Contributions of tungsten-fibre reinforced tungsten composites to divertor concepts of future fusion reactors

J. Riescha, R. Neua,b, J. Almanstötterc, M. Aumannd, J.W. Coenend, H. Gietla, T. Höschena, G. Holznera, M. Lia, Ch. Linsmeierd, J.-H. Youa

a Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
b Fakultät für Maschinenbau, Technische Universität München, D-85748 Garching, Germany
c OSRAM GmbH, Corporate Technology CT TSS MTS MET, Mittelstetter Weg 2, 86830 Schwabmünchen, Germany
d Forschungszentrum Jülich GmbH, IEK - Plasmaphysik, D-52425 Jülich, Germany
Tungsten as Plasma-Facing Material

- Oxidation: Oxide Stability, Oxidation Mechanism
- Mechanics: DBTT, Fracture Mechanics
- Thermal Properties: Thermal Conductivity, Heat Capacity
- D/H/T Interaction: Retention, Diffusion
- Sputtering: Net Erosion, Surface Composition Change
- Transmutation/Activation: Nuclear Decay Heat, Nuclear Safety

motivation for W from PWI

J.W. Coenen PFMC 2015
Content

- W_f/ W materials state of the art and development
 - K-Doped W wires
 - As-fabricated state
 - Embrittled state

- Aspects for future divertor concepts
 - Toughening
 - Temperature window
 - PWI

- Summary
W_f/W – state of the art

- **Theory**

 ![Image of stress-strain curve and fibre-matrix interaction](image)

- **Synthesis**
 - Wound fibre preform (drawn W wire) + CVI (dual step)
 - **Model system**
 + small bulk samples
 (2.5x3x25 mm)

[based on Chawla 1993]
• Manufacturing technique identified + first samples
• Enhanced toughness at room temperature – shown for bulk samples
• Toughness mechanisms after embrittlement – shown for model systems
→ **Proof-of-principle – TRL 2**
→ **Ranked as risk mitigation PFC/HHF material in EU Fusion roadmap towards DEMO**
W_f / W – Materials Development

Address all constituents + all aspects of synthesis

- Fibre studies
 - Strength: influence of diameter
 - Thermal stability
- Interface studies
 - Thermal stability
 - Optimisation of adhesion
 - Activation behaviour
- Matrix synthesis
 - Optimisation: layered CVD / CVI
 - Alternatives: powder metallurgical W_f / W
- Composite studies
 - Investigate mechanical properties
 - Understand embrittlement issues
 embrittlement by overheating
 embrittlement by neutron irradiation
Thermal Stability of K-Doped W wires

Single fibre tension tests on as-fabricated and annealed samples

- W doped with 60-75 ppm K (producer: OSRAM GmbH)
- Diameter: 150 µm, Fiber Length: 80 mm
- Annealing time: 30 min
- Annealing temperatures

\[\approx 2400 \text{ K: } \text{abnormal grain growth}^{2)} \]

<table>
<thead>
<tr>
<th>Temp [K]</th>
<th>As-fabricated</th>
<th>1273</th>
<th>1573</th>
<th>1873</th>
<th>2173</th>
<th>2573</th>
</tr>
</thead>
</table>

- 50 µm
As-produced

2173 K

2573 K
Extensive grain growth

2) [Pink et al. 1989]
Tensile Tests of 150 µm W wires

Stress-Strain curve of as produced and heat-treated fiber

<table>
<thead>
<tr>
<th>T_a [K]</th>
<th>As-produced</th>
<th>1273</th>
<th>1573</th>
<th>1873</th>
<th>2173</th>
<th>2573</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_u [MPa]</td>
<td>2745±16</td>
<td>2409±16</td>
<td>2221±12</td>
<td>2089±11</td>
<td>1968±9</td>
<td>1274±105</td>
</tr>
<tr>
<td>ε_f [10^{-2}]</td>
<td>3.0±0.2</td>
<td>2.6±0.2</td>
<td>3.0±0.4</td>
<td>2.7±0.1</td>
<td>3.4±0.5</td>
<td><< 1.0</td>
</tr>
</tbody>
</table>

Tensile strength of pure W: ≈ 2900 MPa

J. Riesch, PFMC 2015
Thermal Stability of K-Doped W wires

Tensile Tests of 150 µm W wires

Stress-Strain curve of as produced and heat-treated fiber

<table>
<thead>
<tr>
<th>T_a [K]</th>
<th>As-produced</th>
<th>1273</th>
<th>1573</th>
<th>1873</th>
<th>2173</th>
<th>2573</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_u [MPa]</td>
<td>2745±16</td>
<td>2409±16</td>
<td>2221±12</td>
<td>2089±11</td>
<td>1968±9</td>
<td>1274±105</td>
</tr>
<tr>
<td>ε_f [10^{-2}]</td>
<td>3.0±0.2</td>
<td>2.6±0.2</td>
<td>3.0±0.4</td>
<td>2.7±0.1</td>
<td>3.4±0.5</td>
<td><< 1.0</td>
</tr>
</tbody>
</table>

