G_F \times G_B \times \eta_T = \frac{P_{\text{Gross}}}{P_{\text{Recirc}}} \]

Recirculating Power:

\[f_{\text{Recirc}} = \frac{P_{\text{Recirc}}}{P_{\text{Gross}}} = \frac{1}{\text{Plant Gain}} \]
Greatest technology potential is in laser efficiency and fusion gain

- Laser efficiency: < 1% for flash lamp pumped lasers but estimated ~ 15% for diode laser pumped systems

- Fusion gain: higher is better, but how high a gain is needed?

- Fusion blanket gain: constrained by physics and practicalities to <1.2
 - Can be much higher in fusion-fission hybrids

- Thermal to electrical conversion efficiency: <50%, future gains will be hard to come by
Fusion gain drives technology requirements for laser and targets

Design parameter combinations for a 1000 MW fusion power plant

- Assumes: $G_R=1.2$
- $\eta_{\ell}=0.43$
- $\eta_{\ell,\text{c}}=0.16$
Economic analysis shows that greatest benefits accrue between fusion gains of ~30 and 100

Relative cost of electricity as a function of fusion gain and PRF for 1000 MW_E plant
Fusion gain of ~60 needed for energy production

Relative cost of electricity as function of fusion gain and PRF

Assumes:
\(G_e = 1.2 \)
\(\eta_{\gamma} = 0.43 \)
\(\eta_{\text{re}} = 0.16 \)
Power Balance, Electrical Gain 5.1 (example)

Laser
2.3 MJ @ 16 Hz
15% η_L

37 MW laser

$G_{\text{fusion}} = 65$

2400 MW fusion

$G_{\text{blanket}} = 1.2$

2900 MW thermal

Power cycle
$\eta_{\text{th}} = 44\%$

1275 MWe

1625 MW$_{\text{th}}$

Process heat

1000 MWe

240 MWe
(19% recirc)

30 MWe

Pumps / aux. power

To grid

Lawrence Livermore National Laboratory
Modular design important to mitigating technology risk

Beam-in-a-Box

Laser system availability vs MTBF

“Conventional” Rad-Resistant Steel
Material choices, chamber/plant configuration and RAMI are all inter-related.

The modules don’t need to be physically connected other than via the support structures.

No beam-line connections are necessary.
Chamber gas can be used to mitigate impulse heating of first wall – allowing a 10m scale, steel chamber to be used

Ions are stopped in ~ 10s of cm of xenon gas and x-rays are mostly absorbed

Pb, D, T, α, etc.

First wall heating is low enough to eliminate the need for tungsten coating

Wall is protected from ion and x-ray target output
Since the beam can propagate through lead vapor, complete “chamber clearing” is not required

- Electronic Stimulated Raman Scattering (ESRS) has been observed in Pb
- Metastable states saturate with investment of 20 kJ for 10^{15}/cc Pb

Chamber clearing of 0.5% is sufficient for a 1.5 g Pb target
An RAFM steel chamber could be utilized at full scale with reduced fusion power (~1100 MW)

- First wall design is balance between temperature (η_{th}), size and thermal stress

- Based on ASME piping code factors of safety:
 - 3 on ultimate tensile strength
 - 1.5 on yield strength
 - 1.5 on creep rupture strength
 - < 1% creep in 10^5 hours

- Demo system could use low-activation ferritic martensitic and accept 10 dpa/100 appm lifetime
Raw materials availability does not appear to be an issue
IFE energy requires new target manufacturing paradigm

Target for an ICF Experiment
- Expensive
- Production rate: ~1 per day
- Manual, high-precision fabrication
- Held stationary in chamber

IFE target
- Low cost (< 50 cents each)
- Production rate: ~1 million per day
- Automated production
- Injected at ~250 m/s for fusion energy applications

~13 mm
Concepts exist for low-cost, mass manufactured fuel, but development is required

Die-cast hohlraum components

Target component cost breakout

Plasma – CVD HD Carbon Capsule

Off-site
- Fabricate CVD diamond ablator
- Laser-drill fill-hole
- Etch out mandrel
- Die-cast Pb hohlraum parts
- Attach CVD-diamond membranes
- Pre-formed capsule support IR shield LEH window