Tensile strength of pure W: ≈ 2900 MPa

J. Riesch, PFMC 2015
Brittle

Tensile Tests of 150 µm W wires

Tensile strength of pure W: ≈ 2900 MPa

Stress-Strain curve of as produced and heat-treated fiber

Embrittlement of pure W

<table>
<thead>
<tr>
<th>T_a [K]</th>
<th>As-produced</th>
<th>1273</th>
<th>1573</th>
<th>1873</th>
<th>2173</th>
<th>2573</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_u [MPa]</td>
<td>2745±16</td>
<td>2409±16</td>
<td>2221±12</td>
<td>2089±11</td>
<td>1968±9</td>
<td>1274±105</td>
</tr>
<tr>
<td>ε_f [10^{-2}]</td>
<td>3.0±0.2</td>
<td>2.6±0.2</td>
<td>3.0±0.4</td>
<td>2.7±0.1</td>
<td>3.4±0.5</td>
<td><< 1.0</td>
</tr>
</tbody>
</table>

No embrittlement below 2200 K

J. Riesch, PFMC 2015
Production of multi-fibre samples by CVI & CVD

- 10 Layers a 220 fibres (pure), fibre volume fraction ≈ 0.3, unidirectional
- 62 x 57 x 3.5-4 mm³, 194 g
- 93 – 98 % depending on location, 94.2 % overall density (Archimedes)
- Er₂O₃ interface

First bulk W₇f / W for extended testing
Mechanical Properties of W_f / W

- Multi-fibre composite
 - W-CVD layered deposition
 - Polished
 - 2.2 mm x 3 mm
- As fabricated and Embrittled (2000 K, 30 min) W_f / W
- Stepwise 3-point bending + In-situ surface observation in electron microscope (ESI)

Ductile Fibre (pure)
Strength 2900 MPa, Fracture strain 2%

Brittle Fibre (pure)
Strength 900 MPa, Fracture Strain 0.2%
Mechanical Properties of W_f / W

Bending test of **as fabricated** W_f /W composites

- Controlled crack propagation + rising load bearing capacity → ‘Ideal’ behaviour of composite
Mechanical Properties of W_f/W

bending test of embrittled W_f/W composites

- **Theory**
 - Controlled crack propagation + rising load bearing capacity
 - Toughening works also after embrittlement

- **Embrittled fibre**

 - Matrix failure = bulk material failure

R.Neu
Aspects for future divertor concepts
Fibre tests at elevated temperature

Fibre tests after neutron irradiation

Tension tests on recrystallised W_f/W

Cracking of tungsten

[M. Wirtz et al., FED 88 (2013) 1768-1772]

Incoperate W_f/W

Deep cracking of divertor elements
Electron beam (FE200, France), 10-20 MW/m² up to 1000 cycles, actively cooled
Result of low cycle fatigue (crack initiation) and brittle behavior during cool down

[Pintsuk et al., Fusion Eng Des 88 (2013) 1858–1861]
First results of impact of bridging on J-integrals

No tensile stress concentration at crack tip

Stresses (MPa) in x-direction at the mid-surface

J-integrals for a pre-crack of 3 mm

* The surfaces from depth 1.0 to 1.5 mm and from 2.0 to 2.5 mm are bonded.

* The surfaces from depth 1.0 to 1.5 mm and from 2.0 to 2.5 mm are bonded.
Plasma wall interaction

Tungsten fibre-reinforced tungsten

- Special microstructure
 - Fibre, Matrix
- New materials
 - Interfaces, Doped W wire
- Complicated structures
 - Internal Interfaces, different microstructures

→ Many aspects to be considered if used as plasma facing material e.g.

- Thermal stability
- Activation
- Interaction with hydrogen
- Erosion
- ...

Matrix

Fibre: drawn W-wire

Interface
K doped W wire: activation

K doping of wire: no increase of activation
Summary & Outlook

W_f / W materials development
- K-Doped W wires show high strength and ductility up to annealing temperatures of 2200 K
- Very high toughness at room temperature due to ductility of fibres
- Toughness after high temperature embrittlement

W_f / W prospects for future fusion reactors
- Enhancement of temperature window
- Solution for cracking problem
- Complex PWI issues

Next steps
- Fibre tests at elevated temperature
- Optimisation of manufacturing process
 - WILMA
 - PM studies
- PWI studies on constituents and model systems
Thank you for your attention