In-plant
- Create inner foam layer
- Assemble hohlraum parts
- Assemble hohlraum halves
- Helium fill
- Cool to ~18K, filling foam

On-site Target Assembly Plant
- Fill capsule with DT
- Plug hole
- Place capsule into hohlraum
High throughput process for capsule manufacturing is important to achieving target low cost

Capsules could be stacked in a CVD plasma to increase number of capsules per run

More capsules can be coated per run under a laterally expandable hot-filament CVD to reduce cost
High throughput techniques are also needed for ultra-thin membranes

500 nm thick membranes for experiments are spin-coated. This will not meet high-throughput and low-cost objectives.

Meniscus coating membrane films on a removal layer is estimated by to meet cost and through-put objectives.
Injector must aim target to a point near chamber center within the laser field-of-view

- Laser fast-pointing field-of-view (FOV) is ±500 µm at chamber center.
- Injector must place 99.9% (3.3σ) of targets with ±500 µm of chamber center to allow target to connect with laser (equals laser FOV).
- Target tilt/precession must be less than 40 mrad.
- Tracking and engagement system must track position to ±25 µm and ±50 µm respectively to allow laser to point to target ±100 µm RMS (1σ) interaction specification.
- Tracking and engagement system must measure target velocity to within ±0.2 m/s at a 250 m/s target speed to time laser to a ±12 µm vertical positional error for a final measurement taken 23 µs from chamber center.
- Target tilt must be measured to ±4 mrad.

Target trajectory, velocity and tilt must be measured to meet laser-target interaction specification.
Gas-gun injector is a well-known, high-accuracy acceleration system

Injector prototype:
- 35 m/s
- ±1 mm at 6 m in air

Target loading

Pressurized He forces target into barrel

Barrel clamped at muzzle

10m injector barrel

4 gas guns mounted on turret: Disabled gun can be quickly replaced increasing system reliability
Advancements in tritium technology enable more compact architecture and lower tritium inventory

More than 50% of plant’s T inventory resides in the target fill area

Examples include SRNL’s micro- TCAP technology and use of cryo-viscous compressors
Waste disposal could meet Class-A requirements using high purity steel manufacture

- Waste Disposal Rating ~ 0.1
- Nb, Tb, Ho, Ir contribute ~95%

<table>
<thead>
<tr>
<th>Impurity</th>
<th>Specified impurity (ppm)</th>
<th>Estimated Class A req. (ppm)</th>
<th>Measured Impurity (ppm)*</th>
<th>Measured Impurity (ppm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>10</td>
<td>1.0</td>
<td>0.7900025</td>
<td>0.8590025</td>
</tr>
<tr>
<td>Tb</td>
<td>2.5</td>
<td>0.25</td>
<td>0.1001525</td>
<td>0.1036525</td>
</tr>
<tr>
<td>Ho</td>
<td>0.65</td>
<td>0.065</td>
<td>0.1001525</td>
<td>0.1036525</td>
</tr>
<tr>
<td>Ir</td>
<td>5</td>
<td>0.5</td>
<td>0.100155</td>
<td>0.103655</td>
</tr>
</tbody>
</table>

Alloy fabrication tests encouraging for Class A disposal
E23-HAPLS builds on technologies demonstrated on Mercury to achieve scalable, efficient, high-average-power operation.
GOLD and ELI are driving demonstration of increasingly capable diode arrays

GOLD: 120 Hz, 126 kW

ELI L3: 10 Hz, 800 kW
800 kW QCW diode array in action at 10 Hz

- 800 kW peak @ 120 Hz
- 2.4 kW average power
Important Challenges Must be Overcome

- Because inertial fusion is a threshold phenomena, fixed costs are high and minimum economic plant size is large
- While laser technology has alternate, near-term applications, the fusion chamber and several other systems are unique to fusion – likely to require significant, dedicated government funding
- Pulsed nature of IFE generates high cycle fatigue – challenging thermo-mechanical design
- Low-cost fuel concepts exist, but much development work is required
- Final optic radiation damage risk addressed by in-situ thermal annealing – but final optic survival is a high technical risk area